
Immutable yet evolving: ARCs for
permanent sharing in the research data-time

continuum

Christoph Garth , Jonas Lukasczyk , Timo Mühlhaus , Benedikt Venn , Jens
Krüger , Kolja Glogowski , Cristina Martins Rodrigues  and Dirk von

Suchodoletz 

Scientific research data is often viewed as monolithic and immutable – once created and
processed, it is published in archives for transparency and reproducibility. In this paper,
we argue that research data sets should by default be viewed as dynamic and evolving,
and should be created, managed, and curated by processes that mirror the development of
software rather than via a publication-focused approach. We propose Annotated Research
Contexts (ARCs), a lightweight basis for such processes, and illustrate how ARCs will
assist research data management in plant biology, within a framework developed by the
NFDI consortium DataPLANT.

1 Introduction

Research data management has received a growing amount of attention as many scientific
disciplines are increasingly data-driven. For example, the FAIR principles [1] state that
data should be made available in a findable and accessible manner, i.e., in open, publicly
archives, and be interoperable and reusable, i.e. published in non-proprietary formats and
annotated with metadata that describes contents and provenance. Mounting adoption of
FAIR requirements by funding agencies — in particular, for publicly funded research —
has greatly benefited overall quality, reuse, and sharing of research data. As a consequence,
a plethora of open formats for FAIR data publication were developed in the past decade,
for example the schema.org-based Research Object format [14] specification that is generic
and domain agnostic, among many others.

While the FAIR principles define desiderata for published research data, there is an im-
plicit presumption that data is published exactly once, and immutable henceforth. In
practice, major incentives to publish or share research data are typically coupled to re-
search cycles [2], e.g. sending a research manuscript for review to a publisher who requires

Das hier beschriebene Poster ist in der Open Access-Plattform der Universität Heidelberg heiDOK
unter der DOI: https://doi.org/10.11588/heidok.00029769 veröffentlicht.

366 Publiziert in: Vincent Heuveline, Nina Bisheh (Hg.): E-Science-Tage 2021. 
Share Your Research Data. Heidelberg: heiBOOKS, 2022.
DOI: https://doi.org/10.11588/heibooks.979.c13751 (CC BY-SA 4.0)

https://orcid.org/0000-0003-1669-8549
https://orcid.org/0000-0001-6650-770X
https://orcid.org/0000-0003-3925-6778
https://orcid.org/0000-0003-4203-1596
https://orcid.org/0000-0002-2636-3163
https://orcid.org/0000-0002-1361-5712
https://orcid.org/0000-0002-4849-1537
https://orcid.org/0000-0002-4382-5104
https://doi.org/10.11588/heidok.00029769


data co-publication, or publishing all collected data at the end of a project. Focusing,
or limiting, research data management processes to these two outcomes forgoes a host
of opportunities that arise from a more continuous, dynamic approach. We will, in the
following, argue that typical processes found in software development align well to the
goals of research data management (RDM), and thus could be adapted to and adopted
in an RDM context. We outline the current discussion on and status of the efforts of the
DataPLANT consortium [3], within the framework of the National Research Data Infras-
tructure, to provide the technical basis — in the form of Annotated Research Contexts
(ARCs) — for implementing corresponding processes for the plant research community.
Our approach focuses not only raw data gathered during experiments, but also considers
analysis routines and derived data products within the context of research data manage-
ment.

2 RDM and Software Development

Software development is a well-studied aspect of Computer Science, and exhibits a com-
prehensive set of best practices to structure and manage the process of developing soft-
ware systems at all scales, from small-scale personal software to largest-scale, multi-entity
projects. These guidelines have emerged over half a century of practice. Others have
written at length and much more formally about this [4]; here, it is not our intention to
provide a detailed description. However, we single out a few broad insights and consider-
ations that map well to the requirements of RDM, and from this derive requirements for
a potential technical basis for RDM processes.

Holistic life cycle. Software development follows the goal completing a software product:
a problem is analyzed, a design is derived, and an implementation is developed and
released. This process is often cyclic, i.e. following a first release, requirements are re-
analyzed, new features are designed, etc. However, the ultimate goal of each iteration of
the cycle, i.e., producing a release, is anticipated throughout all steps. This has led to the
development of techniques such as unit testing and continuous integration, which ensure
that software is syntactically and semantically correct throughout the development phase.
This also ensures that an implementation can be released at any point in time, e.g., if
additional testing is required, or on a regular schedule.

RDM in most cases also follows a cycle: from a specific research question, experiments are
performed to gather data, which is subsequently analyzed; results are published, and new
or modified research questions are identified, restarting the cycle [2]. While publication
of the data typically occurs at least at the end of each cycle, it appears beneficial to
anticipate the need for publication already in earlier stages of the process, namely during
data gathering and analysis. To give an example, the FAIR principles require that data is
correctly annotated with metadata, such that others may interpret and reuse it. While it
is absolutely feasible to perform this annotation just in time for publication, it often is a

367



substantial burden of work, and in practice not performed with ideal diligence, resulting
in metadata of insufficient quality [5].

