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Abstract: Deep learning models have achieved significant performances in identification 

and localization of objects in image data. Researchers in the remote sensing community 

have adopted such methods for object recognition in remote sensing data, especially 

raster products of Airborne Laser Scanning (ALS) data such as Digital Terrain Models 

(DTM). Small patches of larger DTMs, where pixels represent elevations, are cropped to 

train deep learning models. However, due to the variation in elevation values for the 

same object in two different regions, deep learning models either fail to converge or take 

a long time to train. To alleviate the problem, a local preprocessing step such as normal-

ization to a fixed range or local patch standardization is necessary. Another solution is 

to first calculate other raster products where the pixel values are calculated based on the 

surrounding pixels within a certain range. Examples of such rasters are Simple Local 

Relief Models (SLRM), Local Dominance (LD), Sky View Factor (SVF), and Openness 

(positive and negative). In this research, the effect of using the aforementioned DTM 

derivatives are studied for detection of historical mining structures in the Harz Region in 

Lower Saxony. The well-known Mask R-CNN model is trained to produce bounding 

boxes, labels, and segmentation maps for each object in a given input raster. 
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Introduction 

Deep neural networks achieve tremendous results in object detection. They work well with color 

images, but researchers have shown that elevation data obtained from airborne laser scanning can 

also be used by deep neural networks for detection of objects and relevant structures. One of the 

main products of airborne laser scanning data is Digital Terrain Model (DTM), which represents the 

ground surface as a rectangular grid where each pixel is assigned an elevation value. The elevation 

values are exploited to extract useful properties to infer the types, and shapes of different objects 

and structures in the terrain. Deep learning has been used to detect structures related to historical 

mining, and archaeology, among others (Kazimi, Thiemann, and Sester, 2019a, 2019b; Kazimi et 

al., 2018; Politz, Kazimi, and Sester, 2018). The pixel values in natural images range from 0 to 255, 

and for the deep learning models to converge, it is important to scale the images to have a smaller 

range, usually [0,1] or [−1,1]. Scaling a large DTM globally in one of these ranges cause the values 

to have very small variations relative to their neighbouring pixels and thus, it makes it hard for the 
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model to learn. A common method is to divide the DTM into smaller grids and scale the values locally 

(Kazimi, Thiemann, and Sester, 2019b). Other researchers used a derivative of the DTM called Sim-

ple Local Relief Model (SLRM) to train deep learning algorithms for detection of archaeological ob-

jects (Trier, Cowley, and Waldeland, 2019; Verschoof-van and Lambers, 2019). SLRM normalization 

removes the effect of absolute height differences and helps the model learn better. Other derivatives 

of DTM include Local Dominance (LD), Sky View Factor (SVF), and Openness (positive and nega-

tive), among others, each of which help visualize objects and structures in the terrain in a different 

manner (Kokalj and Hesse, 2017). The goal of this research is to find out which of these DTM deriv-

atives help in automating detection of objects and structures. This article is organized to include 

related work in deep learning and its applications in archaeology, contributions of this research as a 

case study, evaluation of results and finally a summary and outlook for future research directions. 

Related Work  

Deep learning methods have reached a considerable level of maturity on natural language pro-

cessing and computer vision tasks for natural images. Recent indicators of this progress in natural 

language processing are Transformers (Vaswani et al., 2017) and other Transfer-based models, e.g. 

BERT (Devlin et al., 2019) and GPT-3 (Brown et al., 2020). Their counterparts in computer vision 

tasks are Image-GPT (Chen et al., 2020), HRNet (Sun et al., 2019; Wang et al., 2019), and Efficient-

Net (Tan and Le, 2019), among others. Inspired by this progress, researchers in other domains 

continuously find methods to incorporate deep learning techniques in their own research and pro-

jects. Archaeology is also among research fields that could make use of the progress in deep learn-

ing techniques. Verschoof-van and Lambers (2019) use deep learning to automatically detect ar-

chaeological objects in LiDAR data. The authors train the Faster R-CNN model (Ren et al., 2015) on 

a dataset of archaeological objects such as barrows, celtic fields, and charcoal kilns in the Nether-

lands. Trier, Cowley, and Waldeland (2019) use deep residual networks (ResNet) by He et al., (2016) 

to classify archaeological objects such as roundhouse, shieling hut, and small cairns in LiDAR data 

from Arran, Scotland. Other example applications of deep learning in archaeological research in-

clude the works of Bundzel et al. (2020), Gallwey et al. (2019) and Maxwell et al. (2020a; 2020b), 

among others.   

