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bwVisu combines an intuitive web frontend with well-established HPC technologies pro-
viding an easy-to-use and powerful remote visualization solution. We present bwVisu at
the example of the finite-time Lyapunov exponent, a contemporary visualization method
for the analysis of time-dependent flow.

1. Introduction

As computational power grows, so does the size and complexity of scientific data. In
addition, the transfer of large data is cumbersome, and usually requires centralized ser-
vices for the secure storage of scientific data. The visualization of this data is therefore
increasingly difficult and can hardly be handled by local workstations with their limited
computing power. Remote visualization, i.e., bringing the visualization techniques to
the data and transferring only the derived visual representations to the user, is therefore
steadily gaining importance.

Remote visualization services such as bwVisu stand in between data acquisition and
data archiving in the data life cycle: They allow for a convenient way of analyzing and
exploring the data after it has been created and is still located on hot storage.

bwVisu aims at providing scientists from Baden-Wiirttemberg with a scalable service
for the remote visualization of scientific data, while focusing on the user experience and
ease of use. Section 2 describes the underlying hardware of bwVisu. Section 3 details the
middleware that forms the interface between the bwVisu hardware and bwVisu Web. In
Section 4, we go into more detail on bwVisu Web and its functionality, while Section 5
exemplifies bwVisu at the example of time-dependent flow visualization.

2. Cluster

For bwVisu, a dedicated visualization cluster is available. The cluster consists of eight
compute nodes and two login nodes. Each compute node houses 28 CPU cores and
two specialized GPUs, which are particularly suited to serving many concurrent users by
means of dedicated virtualization functions. The nodes are connected with an Infiniband
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network, and two high-bandwidth uplinks are available for the login nodes. This guar-
antees fast access for jobs running on the bwVisu visualization cluster to data on other
nearby systems, such as the bwForCluster MLS+WISO [19] or SDS@hd [3]. The system
is running CentOS and uses the widespread HPC job scheduler Slurm [14].

3. Middleware

A custom middleware provides an interface for the web frontend to manage the visualiza-
tion jobs. The middleware, called bwVisu runner, is written in Python and exposes its
features via a flask-based [18] HTTP REST API to the web frontend.

The middleware is designed to be minimally invasive and can be deployed either on
nodes of the cluster or on an external system. Figure 1 illustrates the architecture of the
bwVisu stack. For job management, the middleware communicates via ssh with a set
of command nodes, where it starts, stops, and monitors jobs with the Slurm commands
sbatch, squeue, and scancel. Additionally, the middleware uses ssh to access a set
of gateway nodes, where it establishes forwarding rules of network traffic from ports to
the individual compute nodes where the user application runs. This allows the user to
connect to his job simply by connecting to a specific network port on one of the gateway
nodes. Authentication is handled by the application of the user (e.g., Xpra). In order
to scale to many concurrent jobs, the middleware automatically distributes the network
load of the jobs across the available gateway nodes.

The state of jobs is continuously monitored from the gateway nodes. This allows the
middleware to provide information to the web frontend whether the job is ready to interact
with the user, or whether the user has to wait before the job can be accessed (e.g., because
it is queued and not yet running, or because it is running but still in an initial start-up
phase where network connections are not yet accepted).

All state of the middleware is stored in an etcd database, which is a distributed key-
value store. Because of the distributed design of etcd, it is easy to operate in a redundant
manner, and hence allows for a resilient, highly-available deployment of the middleware.

The requirements that the bwVisu middleware imposes on the cluster are designed to
be as low as possible: The middleware must be granted ssh access to a dedicated user
account, and this account must be able to run Slurm commands on the command nodes
and iptables on the gateway nodes®. Since the installation of the bwVisu middleware is
the only requirement to use a given HPC cluster for bwVisu, extending an existing HPC
cluster with bwVisu’s remote visualization capabilities is easy and does not necessitate
any changes to the existing cluster configuration.