Borrowing from the software development playbook, we advocate continuous annotation,
i.e. spreading the data annotation throughout the RDM life cycle by ensuring that data is
annotated as it is gathered, and annotations are carried through analysis. More generally,
we argue that a data set should be annotated completely at every stage of its life cycle. The
same applies to continuous reproducibility; instead of focusing a large effort on making
analysis reproducible just before publication, analysis on a data set should always be
reproducible.

At first glance, treating a large burden for a sequence of smaller burdens appears as a zero-
sum game. However, in collaborative settings, the overall effort is quickly reduced as the
number of collaborators grows. Moreover, ensuring that data is always well-annotated and
reproducible affords opportunities for unplanned, ad hoc collaboration without incurring
additional overhead.

Rapid and Scalable Collaboration A key aspect of software development is scalability:
similar processes are used whether the development team is small or large. Effective
collaboration is achieved using distributed version control systems such as e.g. Git, Mer-
curial, DARCS, etc., that store an evolving version of source code and arbitrate changes
made by many developers.

It appears useful to use the collaboration opportunities afforded by version control also
in the context of RDM [6], where collaboration also occurs on a variety of scales: from
the individual researcher performing an experiment in isolation to a large multi-national
inter-group collaborative effort, all forms of collaboration should be possible with minimal
friction, while simultaneously ensuring that data is always in a consistent, well-annotated
and reproducible state. Version control as a documentation and arbitration mechanism is
ideally suited to this purpose, as it ensures an atomic and unambiguous history, without
requiring diligence of participating researchers. Therefore, our goal is to amend ad hoc
collaboration mechanisms (file sharing, email, etc.) by a systematic approach rooted in
decentralized version control [7].

Automation A further ingredient in software development is that all aspects of devel-
opment that can be automated, are automated. Two prominent examples are quality
control (via continuous integration testing, see above) and adherence to common con-
ventions (e.g., code formatting). RDM can borrow from this regarding a multitude of
aspects. For example, the quality of metadata and reproducibility can be automatically
assessed to a certain degree [8], allowing to quickly bring deficiencies to the attention
of researchers and ensure continuous annotation and continuous reproducibility. Using
these mechanisms, reviewers can rely on automation to ensure that a data set is in an
advertised state. Finally, automatic annotation, where possible (e.g., for data products
from computational analysis) can free researchers from manual annotation.

368



Provenance Often, software development requires a detailed understanding of the prove-
nance of a particular aspect of an implementation. The history afforded by version control
makes this straightforward. In the context of RDM, the detailed recording of changes
through version control history, identifying the researcher responsible for each change,
allows an in-depth understanding of who contributed in which manner to a data set, and
in what form. While this information is crucial to collect in the first place, e.g. to be
able to assign credit to all contributors to a data set, version control stands to effectively
automate this previously tedious and manual process.

Cathedral vs. Bazaar In his seminal and highly influential essay, Raymonds [9] discusses
two models for releasing source code during development, which are similarly applicable
to the sharing of research data. In the Cathedral model, corresponding to a top-down
approach, data would be made available at discrete releases, for example upon publication
of a paper that relies on it. In contrast, in the Bazaar model, in a bottom-up manner,
research data is constantly shared and evolved in full view of the public. His central
thesis in contrasting these two models, adapted to an RDM context, is that data that is
permanently shared during its evolution in a bazaar-type approach can benefit strongly
from increased opportunities for collaboration and rapid identification of problems, such
as lacking reproducibility or metadata annotation. Again, a version control approach
to RDM may improve permanent sharing of research data and act as a catalyst toward
increased data quality.

Open Standards It has been long recognized that an adherence to open standards, tools,
and community-specific conventions is highly beneficial towards encouraging wide and
opportunistic collaboration. A core consideration to support RDM technically is hence to
rely on open and established tools with a wide user base, to the largest possible extent. For
the case of version control, for example, this suggests to use the widely-used Git. Relying
on overly specific or restricted solutions stands to exclude (opportunistic) contributions
from others (“walled garden”).

3 Annotated Research Context

A core objective in DataPLANT is to provide a technical basis that implements soft-
ware development-inspired processes and integrates these into RDM workflows. While
many technical solutions exist, the barrier of entry is significant due to their substantial
complexity (e.g., version control systems); furthermore, the processes themselves must be
negotiated, understood, and applied with stringency. This places a substantial burden
on researchers and is a prohibitive time investment. Therefore, an additional objective
of DataPLANT is to define and standardize easy-to-use RDM procedures and their tech-
nical realization, specifically targeted at the needs of the fundamental plant research
community. In the following, we describe the Annotated Research Context (ARC) that
DataPLANT is developing toward these goals.

