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Abstract: This short paper summarizes work-in-progress to create a database of 4800 

electronic images of historic American and Canadian highway, railway and pedestrian 

bridges constructed between 1865 and 2019. The images were retrieved from Wikipedia, 

Wikimedia Commons, and the Historic American Engineering Record (HAER) websites. 

Machine-vision systems and image-processing techniques are applied to determine 

whether a bridge is present in the image, the form or type of bridge, the date of construc-

tion and other features. The Artificial Intelligence classification identifier was 85–92% 

accurate when distinguishing between girder and through-truss bridge types and roughly 

70% accurate when distinguishing between cantilever, through-arch, girder, through-

truss and deck arch bridges types. It is perhaps more challenging to determine the date 

of construction because time is a continuum. The temporal evolution of bridge types and 

construction details is somewhat blurry and varies between different geographic regions. 

Some configurations, such as covered bridges and Pratt Truss bridges, haven’t evolved 

significantly for quite some time. A possible next step will be to use image-processing 

and photogrammetric techniques to try to identify the vantage point from which the bridge 

was photographed. The relevance of this study extends beyond those interested in his-

toric bridges to scholars studying image classification in other areas of the digital human-

ities. 
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Introduction 

This short paper summarizes work-in-progress to create a database of electronic images of historic 

bridges. These images are being used concurrently to develop machine-vision systems and image-

processing techniques to automatically identify, in historical and contemporary images of cityscapes 

and landscapes: (1) the presence of a bridge or bridge component in an image; (2) the form (or type) 

of bridge or bridge component; (3) the age and other features; and (4) the vantage point from which 

the bridge was photographed.  

Database of Historic Bridge Images 

A database of 4800 images of Canadian and American highway, railway and pedestrian bridges 

constructed between 1865 and 2019 has been created and continues to be extended. The images 

were retrieved from Wikipedia, Wikimedia Commons, and the Historic American Engineering Record 

https://doi.org/10.11588/propylaeum.1045.c14475
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(HAER) websites. Many American bridges are listed on the U.S. Department of the Interior’s National 

Register of Historic Places, although those less than 50 years old are ineligible for this recognition. 

Each bridge is assigned a unique identifier and is associated with the fields shown in Table 1. The 

Wikidata identifier links records in the bridge table with open data. A sample record (for the Lions’ 

Gate Bridge in Vancouver, BC) is available at https://www.wikidata.org/wiki/Q124352. Among other 

things, it contains the designer, the date the bridge was officially opened, the longest span, heritage 

designation, identifiers for other databases and translations of the bridge’s name into other lan-

guages. 

 Table 1: Fields to Define Bridges 

Field Contents 

Name of Bridge Text 

Bridge ID (primary key) Number 

Wikidata ID Concept URI (to link record to open data) 

Location City/Town/County, State (Province), Country 

Date of Construction Year 

GPS Location Latitude, Longitude 

Main Span Type Main Span Type ID (foreign key to Table 2) 

Approach Span Type Deck arch, Deck truss, Girder, Half-through arch, Half-through truss, Through arch, Through 

truss or NULL 

Each bridge is characterized by a Main Span Type, shown in Table 2. Most of the Main Span Type 

Classifications include Subclassification options. Each combination of Classification and Subclassi-

fication is assigned a unique Main Span Type ID number. For example, Figure 1 shows Eagle Point 

Bridge in Dubuque, Iowa. The main spans are in the background, to the right are steel through 

trusses – the roadway goes through the trusses. The approach spans, in the left foreground, are 

steel Pratt deck trusses – the trusses are entirely underneath the roadway. 

 Table 2: Main Span Type Classifications 

Classification Subclassification 

Cable-stayed Concrete, steel 

Cantilever Warren or NULL 

Covered Burr arch, Howe, Lattice or NULL 

Deck arch Concrete, Concrete open spandrel, Steel, Stone 

Deck truss Bascule, Camelback, Howe, Lift, Parker, Pratt, Swing, Warren 

Girder Bascule, Concrete, Lift, Steel, Swing 

Half-through arch Concrete, Concrete open spandrel, Steel, Stone 

Half-through truss Bascule, Camelback, Howe, Lift, Parker, Pratt, Swing, Warren 

Suspension NULL 

Through arch Concrete, Concrete open spandrel, Steel 

Through truss Bascule, Camelback, Howe, Lift, Parker, Pennsylvania, Pratt, Swing, Warren 

https://www.wikidata.org/wiki/Q124352
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Fig. 1. Eagle Point Bridge, Dubuque IA, 1902 (HAER IA-2-56). (Image Source: https://www.loc.gov/re-

source/hhh.ia0114.photos/?sp=56&q=Eagle+Point+Bridge) 

Each image is assigned a unique identifier and associated with the fields shown in Table 3. Each 

bridge is typically associated with more than one image. Rare images depict two or more distinct 

bridges. 

