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Abstract: The use of deep learning techniques for detection of objects in imagery has 

spread to many disciplines, including archaeology. Deep learning models are exploited 

in detection of objects and structures in archaeology using natural and satellite images, 

as well as aerial and terrestrial laser scanning data. A well-known limitation of such mod-

els, specifically deep supervised models, is that they highly depend on large volumes of 

labelled data. For tasks with a small amount of labelled data and a huge amount of un-

labelled data, unsupervised pretraining or transfer learning can be used. In this work, a 

product of airborne laser scanning data, i.e., Digital Terrain Models (DTM) is used to 

detect structures such as bomb craters, charcoal kilns, and barrows in the Harz region 

of Lower Saxony, Germany. Labels for only a small area are available while the majority 

of the region is unlabelled. Therefore, the large number of unlabelled examples are used 

to pretrain an auto-encoder model in an unsupervised fashion, and then a supervised 

training is performed using the labelled data. This combination of unsupervised learning 

and supervised learning is hereafter referred to as Semi Supervised Learning (SSL). 

Experiments in this study show that SSL helps gain up to 9 % improvement in perfor-

mance compared to using supervised training alone. 
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Introduction 

Cultural heritage preservation is crucial for appreciating past human accomplishments and learning 

from their actions. A step towards this goal is the identification and registration of archaeological 

monuments. While archaeologists are able to detect archaeological sites in the field and document 

them, different measures have been undertaken to improve the process leading to more efficient 

documentation of interesting archaeological landscape structures and monuments. One effective 

method is using LiDAR data or one of its derivatives, such as DTMs. Archaeologists use these data 

to manually identify, label, and keep records of interesting monuments and structures. In an attempt 

to automate the process, Meyer et al. (2019) used LiDAR data and the eCognition tool by Trimble 
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(2014) to detect monuments such as ridge and furrow areas, burial mounds, and Motte-and-Baily 

castles. To automate the process even further, labelled DTM data can be used by different tech-

niques in artificial intelligence, specifically deep learning, to train a model that learns to distinguish 

different objects. The trained models can then detect similar objects and label them in regions not 

inspected manually. In the next step, the proposed structures can be checked directly in the field. 

Deep learning models can learn to classify, i.e., produce a label or category for a given segment of 

the DTM. It can also learn to categorize each point in the given DTM to a specified class. The former 

technique is referred to as classification while the latter is called semantic segmentation. Additionally, 

another technique called instance segmentation takes an input and gives as output a bounding box, 

semantic segmentation mask, and a class label for each instance in the input. While all of the three 

techniques have proved to be effective, they highly depend on a large volume of labelled data to 

learn recognizing objects. In this work, a large volume of unlabelled DTM data is leveraged by an 

unsupervised pretraining technique followed by a supervised training with a small amount of labelled 

data to detect archaeological objects. The focus of this research is the detection of bomb craters, 

charcoal kilns, and barrows in the Harz mining region of Lower Saxony, Germany. This region has 

been shaped by mining for thousands of years, which is represented by a huge amount of archaeo-

logical sites (Malek, 2019). It is also home to the UNESCO world heritage site, “Historic Town of 

Goslar, Mines of Rammelsberg, and the Upper Harz Water Management System” (Bergwerk Ram-

melsberg Altstadt Goslar Oberharzer Wasserwirtschaft, Goslar: Stadt Goslar, 2017). For the exper-

iments presented in this paper, three types of structures, as previously mentioned, are chosen which 

are not only typical but also occur in large numbers. The rest of the paper is organized to include the 

proposed method and related works, experiments and results followed by a conclusion and hints 

towards future research directions. 

Proposed Method 

Previous works show successful applications of deep learning techniques using laser scanning data. 

Politz et al. (2018) use deep classification models to detect road segments and water bodies. Trier 

et al. (2019) detect archaeological structures such as kilns, mounds, cairns, and cattle feed stance, 

among others. Kazimi et al. (2018) use deep classifiers to detect streams, lakes, and road segments. 

Kazimi et al. (2019a) apply semantic segmentation on DTM data to identify man-made landscape 

structures. Finally, instance segmentation technique is used by Kazimi et al. (2019b) to retrieve pixel-

wise labels as well as boundary lines for archaeological objects.  

Methods explained above are examples of supervised learning where corresponding labels are pre-

sent for each example. In our study, DTM data for Lower Saxony is available with labels for only a 

small portion of the region. Therefore, we make use of the unlabelled data by pretraining an auto-

encoder model and then use the pretrained model for semantic segmentation with the labelled data. 

