
 

69 

Mag-Net 

Improving magnetometer interpretation workflows with semantic segmentation 

Julien WOLF, Magnitude Surveys, United Kingdom 

Finnegan POPE-CARTER, Magnitude Surveys, United Kingdom 

Paul S. JOHNSON, Magnitude Surveys, United Kingdom 

Abstract: This paper presents a novel application of convolutional neural networks to 

the detection of archaeological ring ditches in gradiometer data in the UK. The Unet and 

ResUnet models applied in this study achieved an overall accuracy of 0.7 mIoU on a test 

dataset with minimal cost spent in pre-processing the data, demonstrating that machine 

learning on gradiometer data is commercially viable and can pave the way for a reduction 

in costs and time spent manually digitising features. 
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Introduction 

Practitioners of commercial geophysics in Britain have met increasing demands for large-scale sur-

veys with the development of multi-sensor, cart-based, motorised, and modular survey systems to 

improve efficiency and speed of data-collection. By rising to these physical challenges, however, the 

concomitant increase in the quantity of data collected poses new logistical challenges in keeping 

reporting turnover within an acceptable timescale without undermining the quality of interpretations 

produced. While there has been some success in addressing these challenges by restructuring in-

ternal reporting workflows and by improving collaborative multi-interpreter environments (Harris and 

Pope-Carter, 2019), large datasets encompassing multiple square-kilometres of readings remain 

challenging for entirely manual interpretation. The response of Magnitude Surveys to this challenge 

has been, in part, to explore the use of convolutional neural networks (CNN) for the detection of 

anomalies in geophysical data, producing outputs then intended for secondary archaeological clas-

sification performed by human specialists. 

The aim of this study is to assess the possibility of reliably detecting archaeological features in gra-

diometer data using an approach based on semantic segmentation, and the feasibility of this ap-

proach for commercial use. This research project is ongoing, but this paper presents some promising 

early results. Some of the broad questions that this project aims to address are: 

How the quantity and quality of the data affects the development of CNN, and where is this affected 

specifically by the nature of geophysical data?  

What types of network architectures and hyper parameter choices are particularly suited to detecting 

anomalies in magnetometer data?  

https://doi.org/10.11588/propylaeum.1045.c14483
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How the development of a natively archaeological CNN, trained exclusively on archaeological geo-

physical data, may improve the algorithm’s robustness in detecting anomalies of potentially archae-

ological nature in comparison with a transfer-learned network?  

Background 

Manual classification of geophysical data is a labour-intensive task that requires specialist training. 

Research into improving methods of classifying geophysical data have focused on themes as diverse 

as the statistical characterisation of noise in order to assist with interpretation of anomalies (e.g. 

Schmidt et al., 2020), to automating classification of anomalies through the use of object-orientated 

approaches based on multi-scalar data-segmentation of observed values within magnetic datasets 

(e.g. Pregesbauer et al., 2014). One of the issues with using only observed geophysical values to 

classify anomalies is that it requires those of interest to be clearly and quantitatively differentiated 

from the background and any other interference or noise. While this may be possible on certain 

geologies, and with certain feature-types, these “ideal” circumstances cannot be guaranteed, partic-

ularly where survey is being undertaken as part of developer-led site investigations. 

The use of CNN addresses some of the issues which remain with the use of other approaches and 

algorithms, particularly in dealing with large variety of geologies and soil conditions that would oth-

erwise require manual site-by-site pre-processing of the data to improve feature contrast. CNN have 

seen a considerable amount of progress over the last two decades and there have been some prom-

ising applications in archaeological geophysics: Green and Cheetham (2019) applied the ResNet152 

and Google’s Inception architectures to successfully detect the presence of Irish medieval graves in 

GPR B-scan data. In a similar vein, Verdonck (2019) leveraged Faster R-CNN to detect the location 

of hyperbolas within GPR profiles. Lastly, Küçükdemirci and Sarris (2019) adapted Ronneberger et 

al.’s (2015) Unet architecture to detect anomalies in GPR time slices. In the wider field of remote 

sensing there have been numerous applications of CNNs, most numerously so on LiDAR data, using 

a variety of architectures including, amongst others, ResNet (Trier et al., 2018), Faster R-CNN 

(Verschoof-van der Vaart and Lambers, 2019) and VGG-19 (Somrak et al., 2020). Each of the above 

address specific challenges and research questions and all report success metrics in the form of F1 

scores and validation accuracy, amongst others.  

