
Adapting Established Software Engineering
Techniques and Technologies into an
Assistance System for Neuroscientists

Thorsten Arendt and Alexander C. Schütz
Department of Psychology, Philipps-Universität Marburg, Germany

In the information infrastructure project NOWA (NeurOscientific Workflow Assistance)
of the collaborative research center CRC/TRR 135 Cardinal mechanisms of perception:
Prediction, Valuation, Categorization we develop and combine tools for the sharing of
research data. In this context, NOWA aims to create an organizational and technological
framework that supports workflows throughout the entire research data lifecycle. This
article addresses the conceptual and technical part of NOWA. We first discuss the spe-
cific requirements of the scientists and then compare them with proven solutions from
the computer science and software engineering domain, respectively. These so-called best
practices are then adapted to the specific needs within the CRC. Finally, we conclude the
article by an overview of the planned technical and technological implementation of the
NOWA assistance system.

1. NeurOscientific Workflow Assistance (NOWA)

The sensory organs are the "window to the world" since they enable the sensation of
signals from the environment. But how does the brain process this information? How
does perception work? The DFG funded collaborative research center CRC/TRR 135
Cardinal Mechanisms of Perception: Prediction, Evaluation, Categorization deals partic-
ularly with these questions. More precisely, twenty interdisciplinary working groups at the
Justus-Liebig-Universität Gießen (JLU) and the Philipps-Universität Marburg (UMR) use
a combination of behavioral experiments, physiological measurements and computational
modeling to gain a comprehensive understanding of prediction, evaluation and categoriza-
tion. The goal is to delineate these cardinal mechanisms behaviorally, to identify their
underlying neural substrates and to explain their functions with computational models.
Already during the first funding phase of the CRC, the researchers increasingly pursued

the implementation of the Open Science principles. In addition to the publication of
research results in peer-reviewed articles, the researchers published relevant research data
(Open Access) using the publicly accessible repository Zenodo1 (Open Data). Doing
this, they increased traceability and reproducibility of their results and so the overall
transparency of their research. However, the high effort when selecting and packaging
the research data and creating the meta data revealed the need for a more fundamental

1 https://zenodo.org/

32 Thorsten Arendt und Alexander C. Schütz: Adapting Established Software Engineering Techniques and Technologies into an 
Assistance System for Neuroscientists. In: Heuveline, V., Gebhart, F. und Mohammadianbisheh, N. (Hrsg.): E-Science-Tage 2019 – 
Data to Knowledge, Heidelberg: heiBOOKS, 2020, 32–46. DOI: https://doi.org/10.11588/heibooks.598.c8415

https://zenodo.org/
https://doi.org/10.11588/heibooks.598.c8415


approach. For the second funding phase, this led to the information infrastructure project
NOWA (NeurOscientific Workflow Assistance) [2], which is in the focus of this article.
In NOWA we develop new and combine existing tools for the sharing of research data.

In order to enhance reproducibility of all steps in the lifecycle of a scientific study –
from planning experiments over collecting and analysing data to publishing them– this
information infrastructure project aims at creating an organizational and technological
framework, supporting workflows along the entire data lifecycle. The long-term goal is
to share research data within both, the single working groups and the entire CRC, right
from the beginning of the study and to make them publicly accessible at the "press of a
button" at the time the results are published. NOWA is implemented in close cooperation
with the researchers of the CRC and the local infrastructure facilities including the joint
project HeFDI (Hessische Forschungsdateninfrastrukturen).2 The University Computer
Center of the UMR thereby provides the technical infrastructure.
This article particularly addresses the conceptual and technical part of NOWA. We

first discuss the specific requirements of the scientists –such as collaborative working,
management of large files, versioning of data and code, quality assurance at data and
code level, meta data management, publishing research as well as automating these steps
as effectively as possible – and then compare them with established solutions from the
computer science and software engineering domain, respectively (e.g., version control using
git and GitLab, continuous integration/testing, style guides, and packaging). These so-
called best practices are then adapted to the specific needs within the CRC. Finally, in the
conclusion of the article we provide an overview of the planned technical and technological
implementation of the NOWA assistance system.