369



ARC structure An ARC is a collection of files and folders, laid out in a specific schema,
following the ISA model [10], which distinguishes investigation, study, and assay and is
ubiquitous in the plant research community. ARCs are intended to capture all research
data pertaining to a single study within a larger investigation; the scope of a single ARC
is intended to scale from encompassing the research data of smaller research projects such
as a single publication or a thesis, to larger lab-wide or even multi-lab investigations.
We reserve a more detailed description of the ARC file structure, metadata schema, and
workflow description for future work, once an initial specification is finalized.

ARCs are Version Control Repositories While based on a specific file structure, ARCs
are version controlled repositories [6] and capture their evolution in the form of a version
history. Version control system operations are not exposed directly to users, as their
complexity is overwhelming to most non-experts and full flexibility is not needed. Rather,
we define an update operation that records the current state of all files in the history. In
addition to allowing an understanding of the provenance of an ARC, update operations
are canonical points for automation of quality control and other tasks.

Git is a suitable initial choice for the underlying version control system, due to several
factors. It is very lightweight and decentralized, allowing researchers to operate individual
ARCs without overhead or requiring a centralized resource. Furthermore, Git is techni-
cally mature, widely adopted, and very well documented. Others have employed Git for
RDM with same reasoning (cf. Section 4).

Collaboration with ARCs ARCs can be easily used collaboratively shared through ex-
isting Git repository hosting mechanisms, such as e.g. Github or a Gitlab server instance.
To keep complexity manageable, low-level Git operations push (propagating local changes
to a remote repository) and pull (merging remote changes with the local history) are re-
placed by a sync operation which combines these two. If conflicts occur, i.e., when remote
changes would overwrite local changes or vice versa, researchers can opt to overwrite either
local changes or remote changes, or address the conflict manually.

Multiple researchers can collaborate on a single ARC by selecting a hosting facility (e.g.
public or lab-specific) and placing a central copy of their ARC there. They can concur-
rently modify and update their respective ARC copies, and sync to propagate their own
changes to the central ARC and obtain the other researchers’ changes. Moreover, ARCs
will support an import operation to selectively reuse parts of one ARC (e.g. a data set
or workflow) in another, while retaining the capability of sending changes back to the
original ARC.

Within DataPLANT, the DataPLANT hub will provide a central hosting facility for
ARC Git repositories, open to all researchers participating in the consortium and their
collaborators, further reducing the burden of initiating collaboration with others.

370



ARC Automation Towards ensuring continuous annotation and continuous reproducibil-
ity, the version control inherent in ARCs could serve as a vehicle to easily implement
automation for each new version. Currently, automation is considered in checking for ad-
herence to file schema, metadata completeness and quality, reproducibility, among other
aspects.

ARC Sharing and Publication Publication of ARCs is fairly straightforward [11], espe-
cially using services that already allow formal publication of Git repositories, such as e.g.
Zenodo.org or the Open Science Foundation (osf.io). The DataPLANT hub will also offer
publication facilities. ARCs, with full modification history, will be archived long-term
and accessible via DOI.

To avoid lock-in into a specific ecosystem of tools and ensure that ARCs play well in the
diverse ecosystem of research data publication facilities, it is planned to offer automatic
conversion of ARCs into other ubiquitous formats for research data archival, such as e.g.,
RO Crates [12] or formats compatible with OpenAIRE / H2020 Data Management Plans.
Unless explicitly hosted on private repository servers, ARCs are shared by default, in real
time — no additional steps are needed to share an ARC and its evolution with others.

Implementation. ARCs and the RDM processes they support are conceptually straight-
forward and rely on open standards and tools (e.g., Git). To support the RDM procedures
outlined above without having to resort to low-level operations (e.g. git push) dedicated
support software is currently under development, initially as a command line tool, and
later as a GUI client and web-based interface. Several alternatives are currently under
consideration.

4 Discussion & Conclusion

Naturally, others have pursued a similar approach to the one we propose here, and un-
surprisingly come up with similar designs to support RDM in daily use [11]. We will
here briefly consider two representative concepts (resp. tools) to illustrate similarities
and differences to our approach.

The notion of fundamentally conducting RDM on the basis of version control has been
investigated in a broad manner [6]. For example, the powerful and domain-agnostic Data-
lad tool [15] is based on a Git variant (git-annex) to manage and describe the evolution
of research data and enable low-friction collaboration, and supports a variety of generic
operations. However, this generality incurs complexity: clear processes are not defined.
Defining and negotiating these between collaborators can be a substantial burden towards
effective collaboration. In contrast, the ARC process trades generality for convenience,
focusing on few important operations relevant to plant research workflows. For example,
while ARCs are always self-contained, Datalad provides a more general form of linking

371

https://zenodo.org
https://osf.io


to other data sets, which however makes it difficult to check data set completeness (e.g.,
for archiving) or provenance. The DVC tool [13] takes a more holistic view and adds
tailored processed for Machine Learning to versioned data management. It is related to
our approach, however, but its specificity prohibits an application in plant research.