4. bwVisu Web

bwVisu includes the web user interface “bwVisu Web”, which allows researchers to start
their individual visualization software easily and connect to it using nothing more than

I Note that the gateway nodes can also be virtual machines if it is not desired that iptables rules of
physical machines in the cluster are modified by the bwVisu software stack.
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Figure 1.: The architecture of the bwVisu stack.

their web browser (Figure 2). It consists of two parts, the frontend or user interface (UI),
and the backend, which supplies the frontend with data and implements the essential
“business” logic (Figure 3). The user-visible part of this has only changed marginally
from the mockups presented during the last E-Science-Tage conference in 2017 [20], but
the architecture was revamped significantly, and the system has matured into a productive
system.

While the previous system was built around Kubernetes [1], we now utilize Slurm [14]
instead to allow an easier migration path from HPC clusters that previously did not use
application containers. Since the latter does not provide an HTTP API that can be
used by web applications to interface with it, we no longer interface directly with the
HPC scheduler or orchestration engine, but use a custom-made middleware instead, as
described in Section 3.

The fact that we were able to reduce the requirements for researchers to just a web
browser is an important milestone made possible by the utilisation of the Xpra HTML5
client by Martin and contributors [15], which is embedded into our application container
images.
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Figure 2.: bwVisu Web aims to be a user-friendly, straightforward web interface allowing
users to browse available applications, learn more about them, submit them as
jobs to the HPC cluster, as well as manage, connect to, and stop running jobs.

4.1. System architecture

The frontend of bwVisu Web is implemented as a light-weight single page application
(SPA). “Light weight” does not only describe the low implementation complexity, but
translates also to a clean visual design that is reduced to the essential functions required
by users, allowing them to quickly reach their goals without distractions. The frontend
application is implemented using a functional data-oriented architecture based on re-
frame? by Thompson [22]. Rendering and updates of the HTML view is handled by
Reagent® courtesy of Holmsand and contributors [9].

The internal interface between this frontend and the backend of the bwVisu Web system
is realized using GraphQL, again popularised by Inc. [11], which defines an easy-to-use,
flexible, well-defined, language-independent query language based on HT'TP / WebSockets
and JSON that also supports, subscription (live updates) and mutation (write access).
bwVisu Web’s GraphQL queries can be broken down into three categories:

1. user log in and authentication (GraphQL mutation),

2. queries for available applications and jobs currently running (GraphQL queries and
subscriptions),

2 It shares similarities with the Flux architecture popularised by Inc.[10]
3 Which itself is based on React by Inc. [12]
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Figure 3.: bwVisu Web consists of two parts, in the user’s browser and at the service
provider’s site, communicating via GraphQL with each other. It shares an
LDAP database for user accounts with the HPC-Cluster and communicates via
HTTP REST with the Infectoid middleware.

3. commands to start or stop a visualisation job (GraphQL mutations).

In exchange for a username / password pair, the authentication interface provides the
bwVisu Web frontend with a JSON Web Token (JWT), which contains information about
the user and will be used to authenticate all other queries. This initial log in step is
performed against an LDAP database provided by the bwRegApp service developed within
the project for the federal state of Baden-Wiirttemberg [17].

The list of applications available in bwVisu is provided to the frontend as a GraphQL
query and subscription (and hence supports long running user sessions). All this infor-
mation is tracked in simple text files (XML or YAML), so it can easily be maintained
without special tools and be stored in version control systems, e.g., directly alongside
build instructions for the images themselves (e.g., Dockerfiles or more sophisticated
build systems using buildah). Klumpp et al. of freedesktop.org created the AppStream
0.12 [13] infrastructure, in particular the appdata.xml file format, to allow developers
to provide information about their applications to distributors. Using these facilities
has the benefit for bwVisu that accurate and up-to-date application descriptions, screen-
shots and the likes are made available by the application developers themselves, which
reduces the maintenance burden for bwVisu administrators. This choice poses no limi-
tation, because this information can easily be added, should an application not provide
it. In custom YAML files, which we call “appbundles”, that information is extended with
bwVisu-specifics, like available version numbers, corresponding container image names,
and information needed by the bwVisu Web middleware in order to submit jobs to the
HPC scheduler. Not merging these two into one file provides the benefit of separating
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concerns and allows an easier intake of (updated) information from upstream application
developers.

