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Abstract: While (post)medieval hollow roads (sunken cart tracks) are hard to discern in 

the present-day landscape, they appear as distinct lines in LiDAR data. This offers op-

portunities to use automated detection methods to map these archaeological objects. 

However, the usability of such methods when used on an area unrelated to the area in 

which the method was developed, i.e., the transferability or generalization capability, re-

mains an unanswered question. Therefore, in this paper, the transferability of Carcas-

sonNet, a workflow combining a Deep Learning Convolutional Neural Network and im-

age processing algorithms to map hollow roads in LiDAR data, is tested. CarcassonNet 

is trained on LiDAR data from the Veluwe region in the central part of the Netherlands. 

Subsequently, the workflow is tested on LiDAR data deriving from the Schurwald region 

in southern Germany and the Upper Carniola and Nova Gorica regions in northern and 

southwestern Slovenia respectively. These areas have different terrain and land-use 

compared to the Veluwe while the properties of the LiDAR data also differ. The results 

show that CarcassonNet is able to detect hollow roads as long as threshold moving is 

applied and the confidence threshold is re-determined. Differences in terrain and land-

use seem to be of minor influence on the performance of CarcassonNet. However, it is 

apparent that differences in the quality of the LiDAR data, most probably the difference 

in average ground point density, do influence performance. 
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Introduction  

Medieval hollow roads are linear, sunken trails caused by continuous passage of carts and other 

traffic through the landscape (Kirchner et al., 2020). These tracks are hard to discern in the present-

day terrain but appear as distinct longitudinal objects in airborne Light Detection and Ranging (Li-

DAR) data (Kokalj and Hesse, 2017; Figure 1). This marked appearance offers opportunities to use 

Deep Learning methods to systematically map these hollow roads and reconstruct the historical 

route network. 

The results of such endeavours can supplement and expand the knowledge gained from historical 

written sources and cartographic data (Kirchner et al., 2020). In archaeology, Deep Learning has 

successfully been implemented to detect discrete objects, such as barrows (Verschoof-van der Vaart 

et al., 2020), but has been scarcely used for more complex, large-scale patterns, such as roads 

(Traviglia and Torsello, 2017; Davis, 2021). 

https://doi.org/10.11588/propylaeum.1045.c14482
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Fig. 1. An example of hollow roads on a recent aerial photograph (left) and on LiDAR data (right), visualized with SLRM 

(Hesse, 2010), from the Upper Carniola region, Slovenia (Coordinates in MGI 1901/Slovene National Grid, EPSG: 3912; 

© Authors). 

This is in part because modern road detection methods (Abdollahi et al., 2020) do not translate well 

to the problem of hollow roads—typically several linear tracks with slightly different orientation and 

multiple overlaps—that lack the uniformity in shape and appearance of modern roads. Furthermore, 

hollow roads are often only partially preserved and regularly are dissected by modern landscape 

objects (Verschoof-van der Vaart and Landauer, 2021). 

Therefore, to map hollow roads in LiDAR data, a workflow that combines Deep Learning and image 

processing algorithms has been developed (Verschoof-van der Vaart and Landauer, 2021). This 

workflow, named CarcassonNet, has successfully been trained and evaluated on the Veluwe area 

in the central part of the Netherlands. However, the transferability of CarcassonNet (or automated 

detection methods in general), i.e., the usability of the method on an unrelated area with either dif-

ferent topography, land-use and/or LiDAR data of different properties, remains an unanswered ques-

tion in this research field (Kermit, Reksten and Trier, 2018; Cowley et al., 2020). As can be imagined, 

these factors can vary considerably on a regional or national or even international level, and a 

method that is unable to adjust to such different situations has little practical value for wide applica-

tion. Therefore, studies in different environments are important to investigate the true potential of 

automated approaches in archaeological practice. In this paper, the transferability of CarcassonNet 

is investigated, i.e., whether our method, trained on Dutch LiDAR data, is able to detect hollow roads 

in LiDAR data from Germany and Slovenia.1 

Research areas  

CarcassonNet has been trained on LiDAR data from the western part of the province of Gelderland 

in the Netherlands, known locally as the Veluwe (see Table 1). This region consists of several north-

south orientated ice-pushed ridges separated by relatively flat valleys. The area used (circa 97 km2) 

is predominantly covered with heath and to a lesser extent with forest, and is interspersed with agri-

cultural fields and areas of habitation (for a detailed overview of the Veluwe, see Lambers, 