Case Study  

This research explores the use of object detection methods in archaeology using DTMs. Generally, 

deep learning models could be fed directly with DTM patches and be trained for automated detection 

of objects and structures of interest. DTMs contain elevation values for points on the terrain and do 

not have a fixed range of values, rendering them hard to perceive with the naked eye. For analysis 

and visualization, researchers use DTMs to generate relief rasters such as hillshade, SLRM, SVF, 

LD, Openness, slope and aspect, among others. The main concept behind this study is to see the 

impact of such relief rasters on detection of archaeological objects with deep learning. It is hoped 

that such rasters help deep learning models make better predictions, similar to how they help with 

visualization and analysis.  
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 Fig. 1. Mask R-CNN architecture (© Kazimi et al., 2019a) 

The well-known deep learning model called Mask R-CNN by He et al. (2017) is trained to detect 

terrain structures related to historical mining in the Harz Region in Lower Saxony. Mask R-CNN is 

designed to take input images and predict bounding box locations, segmentation masks and class 

labels for every object contained in the input. The architecture is illustrated in Figure 1. 

The dataset is created from DTM data acquired from Lower Saxony, Germany and annotations for 

four structures including bomb craters, charcoal kilns, barrows and mining sinkholes. The DTM has 

a resolution of half a meter per pixel. Using the Relief Visualization Toolbox (RVT) (Kokalj and Som-

rak, 2019), relief rasters such as SLRM, SVF, LD, and Openness (positive and negative) are calcu-

lated from the DTM. Training examples of 128 × 128 pixels are cropped from the DTM and also the 

corresponding relief rasters from regions that contain an instance of the aforementioned four clas-

ses. The dataset is divided into training, validation and testing sets with splits of 80, 10 and 10 per-

cent. Statistics for the annotated examples are shown in Table 1. 

Table 1. Data statistics. Four categories, examples of which are split to 80, 10 and 10 percent for training, validation and 

testing, respectively. 

Categories Training (80 %) Validation (10 %) Test (10 %) Total (100 %) 

Bomb craters 909 113 113 1135 

Charcoal kilns 836 104 104 1044 

Barrows 1058 132 132 1322 

Mining holes 2132 267 267 2666 

The model is trained using the original DTM, as well as the aforementioned relief rasters separately. 

For each raster type, the model is trained for 100 epochs with a batch size of 4 and the Stochastic 

Gradient Descent (SGD) optimization algorithm (Bottou, 2012). Random rotations and flipping are 

used as data augmentation techniques to avoid overfitting. Evaluations are performed using the 

Mean Average Precision (mAP) at an Intersection over Union (IoU) threshold of 50 % (Everingham 

et al., 2010). The experiments are conducted using Python programming language, and Keras deep 

learning library (Chollet, 2015). Results of the experiments are shown in the next section.  

Results 

In this section, quantitative evaluation results are reported using the mAP value obtained on the test 

data by each model trained on the DTM and the DTM derivatives or relief rasters. Additionally, ex-

amples of predictions by each model are illustrated for qualitative analysis. Table 2 shows best mAP 
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for each input type on the test data using best learned parameters for training and validation data 

during training. 

Table 2. Evaluation Results: Models trained on the DTM and its derivatives have been evaluated on the test set using the 

best parameters obtained during training based on training and validation data. Values show mAP at IoU threshold of 50% 

where bold indicates best. 

 LD SLRM DTM SVF Openness (+) Openness (-) 

Training weights 61.7 62.8 59.6 54.1 50.8 50.7 

Validation weights 58.8 56.0 54.5 45.0 40.2 42.8 

As observed in Table 2, SLRM and LD helps achieve higher mAP scores while SVF and Openness 

(both positive and negative) scores are lower than that of original DTM. Figure 2 shows examples of 

DTM for each category and the corresponding results and visualizations for each derivative exam-

ined in this research. The mAP scores are reflected in the illustrated examples. Even though the true 

positive rate for all the data types are similar, there are fewer false positives in the case of SLRM 

and LD than the others. 

Summary 

In summary, this research is conducted to see the impact of relief rasters created from DTMs on 

detection of archaeological objects. The main idea is that if relief rasters help humans in visualization 

and analysis of objects and structures, they should also help deep learning models perform better. 

Moreover, the study specially helps find the types of relief rasters more suitable for detecting struc-

tures such as bomb craters, charcoal kilns, barrows and mining sinkholes. The mAP scores shown 

in Table 2 and the illustrations in Figure 1 indicate that LD and SLRM are better derivatives, among 

those studied in this research. It is also concluded that relief rasters lead to better detection results 

compared to the original DTM. Further experiments are required to study the effect of different DTM 

derivatives for detection of other object categories and those in different regions, different data 

sources, and data resolutions. 
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Fig 2. Detection results on four test regions containing the relevant structures. Each column illustrates the hill-shade relief 

of the region with ground truth (GT) labels and detection results by models trained on the DTM and its derivatives. 
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