2. What Neuroscientists need

A neuroscientific study in the CRC involves typically a sequence of consecutive steps from
designing experiments to collecting data and analysing data (see Figure 1). Since each
study usually consists of several sequential experiments that are building-up on each other,
this cycle is traversed several times. During each of those steps, different types of research
data are produced: Meta data include information about the design of the experiment, the
settings of technical equipment and software, personal data about the tested participants
or information about the type of data transformation and analysis. Software consists
of scripts for experiments and for data analysis as well as for computational modelling.
Primary data refer to the immediate outputs of the experiments, while processed data
refers to analysed and aggregated data and statistical results.

2.1. Sharing and Publishing Research Data

One objective of the CRC is to facilitate the collaboration of researchers within and
beyond the CRC. Sharing data with researchers in and outside of the CRC poses additional
requirements to research data management, which are specified below.

2 https://www.uni-marburg.de/de/forschung/kontakt/forschungsdatenmanagement/projekte/h
efdi-hessische-forschungsdateninfrastrukturen

33

https://www.uni-marburg.de/de/forschung/kontakt/forschungsdatenmanagement/projekte/hefdi-hessische-forschungsdateninfrastrukturen
https://www.uni-marburg.de/de/forschung/kontakt/forschungsdatenmanagement/projekte/hefdi-hessische-forschungsdateninfrastrukturen


Figure 1.: The research process and where research data occur

Private and collaborative work Sharing data with other researchers requires compre-
hensive meta data regarding all aspects of a study, including the experimental design,
the collection of primary data and the analysis of processed data, such that all involved
researchers can comprehend the study material. The sharing of research data can be
accomplished more effectively if those requirements are met from the beginning of the
study. Working collaboratively on a study also requires a user management that allows to
specify access privileges for different researchers and that keeps track of which researcher
is working on the material. Of course, collaborative work also requires an easy exchange
of research data and (semi-)automatic comparison of files and detection of modifications.

Publication Ultimately, all research data of the CRC should be made publicly available
within the constraints of ethical regulations. To publish the data of a single study, this
requires that all research data of the study are bundled and that each entity is tagged
according to whether it can be made public or not. A direct export filter to existing
research data repositories could facilitate the publication of data, such that only a single
button-press is required.

2.2. Managing Research Data

An efficient management of research data is an important tool to guarantee the repro-
ducibility of research. In the following, we highlight the most important requirements of
research data management in the CRC.

Meta data, primary data, and code As mentioned before, different types of research
data are produced during the life-cycle of a study. Several objectives need to be met
by efficient research data management: For instance, different types of research data

34



need to conform with each other and redundancies in the data should be eliminated. In
addition, the work flow should be optimized such that the additional work load imposed
by research data management is minimized. The efficient reuse of materials, for instance
analysis scripts, in other projects should be facilitated.

Data versioning A study in the CRC progresses usually through several stages, from
an initial test phase, the presentation of first results at a conference to the publication
of the final results in a scientific journal and the final data in a data repository. Usually,
all research data evolve during this life cycle of a study. To make the research progress
transparent and reproducible, it is important to keep track of all changes and to be able to
return to any previous stage of the study and the associated materials. This goal cannot
be achieved without a continuous versioning of all data that belong to the study. Ideally,
versioning of all study-related material automatically generates a digital lab book that
allows a complete overview of the work progress in the study.

Quality of data A further objective of NOWA is to maintain a high quality of research
data to ensure the reproducibility of the research and results of the CRC. Several issues
can arise during a study that will ultimately compromise the quality of research data:
Meta data, for instance, might be incomplete because the necessary documentation is
not carried out immediately. Primary data might be incomplete or might contain invalid
data due to technical or organizational problems during data collection. Software might
contain unknown limitations or bugs due to insufficient testing. An active research data
management should include automated checks for data quality and highlight potential
issues early on when they can be corrected easily.

2.3. Overview

To summarize (see Figure 2), researchers in the CRC need an efficient research data man-
agement spanning the whole data life-cycle from the design of the experiments over data
collection and data analysis to the publication of data. The research data management
should include all types of research data, such as meta data, primary and processed data
and software. Primary goals of the research data management are to ensure a high quality
of the data, to track different versions of data and to facilitate the collaboration between
different researchers and working groups.