An auto-encoder model is a model that learns abstract representations of high dimensional inputs, 

encodes them to a compressed, low dimensional vector which is then used to reconstruct the original 

input. The advantage of such models is that the compressed encodings can be used for other learn-

ing tasks or visualization purposes. Maschi et al. (2011) used stacked convolutional auto-encoders 

for extracting features from images and using the features for object and digit recognition tasks. 
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Socher et al. (2011) used recursive auto-encoders for predicting sentiment distributions in textual 

data. Zhou and Paffenroth (2017) used auto-encoders for anomaly detection in data. In this study, 

we train an auto-encoder for feature extraction in DTM data. We then use the extracted features for 

semantic segmentation and producing pixel-level class labels for a given DTM input. The model used 

for auto-encoding and semantic segmentation in this research is the well-known architecture called 

Deeplab v3+ proposed by Chen et al. (2018). It is illustrated in Fig. 1.  

 

Fig. 1. The architecture of the model. It is first used as an auto-encoder with the unlabelled data. Then, the number of 

filters in the last convolutional layer is changed to match the number of object categories, and it is trained further with 

labelled data in order to perform semantic segmentation and produce labels for each pixel in the input DTM. 

Deeplab v3+ is originally used for semantic segmentation in natural images, and it follows an en-

coder-decoder approach. The encoder extracts low-dimensional compressed features from images 

using combinations of multiple deep convolutional layers and spatial pyramid pooling (He et al., 

2015). The features are then fed to the decoder which learns pixel-wise label maps for the given 

input by a few layers of bilinear upsampling and convolution, in addition to making use of low-level 

features extracted from the earlier layers of the feature extraction network. 

The encoder-decoder-like architecture of Deeplab v3+ makes it suitable for us to use it in both stages 

of our approach, namely unsupervised pretraining with unlabelled data, and supervised semantic 

segmentation with limited labelled data. In the pretraining stage, the model is trained to learn a com-

pressed representation of given DTM examples using the encoder and reconstruct the original DTM 

from the features using the decoder. Hence, the number of input channels and output channels in 

the network is the same (i.e., 1), and the model is optimized to minimize the mean squared error 

function. In the second stage, the learned encoder parameters are fixed, but the decoder is trained 

to use the extracted features by the encoder and generate segmentation maps for the given DTM. 

Therefore, the number of output channels depends on the number of categories or labels in the task 

at hand. In our study, we investigate 3 types of structures: bomb craters, charcoal kilns, and barrows, 

but we have an additional category for background pixels, leading to a total of 4 categories. 
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To evaluate the approach, in addition to running experiments on the unlabelled and labelled data 

with the proposed method, we also conducted experiments using the pure semantic segmentation 

approach trained only on the labelled data with randomly initialized parameters. The results of the 

experiments are given in the following sections in detail.   

Experiments 

Experiments are performed using the proposed workflow with DTM data for Lower Saxony. Details 

of the dataset and experiment set-ups for the SSL and pure supervised step are given in the following 

sections. 

Dataset 

The data used in this study is DTM data with a resolution of half a meter per pixel acquired from 

Lower Saxony, Germany. The DTM has a resolution of half a meter per pixel and covers an area of 

approximately 47000 square kilometres. Areas in the Harz mountains are labelled to indicate struc-

tures such as bomb craters, charcoal kilns and barrows. Statistics for labelled examples are shown 

in Table 1.  

Category Examples Minimum Diameter Average Diameter Maximum Diameter 

Bomb Craters 1135 2.5 meters  6 meters 10 meters 

Charcoal Kilns 1044 4 meters  11.5 meters 19 meters 

Barrows 1322 4 meters  17 meters 32 meters 

Table. 1. Statistics for labelled examples. 

For training the auto-encoder in the first step, random patches of size 64 × 64 pixels are extracted 

from the unlabelled regions. In the second step, i.e., in supervised training with labelled data, patches 

of 64 × 64 pixels are extracted such that they contain either a whole object (one of bomb craters, 

charcoal kilns, or barrows) or at least a quarter of the object. The data is divided into 80 %, 10 %, 

and 10 % split for training, validation, and testing. 

Training Set-up 

In this experiment, Python and Keras (Chollet, 2015) library are used for training and evaluation. 

Both models, auto-encoding and semantic segmentation are trained for 100 epochs each with input 

sizes of 64 × 64 pixels, Adam optimization with default arguments, and batch sizes of 32. The ob-

jective and metric function for the auto-encoder is mean squared error. The objective function for 

semantic segmentation model is categorical cross entropy, and the metric function is Intersection 

over Union (IoU). 