ARCs are designed as a support vehicle for RDM processes in plant research, and borrow in
design from software development best practices. The ARC concept at heart embodies the
idea of permanent sharing of research data. Fundamentally, this implies a strong reliance
on open standards and tools, and version control as a candidate supporting technology. In
this manner, ARCs are a key driver towards fulfilling DataPLANT’s mission: to enable
plant researchers to participate as first-class citizens in a large, vibrant, and growing
ecosystem of data-driven research.

Acknowledgements

We acknowledge support for DataPLANT 442077441 through the German National Re-
search Data Initiative (NFDI 7/1).

ORCID IDs

• Christoph Garth 

• Jonas Lukasczyk 

• Timo Mühlhaus 

• Benedikt Venn 

• Jens Krüger 

• Kolja Glogowski 

• Cristina Martins Rodrigues 

• Dirk von Suchodoletz 

Bibliography

[1] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. The fair guiding principles for scientific data
management and stewardship. Scientific data, 3(1):1–9, 2016.

372

https://orcid.org/0000-0003-1669-8549
https://orcid.org/0000-0001-6650-770X
https://orcid.org/0000-0003-3925-6778
https://orcid.org/0000-0003-4203-1596
https://orcid.org/0000-0002-2636-3163
https://orcid.org/0000-0002-1361-5712
https://orcid.org/0000-0002-4849-1537
https://orcid.org/0000-0002-4382-5104


[2] Philippa C Griffin, Jyoti Khadake, Kate S LeMay, Suzanna E Lewis, Sandra Orchard,
Andrew Pask, Bernard Pope, Ute Roessner, Keith Russell, Torsten Seemann, et al.
Best practice data life cycle approaches for the life sciences. F1000Research, 6, 2017.

[3] Dirk von Suchodoletz, Timo Mühlhaus, Jens Krüger, Björn Usadel, and Cristina Mar-
tins Rodrigues. Dataplant – ein nfdi-konsortium der pflanzen-grundlagenforschung.
Bausteine Forschungsdatenmanagement, (2):46–56, 2021.

[4] David King and David Katch. Current Practices in Software Development: A Guide
to Successful Systems. Yourdon Press Englewood Cliffs, New Jersey, 1984.

[5] Rafael S Gonçalves and Mark A Musen. The variable quality of metadata about
biological samples used in biomedical experiments. Scientific data, 6(1):1–15, 2019.

[6] Christian T Jacobs and Alexandros Avdis. Git-rdm: A research data management
plugin for the git version control system. Journal of Open Source Software, 1(2):29,
2016.

[7] Eric C Kansa, Sarah Whitcher Kansa, and Benjamin Arbuckle. Publishing and push-
ing: mixing models for communicating research data in archaeology. International
Journal of Digital Curation, 9:57––70, 2014.

[8] Vidya Ayer, Christian Pietsch, Johanna Vompras, Jochen Schirrwagen, Cord Wiljes,
Najko Jahn, and Philipp Cimiano. Conquaire: Towards an architecture supporting
continuous quality control to ensure reproducibility of research. D-Lib Magazine,
23(1/2), 2017.

[9] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23–49, 1999.

[10] ISA TAB format. https://isa-specs.readthedocs.io/en/latest/isatab.html,
accessed 2021-04-26.

[11] Jean-Baptiste Poline. From data sharing to data publishing [version 1; referees. 2018.

[12] Eoghan Ó Carragáin, Carole Goble, Peter Sefton, and Stian Soiland-Reyes. RO-
Crate, a lightweight approach to Research Object data packaging, July 2019.

[13] DVC – open-source version control system for machine learning projects. https:
//dvc.org, accessed 2021-04-26.

[14] Eoghan Ó Carragáin, Carole Goble, Peter Sefton, and Stian Soiland-Reyes. A
lightweight approach to research object data packaging. In Bioinformatics Open
Source Conference (BOSC) 2019, 2019.

[15] Yaroslav O Halchenko, Benjamin Poldrack, and Michael Hanke. Datalad–
decentralized data distribution for consumption and sharing of scientific datasets.
In Organization of Human Brain Mapping Poster. Organization of Human Brain
Mapping Annual Meeting, Geneva, Switzerland, 2016.

373

https://isa-specs.readthedocs.io/en/latest/isatab.html
https://dvc.org
https://dvc.org