One of the advantages of CNN is the availability of transfer learning: models can be pre-trained on 

large open datasets such as the ImageNet library, which reduce the quantity of archaeological data 

required by pre-training a network on larger non-archaeological datasets. This pre-training allows for 

the application of CNN to the smaller datasets, which are more common in archaeology, and speeds 

up the process as the network is already partly trained to some degree of accuracy before it sees 

the archaeological dataset. Pre-training is not without drawbacks however, as the nature of the data 

in libraries such as ImageNet can prove too divergent from archaeological data, both in terms of 

data-formatting as well as complexity and distinctness, which can lead to decreased model perfor-

mance (Trier et al., 2018, p. 227; Verschoof-van der Vaart and Lambers, 2019, p. 38). The authors 

would therefore expect networks trained solely on archaeological data to be more robust in their 

predictions. Conversely, the process of training a CNN on the above-mentioned architectures can 

be time-consuming and resource-intensive, hence this project also aims to investigate whether sig-

nificant improvements can be made in this manner with minimal input costs in time and effort. While 
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this project has been driven by commercial imperatives, its potential outcomes and applications 

would be equally applicable within a purely academic context as time- and financial-constraints in-

crease.  

Semantic segmentation is a subfield of CNN applications focusing on the pixelwise classification of 

input images. Segmentation is of specific interest as it allows the identification of the shape of a 

target feature within an image (e.g. Küçükdemirci and Sarris, 2019), as opposed to classifying im-

ages (e.g. Somrak et al., 2020) or detecting the location of a predetermined feature within an image 

(e.g. Verdonck, 2019). The architectures required for this task involve some additional steps follow-

ing the classic series of convolutions native to the CNN family, including some form of up-sampling 

to return the output to the same size as the network input. The network architectures investigated in 

this paper are based on variations of those introduced by Shelhamer et al. (2016) and Ronneberger 

et al. (2015) which both employ up-sampling to produce output labels with the same dimensions as 

the given inputs.  

Methodology 

Datasets 

For this pilot study, a small corpus of geophysically detected ring ditches and larger circular anoma-

lies was chosen as a dataset. These types of anomalies were selected for having distinct, recog-

nisable features, while also being morphologically more complex than simple linear, or point, anom-

alies. The dataset was comprised of 150 such features located across the UK, all of which were 

discovered between 2016 and 2020 by Magnitude Surveys (MS) across a representative sample of 

commercial archaeological investigations. Collection of the data thus varied in terms of scale, survey 

conditions, and geological backgrounds, amongst other factors. Broad natural anomalies or anthro-

pogenic activities in the background, such as modern manuring practices, can further complicate the 

data and reduce the likelihood of features of interest being detected by machine algorithms. Data 

processing has been consistent across all sites and follows MS’ standard processing workflow 

(Pope-Carter et al., 2017). 

Only ring ditches that could confidently be identified as such were included in this dataset, accounting 

for the relatively small number compared to larger image datasets such as the above-mentioned 

ImageNet.  

A centre point was manually located and applied to each anomaly. The data, stored in MS’ in-house 

archive, was located using these points, which comprised gradiometer data minimally processed in 

accordance with standards established by Historic England for ‘raw or minimally processed data’ 

(David et al., 2008, p. 11), and in line with EAC guidelines (Schmidt et al., 2015, p. 16). Unfortunately, 

the authors were not able to use true values in this study, as the Keras library used to create the 

models had difficulties processing the ASCII grids produced by MS. Instead, geotiffed greyscales 

clipped to a range of -1 to 2 nT were used as data inputs. The labels for each feature comprised of 

the original interpretations generated manually by MS staff during the reporting process, and stored 

as polygons in a PostGIS database.  