In the bwVisu Web frontend, this application information is used to present the list
of available applications and their versions/flavours to the user, as well as to show them
details, descriptions, and screenshots of individual applications. Finally, it also defines
the possible settings users can define when they want to start applications and submit
their jobs. These settings are being send to the bwVisu Web backend, where they are
merged with any immutable data (e.g., the image name), before being passed on to the
middleware. Basic structural conformance checks will be carried out in each of these
steps, but actual authorization is done via user account file system permissions by the
operating system of the compute nodes when the job actually starts.

Information about currently running jobs is acquired directly from the bwVisu mid-
dleware using polling and passed on to the bwVisu Web frontend via GraphQL queries
and subscriptions, just like application data. bwVisu Web is equipped to handle dynamic
information, such as network addresses, which are only known after job submission, when
the application actually starts. Any changes compared to the previous architecture are
encapsulated by bwVisu Web and should be opaque to the user.

The only external systems bwVisu Web interfaces with are an LDAP service containing
the user database and the bwVisu middleware that abstracts the HPC scheduler. Addi-
tionally we avoid any persistent state within bwVisu Web itself (e.g., job databases or
user session data), which follows the design proposed by Moseley and Marks in their pa-
per “Out of the Tar Pit” [16]. We confirm their findings that a stateless design simplifies
reasoning about the system, which in turn leads to less bugs and increased developer
productivity.

4.2. Deployment

bwVisu Web is meant to be easily deployed onto the target HPC cluster. For this reason
we selected deployment methods that can be adapted to different target systems. We
utilise Packer by HashiCorp to build virtual machine images on common platforms like
OpenStack, which is e.g. used by the Heidelberg heiCLOUD platform. The flexibility of
Packer allows us to easily build images for other systems, including QEMU /libvirt for
consumption on individual non-cloud machines. These virtual machine images are then
deployed onto the OpenStack platform using Terraform, also maintained by HashiCorp.
Terraform also allows us to target bare-metal machines and many other types of environ-
ments.

5. Visualization Applications

The applications provided in bwVisu are containerized using the well-known container
platform Docker and are stored as images in a Docker Container Registry integrated
into GitLab. Furthermore the CI/CD service provided by GitLab automates software
development and deployment. Since bwVisu builds on well-established HPC technologies
and was developed with HPC environments in mind, there is an additional conversion
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step of the Docker images to the HPC-focused container platform Singularity. Unlike
Docker containers, Singularity containers do not allow privilege escalation inside of them.
We provide developers with base images to ensure applications are working properly and
all the required dependencies are present at runtime. These base images include MPI
and drivers for full hardware acceleration on Nvidia and AMD graphics nodes. FEach
application image is uniquely labeled and can be archived by the user, thus increasing the
degree of reproducibility and portability. In addition, developers will be able to restrict
access and visibility of their applications on bwVisu Web if needed. bwVisu already offers
a wide range of visualization applications such as ParaView, VMD), Vislt, Blender, Vistle,
and many more.

5.1. FTLE-Based Flow Visualization

We exemplify flow visualization of time-dependent flow fields in bwVisu by means of the
finite-time Lyapunov exponent (FTLE). The FTLE field [6] measures the divergence of
time-dependent trajectories with respect to finite-time advection, and is able to reveal
the topology of time-dependent vector fields, i.e., their overall structure with respect to
finite-time transport.