                                                           
1 We are grateful to R. Hesse (Landesamt für Denkmalpflege Baden-Württemberg) and Ž. Kokalj (Research Centre of the Slovenian 
Academy of Sciences and Arts) for providing LiDAR data to test CarcassonNet. 
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Verschoof-van der Vaart and Bourgeois, 2019). The model has been tested on LiDAR data from the 

Schurwald region (Germany) and the Upper Carniola and Nova Gorica regions (Slovenia; see Ta-

ble 1). The Schurwald is a wooded mountain range in the federal state of Baden-Württemberg in 

southern Germany. The area used (25 km2) is covered with forest, crossed by numerous eroded 

stream valleys, and has various areas that have been cleared for agriculture and occupation (Hesse, 

2013). The Upper Carniola region is a rugged area in the foothills of the Kamnik–Savinja Alps in 

northern Slovenia. The area used (circa 1.2 km2) is predominantly covered with forest, villages, and 

some agricultural fields (Kokalj and Hesse, 2017). The Nova Gorica region lies on the border of the 

Karst Plateau in southwestern Slovenia. High lying plateaus with steep declines and many heavily 

eroded stream valleys characterize this landscape. The area used (circa 1.3 km2) is covered with 

forest. In part of the area military trenches, comparable in morphology to hollow roads, are present 

(Kokalj and Hesse, 2017). All hollow roads in the Schurwald, Upper Carniola, and Nova Gorica area 

have been manually annotated by the authors, who both have ample experience in analysing LiDAR 

data. 

The LiDAR data from the Veluwe, used for the training of CarcassonNet, has a raster resolution of 

0.5 m and an average ground point density of 6–10 points per square meter. The resolution of the 

test data differs between 0.5 m (Upper Carniola) and 1.0 m (Schurwald and Nova Gorica). The av-

erage ground point density of the Slovenian data varies between 3 and 10 points per square meter, 

while the data from the Schurwald has a lower point density between 1 and 4 points per square 

meter (Table 1). 

 Table 1. The LiDAR datasets used in this research to train and test CarcassonNet. 

Dataset 

Area (sq. km) Resolution Average 

Point-

density (pt. 

per sq. m) 

Mean 

elevation 

Min–Max 

elevation 

General terrain Main land-

use 

Veluwe (NL) 97.25 0.5 6–10 42 10–104 Ridges/valleys Heath 

Schurwald (DE) 25 1.0 1–4 172 13–254 Mountains Forest 

Upper Carniola (Sl) 1.18 0.5 3–10 393 342–487 Hills Forest 

Nova Gorica (Sl) 1.32 1.0 3–10 115 67–190 Karst Forest 

Methodology  

The CarcassonNet workflow (Fig. 2) consists of three steps: preprocessing, classification, and post-

processing (for an extensive overview of the methodology of CarcassonNet see (Verschoof-van der 

Vaart and Landauer, 2021). An important innovation in the CarcassonNet workflow is that multiple 

sections per single hollow road, as opposed to the entire road, are used as input images (comparable 

to the approach taken for Celtic fields in Verschoof-van der Vaart et al., 2020). This makes it much 

more cost-effective to create a sufficient training dataset.  