 Table 3: Fields to Define Images 

Field Contents 

Photo ID (primary key) Number 

Bridge Bridge ID (foreign key to Table 1) 

Image Restriction Public Domain or Restricted 

Source URL Wikipedia, Wikimedia Commons., or HAER 

Computational Analysis 

The compilation of the image database is accompanied by development of an automated system for 

analysing historical and contemporary images of bridges, depicted in Figure 2 and based on similar 

systems previously developed1 for use by historians of technology.  

‘Ground truth’ images that have been analysed by Bartlett are retrieved from the image database to 

use for testing and training. Test images can also be retrieved from other sources, typically collec-

tions built by web crawling. Creating a custom neural net that segments an image of a natural scene 

to identify general structures of interest requires a large collection of labelled image data that we do 

not possess. Instead, images are passed through an Ademxapp Model A1 neural net2 that was pre-

trained with the ADE20K database of more than 20000 images3 to segment scenes into semantic 

classes. A number of alternatives could have been applied at this stage, but this model does an 

excellent job and was readily available in pretrained form. Figure 3 shows a sample output where 

the system has quite accurately identified the Pierre Laporte suspension bridge in the foreground 

and the Pont de Quebec cantilever truss in the background. In a preliminary trial involving 100 im-

ages, the Ademxapp Model A1 correctly identified bridge elements in 83 of 84 images that contained 

bridges and correctly identified that no bridge elements were present in all 16 images that did not 

contain bridges.  

https://www.loc.gov/resource/hhh.ia0114.photos/?sp=56&q=Eagle+Point+Bridge
https://www.loc.gov/resource/hhh.ia0114.photos/?sp=56&q=Eagle+Point+Bridge
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 Fig. 2. Block diagram of an automated system for analyzing bridge images. (© W.J. Turkelt) 

    

 a  b     

Fig. 3. Machine vision identification of bridge and other features a) original image; b) identified features. (Image source: 

a) https://commons.wikimedia.org/wiki/File:LaPorte_de_Quebec_(5802230245).jpg, b) Created by W. J. Turkel using 

Ademxapp Model A1 

If no bridge is detected in the input image, the image is discarded, and the system retrieves another. 

If a bridge has been detected, morphological information from the image is passed to an image 

processing module to assess the quality of the image for the purposes of further automated handling. 

The shape of the segment of the image that contains the bridge is measured to assess its orientation, 

how much of the whole image it comprises, and so on. These measures are used to determine what 

kinds of further automated processing are possible or appropriate.  

Other machine learners (such as logistic regression models) have been trained to categorize bridge 

images by main span type, typically achieving accuracies upwards of 85%. For example, Figure 4 

shows an example of using the artificial intelligence classifier to determine the main span type. The 

AI was trained using 80 images of through truss bridges, such as the elegant 1889 Lenticular through 

truss at Lycoming County, Pennsylvania, and 80 images of girder bridges, such as the 1940 Edison 

Bridge in New Jersey. Then it classified 168 new images as either girder bridges or through truss 

bridges. The screen shot indicates that the classification was almost 92% accurate as confirmed by 

the Confusion Matrix plot. 

https://commons.wikimedia.org/wiki/File:LaPorte_de_Quebec_(5802230245).jpg
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Fig. 4. AI classifier to determine bridge type: a) Lenticular Through Truss, Lycoming Co. PA, 1889 (HAER); b) Edison 

Bridge, Sayreville NJ, 1940 (HAER); c) screen shot of Mathematica Confusion Matrix and accuracy. (Image sources: a) 

https://www.loc.gov/pictures/item/pa3981.color.218398c/resource/ b) https://www.loc.gov/pictures/item/nj1641.pho-

tos.347596p/ c) Created by W. J. Turkel using Mathematica.) 