None of the original interpretations were modified, nor were the gradients submitted to any further 

processing. This approach was taken in order to assess whether this methodology would be feasible 
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with as minimal modification of the input datasets as possible. Although the magnetic data might 

have benefited from additional processing to enhance contrast and emphasise the target features, 

this was deliberately omitted due to the high variability within the dataset, and to maintain a con-

sistent baseline against which to assess the efficacy of the methodology. Variability in the dataset 

was caused by the many factors which can affect magnetic data, such as geology and soils, agricul-

ture, and magnetic interference from modern features. Any pre-processing would therefore also have 

been necessarily undertaken on a site-by-site basis, a time intensive process, which would also have 

worked against the premise of this feasibility study.  

During the course of this study, the authors created two datasets based on the same input data. In 

a first run at the start of 2020, the tests were conducted on the polygon source labels including both 

the ring ditches and any surrounding archaeology, whether the latter could be associated with the 

ditch or not. This approach presented the least expenditure of effort in the preparation of the data. 

Following initial results with unstable training and low accuracy predictions, however, a second set 

of experiments were run on the same dataset, but this time only the polygons describing the actual 

ring ditches were incorporated. In both cases, the original magnetic gradients were used without any 

modification.   

Pre-Processing 

The label polygons were rasterised into 244 × 244 pixel PNGs centred around the manually gener-

ated feature centre-points. These labels were classified into three categories – ‘no feature’ where 

there were no anomalies present, ‘feature’ where there was an anomaly present, and ‘out-of-bounds’ 

where the gradient included an area of nodata values. The latter was included as some early test 

runs indicated a tendency to categorise nodata areas as archaeological features. Similarly, the gra-

dients were clipped to the same size – for most gradients included in this survey, this was equivalent 

to a radius of ca. 25 m at 0.125 m/px, although for a few older datasets collected at 0.25m/px this 

equated to double the size. The resulting data and label pairs were then randomly sampled into 

training, validation, and prediction sets at a ratio of 60 %, 30 % and 10 % respectively, or 90 training, 

45 validation, and 15 testing image pairs.  

Machine Learning 

The authors decided on two target architectures for this pilot study: Unet by Ronnenberger et al. 

(2015) named after their characteristic symmetrical convolutional and up-sampling paths, which was 

designed specifically for semantic segmentation tasks. This network was discussed by the authors 

as being particularly advantageous for small datasets (Ronneberger et al., 2015, p. 235), which 

seemed perfect for an archaeological application and previously has been successfully applied to 

GPR time-slices in a very similar problem set by Küçükdemirci and Sarris (2019). The second net-

work, ResUNet was developed by Diakogiannis et al. (2020) and expands on the Unet architecture 

by adding residual skips at each layer to counteract the issue of vanishing gradients which can occur 

with particularly deep networks. The authors hoped this would allow for developing deeper and more 

complex networks.  

As neither of these networks were published in Python, the authors’ programming language of 

choice, both these networks were recreated by the authors using Python’s Keras library based on 
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details given in their respective publications. A series of experiments were conducted through pa-

rameter exploration in order to tune the hyperparameters for the neural network. The parameters in 

question are described in Table 1 below.  

 Table 1. List of parameters explored in this study and their descriptions. 

Parameter Description 

Batch Size Number of image + label pairs processed in a batch, before weights are adjusted within an epoch 

Number of Filters 
Number of filters added per layer of the network; filters increased by a factor of two per layer, e.g. if 

the first layer had 8, the second would have 16, then 32 filters and so on 

Network Depth Number of layers within the network 

Learning Rate Rate at which parameters are tuned in order to minimise loss 

Loss Function Function to calculate the loss, which is minimised during training to improve network performance 

Training was performed on two NVIDIA RTX 2060S with 8 GB of memory each. Each training itera-

tion lasted 100 epochs, unless no convergence or over-fitting was detected. During each processing 

run, input parameters as well as the state of machine learning software, represented by git hashes, 

were stored alongside the outputs in order to enable replication of the results at a later date should 

this prove necessary.  

Metrics 

Conventionally, accuracy in Keras is given as a percentage of pixels correctly predicted as belonging 

to a class, where 1.0 indicates a perfect match. The authors found that the models had a tendency 

to over-predict pixels as background due an imbalance between background and archaeology in the 

data, which a simple percentage metric cannot convey. Instead, the authors prefer to use mean 

Intersection over Union (mIoU), a metric commonly used in semantic segmentation (cf. Ronneberger 

et al., 2015, Shelhamer et al., 2016), which ranges from 0, no match, to 1.0, perfect match. This 

metric calculates the number of correctly predicted pixels, the intersection between prediction (P) 

and ground truth (T), divided by the difference between the sum of all pixels in the prediction and 

ground truth and the intersection. For multiple classes, the metric is calculated for each category and 

then averaged.  