3. What Computer Science and Software Engineering
provides

In this section, we discuss some of the challenges that have been identified in the domains
of computer science and software engineering over the last 40 years, as well as solutions
developed for them. The objective is to discover similarities to the needs of the researchers
presented in the previous section in order to adapt the best practices from the domains
of computer science and software engineering to the domain of neuroscience.

35



Figure 2.: Overview on what CRC/TRR 135 neuroscientists need

3.1. Collaboration and Versioning

Especially in recent decades, software systems have become ever larger and more complex.
Consequently, the software engineers were confronted with a number of challenges in the
area of so-called configuration management. For example, because large and complex
software systems consist of a large number of collaborating components, the dependencies
between these components must be managed. As these components evolve over time, each
with its own extent and speed, the versions of the components and the entire system must
be stored properly. Furthermore, old versions of files and the entire project should be
easily and effectively recoverable, for example if the changes that are made lately prove
to be insufficient. Additionally, for maintainability of the system, it would be very helpful
to be able to easily understand how the components evolved between versions. Finally,
it would be beneficial to have some sort of implicit backup system to counter the risks
of a single point of failure when the code is managed on a single system. However, the
core of these specific challenges is more general. Large and complex software systems are
being developed by a large number of project members, many of whom are spread over
different locations around the world. Therefore, the core of the challenges is to enable
collaborative and distributed work within the software development project.
In order to meet the challenges in the field of configuration management, the computer

science community developed so-called Version Control Systems (VCS) [14]. Such a sys-
tem tracks changes to project (a set of files) and for each change, it records the date
and time, the person who made the change, and the differences between the file contents
before and after the change. As a result, the system can re-create a consistent snapshot of
the project at any point in time. Two different approaches to version control systems have
evolved over time. In the centralized approach, the VCS consists of a server that stores
the only master copy of the entire project. Examples for centralized VCSs are Concurrent

36



Versions System (CVS)3 and Subversion (SVN)4. However, since the centralized approach
depends on a server, working on the project is only possible if there is a network connec-
tion. Furthermore, this approach carries the risk of a single point of failure. In contrast,
the distributed approach generally does not have a server. Each user has a full copy of
the whole project with the full history on the computer. Popular distributed VCSs are
Mercurial5 and git 6. The distributed approach represents the state of the art.
In terms of supporting collaborative and distributed work within a software develop-

ment project, a number of useful solutions have been established: groupware, computer-
supported collaborative work, CASE tools, collaboration platforms, etc. [13, 9]. All of
these solutions share the core features co-ordination, collaboration, and community build-
ing –with communication as cross-cutting function. Furthermore, these systems can be
classified into their spatial and temporal dimensions. The spatial (or geographic) distri-
bution in the software development process distinguishes spatially close co-located and
distributed organizational units. In the temporal distribution, the focus is on whether the
cooperation, in particular the communication, takes place with a time delay. Here, infor-
mation and software artifacts can be either IT-buffered (asynchronous) or concurrently
(synchronously) exchanged respectively edited. A combination of the two aforementioned
concepts represent web-based collaboration platforms having a VCS as core technology.
Here, state-of-the-art platforms are GitHub7, GitLab8 and Bitbucket9.

3.2. Data, Meta Data and Software

Digital data has been stored in files of various formats for decades. However, this syntactic
separation is often in contrast to the semantic contexts within the data. In order to
summarize data semantically, applications such as ZIP and RAR were developed early
on. They package a set of heterogeneous files into an archive and simultaneously compress
their contents. This is similar with software systems. Even small applications consist of a
large number of components that provide the required functionality only in interaction and
depend on each other to a different extent. Appropriately developed software packagers [6,
8] carry out the combination of these components –in the corresponding versions– into an
installable and executable application.
In most cases, data has a content-related structure. Uniformly structured and logically

related data volumes are managed in databases. The essential task of a database is to
store large volumes of data efficiently, without contradictions and permanently and to
provide the necessary subsets in different, needs-based forms of presentation for users and
application programs. At the next level, a data repository is an infrastructure of databases
that collect, manage and store varying data sets. In fact, a data repository can be seen