Figure 5 shows an example where the classification was extended to consider five different types, 

including cantilever, deck arch, girder, through arch and through truss bridges. In this case, the ac-

curacy was not so good, roughly 69%. Looking more closely at the confusion matrix there were no 

girder bridges that were erroneously classified as through arches, which is not surprising as they are 

markedly different forms. There were, however, cantilevers erroneously classified as deck arches 

and deck arches erroneously classified as cantilevers. In this case, one might have some sympathy 

for the computer! Compare, for example, the 1932 French King Bridge in Gill, Massachusetts, a steel 

cantilever bridge, with the 1928 Gervais Creek Bridge in South Carolina, a deck arch bridge. The 

cantilever has diagonal members in the trusses and the deck truss has thick vertical members over 

the piers – but otherwise, their appearances are not particularly different. 

 

Fig. 5. AI classifier to determine multiple bridge types: a) screen shot of Mathematica Confusion Matrix and accuracy; b) 

French King Bridge, Gill MA, 1932 (Commons.wikimedia.org); c) Gervais Creek Bridge, Columbia SC, 1928 (HAER) (Im-

age Source: a) Created by W. J. Turkel using Mathematica b) https://www.digitalcommonwealth.org/search/common-

wealth:6d5701630 c) https://www.loc.gov/pictures/item/sc0757.photos.150689p/) 

a 

b c 

a 

b 

c 

https://www.loc.gov/pictures/item/pa3981.color.218398c/resource/
https://www.loc.gov/pictures/item/nj1641.photos.347596p/
https://www.loc.gov/pictures/item/nj1641.photos.347596p/
https://www.digitalcommonwealth.org/search/commonwealth:6d5701630
https://www.digitalcommonwealth.org/search/commonwealth:6d5701630
https://www.loc.gov/pictures/item/sc0757.photos.150689p/
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Future work will focus on developing machine learners for a variety of automated tasks. One example 

is the automated recognition of structural components like truss type. Figure 6 shows Pratt (horizon-

tal top chord), Parker (polygonal top chord) and Camelback (5-element top chord) trusses. 

   

 a  b  c 

 Fig. 6. Truss configurations a) Pratt; b) Parker; c) Camelback. (HAER) (Created by F. M. Bartlett) 

Another example is estimating the date of bridge construction. ‘Black-box’ machine learners perform 

this task using features that are usually not legible to humans. Human experts, on the other hand, 

use a variety of construction details, including the examples shown in Table 4. Developing the data-

base in conjunction with an automated system for analysing bridge images allows researchers to 

explore the degree to which the system should be trained to explicitly recognize construction details 

(like the use of pin-connected or riveted trusses). This is challenging, however, time is a continuum, 

so the classification must consider the shades of grey between black and white. 

 Table 4: Evolution of Bridge Construction Details. 

Date Feature 

~1875 Emergence of double-intersection trusses 

~1880 Transition from empirical to theoretical bridge design completed in US4 

~1890 Emergence of steel construction instead of wrought/cast iron construction 

~1900 Emergence of plain and reinforced concrete (piers, abutments, superstructure) 

~1910 Milan theory of earth-anchored suspension bridges causes markedly more slender stiffening elements. 

~1910 Emergence of concrete tied arch (“rainbow”) bridges and concrete open spandrel deck arch bridges 

~1920 Emergence of riveted trusses instead of pin-connected trusses 

~1930 Emergence of rigid frame construction 

~1950 Emergence of prestressed concrete construction 

~1950 Transition from built-up steel members to single rolled shapes 

~1980 Emergence of cable-stayed bridges instead of cantilever trusses 

Moreover, some types have not evolved much. The 377 images of wooden covered bridges in the 

database suggest that their form and construction details have often not changed appreciably for 

over a century. People are nostalgic about the traditional forms. Similarly, the optimization of steel 

Pratt trusses was essentially completed more than a century ago, so while construction details 

change, the general proportions and member massing do not. Another challenge is that technologi-

cal progress varies across geographical regions, and progress for different bridge types typically 

varies differently across different geographical regions.  