 

Fig. 2. Simplified representation of the CarcassonNet workflow; after Verschoof-van der Vaart and Landauer, 2021. 
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To create a training dataset, the first author manually annotated the LiDAR data from the Veluwe 

(97.25 km2) in order to create a reference standard. Subsequently, in the preprocessing step the 

same LiDAR data was split into snippets of 64 by 64 pixels. For every snippet the percentage of 

overlap with the roads polygons in the reference standard was computed. Snippets with an overlap 

of 95% or more with the mapped hollow roads were put in a ‘hollow road’ class and only those with 

an overlap of 5% or less into the ‘empty’ class to create a binary dataset. Additional measures to 

balance the dataset resulted in training dataset of circa 32,000 snippets, with circa 16,000 snippets 

in both classes. 

The second step of CarcassonNet consists of a Resnet-34 Convolutional Neural Network (He et al., 

2016). A CNN is a hierarchically structured (image) feature extractor and classifier algorithm, loosely 

inspired by the animal visual cortex (Guo et al., 2016). These algorithms learn to generalize from 

given examples, i.e., a large set of labelled images, rather than relying on a human operator to set 

parameters or formulate rules. Furthermore, CNNs can be pre-trained on a large, generic dataset 

(for instance images of cats and dogs) and subsequently transfer-learned on a small, specific dataset 

(such as our dataset). In this research the CNN was only used for binary classification, a relatively 

simple task, which produces better detection results at a lower cost and effort (Guo et al., 2016), as 

opposed to a more complicated task such as segmentation. The ResNet-34 CNN was pre-trained 

on the ImageNet dataset (Russakovsky et al., 2015) and subsequently transfer-learned for twelve 

epochs on the LiDAR data from the Veluwe, following the “progressive resizing” training scheme 

recommended by the research institute Fast.ai. After training the CNN was tested on the data from 

Germany and Slovenia. To make the output of the CNN directly usable in a GIS environment, the 

detections are turned into geospatial vectors (polygons and lines; see Figure 3) by combining geo-

spatial processing tools in QGIS 3.4 and the image processing approach taken by Van Etten (2019). 

 

Fig. 3. Excerpts of LiDAR data, visualized with SLRM (Hesse, 2010), from the Upper Carniola region (Slovenia), showing: 

the results of the classification (left); the derived polygons indicating the location of the hollow roads (centre); and the 

derived lines depicting the route network (right; coordinates in MGI 1901/Slovene National Grid, EPSG: 3912; © Authors). 

Results  

To evaluate CarcassonNet, the area (in m2) of true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN) were determined following the approach taken in Verschoof-van der 

Vaart et al., 2020. Subsequently, Matthews Correlation Coefficient (MCC; Eq. 1) was calculated. 
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This metric is a reliable measure of the correlation between the observed and predicted binary clas-

sification, even if the classes are very imbalanced (Luque et al., 2019). Therefore, MCC is a better 

indicator of the quality of CarcassonNet, compared to other metrics such as F1-score or accuracy 

(Chicco and Jurman, 2020). MCC is bound between -1 and 1, where higher values indicate a better 

performance. The default confidence threshold for classification is typically set to 0.5. However, by 

changing the threshold (called threshold moving) and recalculating the performance metric, an opti-

mal trade-off can be found, resulting in the highest MCC (Zou et al., 2016). During this research the 

optimal confidence threshold was empirically calculated (see Table 2). Finally, for comparison of the 

performance between the different datasets and other methods, the well-known metrics Precision 

(Eq. 2) and Recall (Eq. 3) were calculated as well (but see Luque et al., 2019). Precision measures 

how many of the selected items are relevant. Recall gives a measure of how many relevant objects 

are selected. The results of the experiments are shown in Table 2 and Figure 4. CarcassonNet has 

moderate to high performance on the Upper Carniola and Nova Gorica datasets, reaching a MCC of 

0.37 (confidence threshold of 0.1) and 0.38 (confidence threshold of 0.8) respectively. However, the 

performance on the Schurwald dataset is lower, reaching a MCC of 0.25 with a confidence threshold 

of 0.75. 

Equation 1: 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

Equation 2:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Equation 3:  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 Table 2. Results of the experiments on the different datasets. 