3 https://savannah.nongnu.org/projects/cvs
4 https://subversion.apache.org/
5 https://www.mercurial-scm.org/
6 https://git-scm.com/
7 https://github.com/
8 https://gitlab.com/
9 https://bitbucket.org

37

https://savannah.nongnu.org/projects/cvs
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://git-scm.com/
https://github.com/
https://gitlab.com/
https://bitbucket.org


as a general term that comprises several concrete ways to collect and store data10. Such
a repository can be implemented in one of the following ways. Data warehouses are large
data repositories that aggregate data from multiple sources or segments of a business,
without the data being necessarily related [7]. Data lakes are large data repositories that
store unstructured data that is classified and tagged with meta data. An example can
be found at [12]. Finally, data cubes are lists of data with three or more dimensions
stored as a table [11]. The common structure of data can be specified using so-called
meta data. Meta data are often described as information about data, i.e., the information
required to understand data, including data set contents, context, quality, structure, and
accessibility. The meta data explains where the data originated, how it was captured,
and what it represents. In most instances, meta data are descriptions of things, whether
physical objects (books, items in a warehouse) or information objects (spreadsheets, web
pages, publications, etc.). Meta data repositories store data about data and databases.
An example of a meta data repository for technical information in digital medical images
can be found at [15].
Today, information and knowledge in the form of data and programs are widely pub-

lished on the World Wide Web. Often, this information is in a packetized and archived
format, as described above. However, even at this higher level, there are relationships
between data (sets) stored at different locations in the internet. In order to make these
relationships more explicit, this information can be coupled through the concepts of Linked
Data [5] and the Resource Description Framework (RDF)11, respectively.

3.3 Software Quality

Software of inferior quality is hardly accepted by the users. In extreme cases, this can
mean that the software is rarely or not used at all. As a consequence, achieving a high
quality is one of the major challenges in software development. But what does software
quality exactly mean? To explicitly describe the term software quality, several so-called
quality models for software products gradually evolved over the last 50 years. All of these
quality models have in common that they describe certain quality aspects that own a
software. These quality aspects are structured using a tree-based hierarchy to form the
model. For example, the ISO 9126 standard12 specifies six independent, high-level quality
characteristics that are further sub-divided into 21 sub quality criteria. Following this
standard, a software should meet the intended needs, perform well under stated conditions,
and provide appropriate performance relative to given resources. Moreover, it should be
understandable and easy to use, be modifiable with minimal effort, and transferable to
another environment. Altogether, the need to develop high quality software resulted in
establishing a software quality assurance process that ensures that the developed software
meets and complies with defined or standard quality specifications.
The evaluation of software quality can be effectively automated using the state-of-the-

art continuous testing & integration approach [18]. This approach works as follows. When

10 https://www.cbronline.com/opinion/what-are-data-repositories
11 http://www.w3.org/TR/rdf-concepts/
12 https://www.iso.org/standard/22749.html

38

https://www.cbronline.com/opinion/what-are-data-repositories
http://www.w3.org/TR/rdf-concepts/
https://www.iso.org/standard/22749.html


developer check in their changes to the code repository the VCS triggers a continuous
integration (CI) process on a dedicated server. This server builds the software, runs several
specified (static and dynamic) tests and analyses, returns the results to the developer, and
potentially releases the new version of the software. In modern version control platforms
like GitLab the CI server is integrated and and represents a central component for the
assurance of the software’s quality.
Already in the early years of software engineering, the developers noticed that they

re-implemented many similar and even identical algorithms repeatedly. This led to the
notion of software reuse representing the process of creating software systems from existing
software rather than building software systems from scratch. Especially the upcoming
paradigm of object-oriented software development forwarded and empowered the software
reuse approach. For enabling software reuse, appropriate code is outsourced into so-called
libraries, which can then be integrated into the actual software system to be implemented.
Such software libraries can be provided either internally within the software company only
or externally, e.g., as open source. A survey on software reuse libraries can be found in [19],
for example.
Coding does not enforce problems as long as the code is syntactically correct. However,