𝐼𝑜𝑈 =  
|𝑇| ∩ |𝑃|

|𝑇| + |𝑃| − |𝑇| ∩ |𝑃| 
 

Results 

The initial experiments using the first dataset based on a simple rasterised clip of MS’ interpretation 

achieved only moderate results of 0.494 mIoU. This prompted the authors to refine the dataset as 

described above, and to increase the number of inputs via augmentation. This second round of 

experiments achieved much better results (Table 2) with the highest recorded accuracy rising to 

0.703, achieved by a ResUnet model, while the Unet architecture achieved an mIoU of 0.676. Both 

these results were achieved under the same parameters detailed in Table 3. 
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Table 2. Results in mIoU achieved by both Unet and ResUnet architectures after training for 100 epochs on either da-

taset under the same parameters (see Table 3) 

Architecture Dataset 1 (150 Ring Ditches) Dataset 2 (150 Ring Ditches + 300 Augmentations) 

Unet 0.494 0.676 

ResUnet 0.484 0.703 

 Table 3. Hyperparameters used to achieve the results presented in Table 2.  

One large drawback of the above experimental setup, which became apparent during training, was 

that the dimensions of the input data resulted in a significant number of parameters (13M+), effec-

tively requiring more RAM than was available on the two graphics cards which had been allocated 

for training. This lack of capacity caused restrictions on the number of filters and the depth of any 

network, not to mention ruling out any more complex architecture. By setting a very low batch size, 

at 2 images per batch, – which in Keras controls how much data is loaded into RAM at any given 

time – the authors were able to push the remaining parameters, and those described in Table 3 

performed the most consistently.  

Another, albeit minor, issue encountered, was that only the pre-defined loss functions would produce 

good results. The authors experimented with variants of loss functions based on mIoU as well as 

weighted loss functions, however all either performed poorly or did not converge at all. The authors 

believe this however, to be an implementation issue which can be fixed in the future. That being said, 

sparse categorical cross entropy which is implemented in Keras seemed to perform well enough 

under the conditions of the test. Binary cross entropy unfortunately was not an option due to the 

multi-categorical nature of the labels. 

From a visual perspective, the models seemed to perform particularly well in high contrast scenarios, 

such as in Figure 1, where both Unet (Fig. 1, bottom left) and ResUnet (Fig. 1, bottom right) very 

closely matched the target label (Fig. 1, top right). The authors noticed that in some earlier experi-

ments the networks had a tendency to fixate on strongly positive features (intense black) over mor-

phological indicators. 

Parameter Description 

Batch Size 2 

Number of Filters 16, 32, 64, 128, 254 

Network Depth 5 

Learning Rate 0.0001 

Loss Function Sparse categorical cross-entropy  
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Fig. 1. A previously unseen gradient (top left) with positive readings in black and negative readings in white ranging from -

1 to 2 nT. The predictions by the Unet (bottom left) and ResUnet (bottom right) models after 100 epochs of training (cf. 

Table 2 for parameters) both matched quite closely to the ground truth label (top right) despite the noisy background. 

(© Magnitude Surveys Ltd 2022) 

Where the target feature was quite ephemeral in nature or obscured by surrounding anomalies, 

unsurprisingly both models struggled. Figure 2 highlights one such example; in this case, the Unet 

performed much better than the ResUnet, the latter of which picked up some of the positive linear 

anomalies cutting through this ring ditch.  