Evaluation and Results  

The SSL and Pure Supervised Learning (PSL) methods are both compared using the standard eval-

uation metrics for semantic segmentation, namely Intersection over Union (IoU). IoU, also referred 

to as Jaccard index, is defined as the percentage of overlap between true labels and those predicted 

by the deep learning models. It is a ratio of the number of common pixels between the true label map 
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and the predicted label map as shown in Equation 1. The values range from 0 (bad) to 100 (good) 

showing the percentage of overlap. 

𝐼𝑜𝑈 =  
𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙𝑠 ⋂ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑒𝑙𝑠

𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙𝑠 ⋃ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑒𝑙𝑠
 ∗  100  (𝐸𝑞. 1) 

The semantic segmentation model in the PSL, and the second stage of the SSL are both trained, 

validated, and tested on the exact same set of examples. During training, the parameters leading to 

the best IoU values for the validation data are saved to disk and used after training for evaluating 

the prediction results on the test data. 

IoU results for SSL and PSL evaluated on the test set are shown in Table 2. Since the majority of 

the pixels in the given DTM patches are background pixels, the mean IoU could be quite deceptive. 

A model could produce a background label for all the pixels in an input and could still get a mean 

IoU of above 50 percent. Therefore, in addition to the mean IoU, we list individual IoU results for 

each class for better verification. It is clear from the IoU results that SSL improves detection perfor-

mance in general, and more specifically for small structures like charcoal kilns.  

Method  Mean IoU IoU bomb craters IoU charcoal kilns IoU Barrows 

PSL 67.8 85.8 15.5 71.4 

SSL 76.8 85.2 48.0 75.1 

Table 2. IoU on test set. 

Qualitative evaluation results for both methods are illustrated in Fig. 2. Label maps predicted by SSL 

are smoother and more accurate while those by the PSL are sparse and less accurate, as seen in 

Fig. 2, especially in the second row. SSL predictions are more compact and a higher number of 

instances are captured, while predictions by the PSL are generally sparse and the number of unde-

tected examples is higher. 

Conclusions 

In this research, the effect of semi-supervised learning is studied on the detection of archaeological 

objects in airborne laser scanning data. The method used is auto-encoder pretraining, followed by 

supervised fine-tuning. The architecture experimented with is the well-known Deeplab v3+ architec-

ture which, due to its encoder-decoder property, is suitable to be used in both stages of the experi-

ments, namely pretraining and fine-tuning. To evaluate the effect of such an approach in detecting 

patterns in DTM data, a parallel experiment is conducted using solely the supervised approach, and 

the results are compared. As observed in the IoU values in Table 2, and qualitative results in Fig. 2, 

semi-supervised learning improves IoU up to 9 percent. The results are especially significant for 

small structures like charcoal kilns.  

Even though the IoU results prove that leveraging unlabelled data and applying semi-supervised 

learning techniques help to get better predictions, there is more room for improvement. First of all, 

the labelled examples are not perfectly created. Knowing the location and average diameter of the 

known structures, for simplicity, a distance buffer has been used to create circular polygons in 

ArcGIS marking instances of mentioned categories. The buffering method introduces a lot of false 

labels, i.e., many background pixels are labelled as one of the classes and for bigger instances of 
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the structures, some pixels are falsely labelled as background. Additionally, the completeness of the 

ground truth labels plays a role in the performance of the neural networks. Some instances in the 

training region that are not easily visible to the human eye have not been labelled, which could cause 

confusions to the model during training. Correcting the labelling problems will contribute to an in-

crease in prediction accuracy of the models.  

   

   

   

Fig. 2. Qualitative results. Rows represent examples of bomb craters, charcoal kilns and barrows, respectively. Columns 

indicate ground truth, prediction by PSL, and predictions by SSL, respectively. 

Moreover, deep learning models usually work quite well with natural images since the range of values 

are fixed, i.e., pixels contain values in the range of 0 to 255. In DTM data, however, there is not a fixed 

range of values, and usual normalization techniques such as scaling input patches to a fixed range (e.g. 

0 to 1 or -1 to 1) do not work well for generalizability of the trained model on unseen regions. Use of 

other raster data such as RGB hillshade, sky view factor, or local relief models may help improve per-

formance since they contain values within a fixed range. 

While the verification is taking place in the field, other future research directions include detection of 

more object classes and investigating SSL effects on tasks with more labelled examples. SSL could 
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also be used in combination with instance segmentation models such as Mask RCNN (He et al., 2017) 

where the predicted label maps are more fine-grained than those of semantic segmentation models. 
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