Testset Confidence TP FP TN FN Recall Precision MCC 

Veluwe (NL)2 0.8 4,967,470 7,243,900 88,839,400 2,664,868 0.65 0.41 0.47 

Schurwald (DE) 0.75 320,430 243,300 22,486,100 1,950,250 0.14 0.57 0.25 

Upper Carniola (Sl) 0.8 79,500 40,823 732,832 146,928 0.35 0.66 0.38 

Nova Gorica (Sl) 0.1 88,280 81,928 884,790 120,283 0.42 0.51 0.37 

Discussion  

The results of the generalization experiments (Table 2) show that CarcassonNet, when trained on 

LiDAR data from the Netherlands, is able to detect hollow roads in other areas with different terrain, 

land-use, and on LiDAR data with different properties. However, the performance of the model de-

creases by 9–10 points on both Slovenian datasets, while the performance on the Schurwald dataset 

is 22 points lower. An important note to make is that the areas from Slovenia used for testing (2.5 km² 

in total) are considerably smaller than the Schurwald area (25 km²). This size difference might have 

                                                           
2 For comparison,the results of testing on the Veluwe dataset are reproduced from Verschoof-van der Vaart and Landauer (2021). 
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been of influence on the results, as the performance of a detection method can vary significantly 

between test datasets that have a different density of archaeological objects or in which the state of 

preservation of these objects varies (see Verschoof-van der Vaart et al., 2020).  

 

Fig. 4. Excerpts of LiDAR data, visualized with SLRM (Hesse, 2010), from the Nova Gorica region (Slovenia), showing: 

the results of the classification (left) and the manually annotated roads (right); coordinates in MGI 1901/Slovene National 

Grid, EPSG: 3912; © Authors). 

The influence of the different terrain and land-use seems to have been minor, as no increase in FP 

is observed—the Precision is comparable for the German and Slovenian datasets and even better 

than on the Veluwe dataset. Therefore, a different cause needs to be sought for the lower perfor-

mance, especially on the Schurwald data. Table 2 shows that the Recall on the Slovenian and in 

particular the Schurwald datasets is much lower, indicating that the recognition of hollow roads is 

the main detrimental factor. It was expected that this was caused by the difference in raster resolution 

between the datasets, which varies with a factor of two (0.5 versus 1.0 m). However, the comparable 

performance on the Nova Gorica (1.0 m resolution) and Upper Carniola (0.5 m resolution) datasets 

seems to indicate that this is also not of (major) influence. However, a comparison between the 

appearance of hollow roads in the different datasets shows that these occur much less pronounced 

in the Schurwald dataset (Fig. 5), which is probably related to the difference in average ground point 

density. The influence of ground point density on the ability of automated methods and humans to 

detect archaeological objects in LiDAR data has also been observed in other research, both for 

automated detection methods (Trier and Pilø, 2012; Dolejš et al., 2020) as well as for humans (Risbøl 

et al., 2013). Therefore, differences in LiDAR parameters, especially the ground point density, are 

probably detrimental on the performance of CarcassonNet. 

Conclusion  

This research shows that CarcassonNet, when trained on LiDAR data from the Netherlands, is able 

to generalize and detect hollow roads in data from Germany and Slovenia even though the areas 

have different terrain, land-use, and the LiDAR data has different properties. However, the perfor-

mance of the model does decrease, in the case of the Schurwald area to the point that it is ques-

tionable if the method would be usable. Probably the difference in the average ground point density 

of the LiDAR datasets is the main negative influence on the performance. Therefore, further research 
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will focus on improving CarcassonNet, to better cope with hollow roads in LiDAR data with different 

properties. For instance, by combining LiDAR datasets with varying properties and/or from different 

areas. Also the potential of Generative Adversarial Networks to increase the image resolution, and 

therefore increase the visibility of hollow roads in the LiDAR data will be explored (Ledig et al., 2017). 

 

 

Fig. 5. Excerpt of LiDAR data, visualized with SLRM (Hesse, 2010), showing the difference in appearance of hollow roads 

in the different areas, from left to right: Veluwe, Schurwald, Upper Carniola (scale 1:5000; © Authors). 
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