Some transitions are more difficult to date, for example 

• The transitions from pin-connected to riveted to shop-riveted/field-bolted to shop-welded/field 

bolted to welded steel construction. For example, Figure 7a shows the 1891 Harvard Bridge 

across the Charles River in Boston. The variable-depth steel plate girders are built up using 

rivets. When the bridge was replaced in the 1980s with similar variable-depth plate girders, 

the construction is welded, not riveted. 
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a   b 

Fig. 7. Harvard Bridge plate girders a) Riveted construction, 1891 (Source: HAER); b) Welded construction, 1980s (Image 

source a) https://www.loc.gov/pictures/item/ma1293.photos.076534p/resource/ b) Denimadept, CC BY-SA 3.0 https://cre-

ativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons) 

• The transition to more slender, and so more graceful, elements and structures due to stronger 

and stiffer materials. 

• The transition to more complex geometries and structural systems due to enhanced compu-

tational capabilities. This is particularly evident in the design of cable-stayed bridges. Fig-

ure 8a shows the 1973 John O’Carroll Bridge in Sitka, AL, one of the first cable-stayed 

bridges constructed in the United States. There are a total of eight cables in the two vertical 

planes. It is statically indeterminate to the 4th degree – that means that four equations of 

deflection compatibility must be added to the equations of equilibrium to analyse the struc-

ture. In contrast, Figure 8b shows the 2012 Margaret Hunt Hill Bridge in Dallas, TX, designed 

by Santiago Calatrava. It has a much more complex geometry, with 58 cables arranged in 

surfaces that resemble hyperbolic paraboloids, and the degree of indeterminacy is beyond 

simple calculation. Powerful 3-Dimensional structural analysis programs are necessary to 

demonstrate that this structure can successfully resist the loads that it carries. 

   

a   b 

Fig. 8. Evolution of cable-stayed bridges a) John O’Connell Bridge, Sitka AK, 1973 (Source: Wikipedia); b) Margaret Hunt 

Hill Bridge, Dallas TX, 2012 (Image source a) https://commons.wikimedia.org/wiki/File:John_O%27Con-

nell_Bridge,_Sitka_2013.JPG b) Michael Barera, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wiki-

media Commons) 

https://www.loc.gov/pictures/item/ma1293.photos.076534p/resource/
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:John_O%27Connell_Bridge,_Sitka_2013.JPG
https://commons.wikimedia.org/wiki/File:John_O%27Connell_Bridge,_Sitka_2013.JPG
https://creativecommons.org/licenses/by-sa/4.0
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• The impact of the increased labour costs: fewer built-up steel members, more precast con-

crete construction and the use of concrete instead of masonry in towers, piers and founda-

tions.  

A final example of a task that is currently being automated is to use image processing and photo-

grammetric techniques to try to identify the vantage point from which the bridge was photographed. 

Others5 identified five specific vantage points that are important for viewing bridges, “(a) travelling 

over the bridge at slow speed; (b) travelling over the bridge at high speed; (c) travelling under the 

bridge at slow speed (d); travelling under the bridge at high speed; and (e) viewing the bridge from 

a distance.” Successfully estimating camera position with respect to the bridge will be useful for more 

sophisticated image understanding tasks. 

Summary 

This short paper has summarized work-in-progress to create a database of 4800 electronic images 

of historic American and Canadian highway, railway and pedestrian bridges constructed between 

1865 and 2019, retrieved from Wikipedia, Wikimedia Commons, and the Historic American Engi-

neering Record (HAER) websites. These images are being used concurrently to develop machine-

vision systems and image-processing techniques to automatically identify, in historical and contem-

porary images of cityscapes and landscapes: (1) the presence of a bridge or bridge component in 

an image; (2) the form (or type) of bridge or bridge component; (3) the age and other features; and 

(4) the vantage point from which the bridge was photographed. The Artificial Intelligence classifica-

tion identifier was 85–92% accurate when distinguishing between girder and through-truss bridge 

types and roughly 70% accurate when distinguishing between cantilever, through-arch, girder, 

through-truss and deck arch bridges types. It is perhaps more challenging to determine the date of 

construction because time is a continuum: the evolution of bridge types and construction details is 

somewhat blurry and varies between different geographic regions. A possible next step will be to 

use image-processing and photogrammetric techniques to try to identify the vantage point from 

which the bridge was photographed. The relevance of this study extends beyond those interested in 

historic bridges to scholars studying image classification in other areas of the digital humanities. 
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