Discussion 

Overall, the authors believe that the results so far have been promising, and demonstrate the poten-

tial in the application of semantic segmentation within commercial geophysics. This was achieved 

with very low effort using existing datasets and no additional processing of the magnetometer data, 

as well as being based solely on magnetometer data without any prior pre-training on larger image 

datasets such as ImageNet. There are however a number of areas that will likely result in improve-

ment in the overall performance of the model. 
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Fig. 2. A previously unseen gradient (top left) and ground truth labels (top right) with predictions by Unet (bottom left) and 

ResUnet (bottom right) models after 100 epochs of training (cf. Table 2 for parameters). Both models struggled on more 

ephemeral targets such as this one, with the Unet in this case performing much better at detecting the ring ditch. The 

ResUnet seems to have been confused by the agricultural feature cutting through the ring ditch.(© Magnitude Surveys Ltd 

2022) 

The performance boost achieved by moving from the first to the second dataset highlighted the im-

portance of selecting good training data, as well as demonstrating the usefulness of data augmen-

tation. Only zoom and pan augmentations were used in this case, however it might be possible to 

use rotation and flipping, although here the question presents itself whether these are relevant to 

magnetic data. Orientation is important for the human interpretation of some archaeological features 

as well as some magnetic features, although it remains to be seen whether this is the case for auto-

matic identification. 

While ring ditches are very distinct features found in archaeological geophysics, the obvious next 

step will be to test different and more numerous features. Linear agricultural features such as ridge 

and furrow, or historic field boundaries are much more prevalent across the UK and would provide 

a very large potential dataset with greater morphological diversity. These are particularly interesting 

targets for automatic identification, as their manual digitisation can be particularly labour intensive.  

In addition to increasing the size of the geophysical training data, picking a larger dataset to pre-train 

the network and/or using transfer learning on a dataset more akin to geophysical data could also 

provide measurable improvements to model performance. Pre-training on ImageNet was avoided in 

this study given the concerns raised above, however there are other datasets more comparable to 
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magnetometer data that could potentially be used for pre-training. Gallwey et al. (2010) explored 

lunar LiDAR data as a potential such pre-training dataset with promising initial results on the Arran 

dataset. It would be interesting to investigate whether a similar approach would lead to a perfor-

mance gain here.   

The results have also defined some clear limitations in the above experimental setup. The size of 

the inputs unfortunately limited the parameter choices available in this pilot study. Even with two 

graphics cards, the hard limit in terms of model complexity was set by the memory of a single 

graphics unit, at least for the Keras library used in this study. Reducing the size of the images may 

require some rescaling and thus either loss in area covered or a loss of detail. For the ring ditches 

in this study, a reduction in size was not possible, as some of the larger examples required a diameter 

of up to fifty metres. In this case, a loss of detail by scaling down the images to a lower resolution 

would be required. For linear features such as ridge and furrow, this is not an issue as the images 

would rarely be able cover the entire feature to begin with.  

By reducing the size of the inputs and freeing up more memory, or as the available computing power 

increases, it will also be possible to increase the batch size. During training, the authors found that 

having a small batch size with a highly variable training dataset such as this one can lead to very 

erratic development. Given a bigger batch size, training might be slower, however the authors expect 

that convergence would be steadier. Moreover, to speed up training again, it would be possible to 

increase the learning rate.  

Conclusion 

This paper has shown that automatic identification of archaeological features, specifically ring 

ditches, found in magnetometer data is possible and commercially feasible with the input of very little 

time and effort. The experiments presented in this paper achieved a maximum mIoU of 0.703 using 

a ResUnet neural network. These results were achieved by training the neural network on magne-

tometer data and pre-existing labels from MS’ archives, without using pre-trained weights.  

In the discussion above the authors have highlighted several areas of improvements which may yield 

higher accuracy. Future work will focus on improving the performance of the model, as well as the 

implementation of these models into MS’ magnetometer processing workflow pipeline. The authors’ 

aim is to implement a robust system whereby data are automatically streamed onto in-house servers 

where basic data-processing and the extraction of features can be undertaken in a matter of minutes, 

providing specialists more time to spend on qualitative tasks such as interpretation and analysis. 

One major issue in archaeology, however, remains the option to quantitatively compare the perfor-

mance of different approaches against a common benchmark. To that extent, Kramer (2021) has 

recently published the Arran benchmark dataset based on data collected from the Isle of Arran, 

Scotland, during the Rapid Archaeology Mapping Programme (RAMP) (Banaszek et al., 2018). This 

first of its kind benchmark within archaeology may enable a fairer comparison of archaeological CNN 

models and further accelerate prototyping of new methodologies for archaeological purposes.  
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