Given a time-dependent vector field u(x,t) € R™ defined at each point x €  C R" of
the domain €, a trajectory (i.e., a pathline) is given as the solution to the initial value
problem

2 (t) ==x%0 + /t: u ( 0 (1), 7‘) dr, (0.1)

with xy being the seed point of the pathline, ¢y its seeding time, and ¢ its integration
time. From this, the flow map is obtained by seeding a pathline at each point x at time %,
integrating it for time 7', and storing the coordinates of the endpoint of the respective
pathline in the map:

(%) = &(T). (0.2)

Consequently, pathline divergence can be quantified by the gradient of the flow map,
leading to the definition of the FTLE:

o7 (x) == |1T|1n V6! ()] (0.3)

with [|A]| being the spectral norm of matrix A, i.e., the largest eigenvalue of AT A.

Apparently, the computation of the FTLE field atTO (x) is very costly, since integration
of a pathline is required for each spatial sample x, and also for each seeding time t,
(for time-dependent FTLE visualizations, t, is varied to produce animations). Even
worse, the structure in the FTLE field become more detailed as the advection time T is
increased, requiring very high spatial resolutions. On the other hand, the computation of
the pathlines is straightforward to parallelize due to their independent computation. As
such, FTLE-based visualization is a perfect candidate for demonstrating and evaluating
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bwVisu, also because the resulting FTLE data is a scalar field, which is, compared to
the huge amount of trajectory data, comparably small. Common approaches to FTLE
visualization are direct volume rendering, and extraction of ridge surfaces [5]. In this
example, we follow both approaches. We distribute the entire time-dependent vector field
to all compute instances, but each instance computes only a part of the FTLE field,
i.e., we employ domain decomposition of the FTLE field domain. While parallel volume
rendering by bricking (i.e., of the FTLE parts) is somewhat involved, ridge extraction
lends itself well for distributed computation. That is, each compute instance extracts
ridges from the FTLE part it computed, and sends the result to the visualization entity
for interactive exploration.

We start our exploration with a time-dependent vector field obtained from a heat-
driven convective 3D (n = 3) flow simulation in a closed container. For overview, we have
a look at the velocity magnitude at time ¢y = 5.4s, and vortex core lines [21], as well
as instantaneous streamlines at time ¢y, = 5.4s and pathlines seeded at time t;5 = 5.4s
and integrated for 7" = 0.15s (Figure 4). Of course, such basic visualization could be
accomplished without parallelization, and as such provides only limited insights in the
time-dependent dynamics of this flow.

Our FTLE-based visualization, on the other hand, captures the full time-dependent
dynamics. Figure 5 shows the volume rendering of the resulting FTLE field, the height
ridge surfaces extracted from the FTLE field, as well as the height ridges surfaces together
with a subset of the pathlines that have been used for FTLE computation, to provide flow
dynamics context. One can observe that the FTLE ridge surfaces indeed separate regions
of qualitatively different low dynamics and thus provide a topological overview.
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Figure 4.: Overview of Convective Flow example, at time 5.4s. Top: Velocity magnitude
by volume rendering (higher magnitude by higher opacity / brighter colors).
Bottom: Vortex core lines (purple), with instantaneous streamlines along vortex
core lines (blue), and pathlines seeded at ¢ty = 5.4s integrated for T = 0.15s
(white).
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Figure 5.: FTLE-based visualization of Convective Flow example, with t; = 5.4s inte-
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grated for T" = 0.05s. Top left: Volume rendering of the FTLE field. Top
right: Height ridge surfaces extracted from the FTLE field. Bottom: Height
ridges with some of the trajectories used for FTLE computation, for space-time
context.



6. Conclusion

We presented bwVisu, a scalable service for remote parallel visualization. We described
the underlying hardware, the middleware, which has been designed with a particular
focus on ease of use, the web frontend that enables effective and simple visualization,
and exemplified its usage at the example of time-dependent flow visualization using the
finite-time Lyapunov exponent.
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