software code also has other quality characteristics than just syntactic correctness. Here,
the use of standards and guidelines –e.g., for the Java programming language13– with
a consistent style helps to develop high-quality code. A consistent style improves the
readability, and therefore, maintainability of code. Furthermore, it facilitates sharing of
code among different programmers, especially teams of programmers working on the same
project. Finally, it saves development time, once the guidelines are learned, by allowing
programmers to focus on the semantics of the code, rather than spend time trying to
determine what particular format is appropriate for a given situation. Compliance with
these guidelines can be verified by appropriate tools, e.g., during the CI process. In
1998, Kent Beck and Martin Fowler developed the concept of code smells [4] which has
been further adapted to other software artifacts such as software models [1]. Code smells
represent suspicious parts that are potential candidates for improvements, i.e., they are not
synonyms for problems but are worthy of an inspection. In recent years, also approaches
to use machine learning techniques to detect code smells have been developed (see [10] for
an overview). Finally, the concept of quality assurance has been also adapted to assessing
the quality of meta data. A comprehensive overview in this field can be found at [20].

3.4 Adaptation

In this section, we compare the needs of the scientists within the CRC with those of the
computer science and software engineering domain. In doing this, we reuse solutions and
best practices developed to the challenges of software engineering and adapt them to the
domain of neuroscience. These adaptations will then provide a roadmap for the current
and future work in building up the NOWA system.
As can be easily seen, the requirements of researchers and those of computer scientists

are similar in many ways. In the remainder of the section, we discuss the common
13 https://google.github.io/styleguide/javaguide.html

39

https://google.github.io/styleguide/javaguide.html


requirements in the three categories of data management, collaborative work, and quality
assurance of artifacts. In the category data management, the correspondence is quite
obvious. Both domains deal with data, meta data, and software code. The same holds
for the category collaborative work. Members of the team want to share their artifacts
with other people. Furthermore, researchers might ask the following questions similar to
those in configuration management:

• Which version of our research data is part of a particular publication?

• How did our analysis script evolve during the data analysis, and why?

• Who made the last change in the current version of our research paper, and which
one?

Finally, there is also a large overlap in the category quality assurance. The main goal of
researchers is that their research is correct and trustworthy. This implies that research
results are reproducible through the information provided about the methods used and the
associated research data. As a consequence, the research data must be of high quality. For
example, the data must match the corresponding meta data, or the previously mentioned
analysis scripts must be implemented correctly. Figure 3 shows which best practices from
the software engineering domain can be adapted and applied to which challenges in the
CRC. Table 1 summarizes, in a before and after comparison, how the application of these
best practices will impact the current research workflows in the CRC – again along the
above categories and the common goal of simultaneously publishing research results and
research data.

Figure 3.: Adaptation of best practices from the domains of computer science and software
engineering to the needs of the researchers within the CRC

With regard to research data management, concrete data can be stored in databases in
special repositories with a given structure. The data can then be linked with each other

40



if necessary. This reduces the current high number of less-structured files and introduces
more unified, clearer and more basic file structures. Meta data can be centrally managed
and stored with the help of standards, data dictionaries or ontologies14. As a result, the
previously rather implicit or multi-managed meta data become explicit and through the
standardization clearer and more comprehensible. With regard to the research software to
be created, more software libraries can be used. These include external standard libraries,
but also libraries built internally in the working groups or in the entire CRC. Thus, the
more error-prone and time-consuming copy-paste programming can be reduced and the
software can be created faster and more comprehensible.
With regard to collaboration, we can adapt a combination of the concepts groupware

and version control systems. More specifically, we will use a local instance of the version
control collaboration platform GitLab as the basis for the NOWA assistance system. By
using GitLab, documents can be shared in a central yet distributed environment. The
complexity that has resulted from the previous use of different methods for file exchange
(e.g., via e-mail or file hosting services) is thereby greatly reduced. Furthermore, data
and documents are managed more clearly, since the different file names used so far for
the versioning are omitted.
With regard to the quality assurance of research artifacts, various methods and tech-

niques can be adopted from software development, in particular, of course, for the creation
of the necessary research software. The so far only fundamentally existing quality con-
siderations such as syntactic correctness checks are supplemented by more sophisticated
methods such as the use of style guides. However, the effort to check the artifacts for
various new quality assurance techniques must be kept to a minimum –after all, the ac-
tual research is still the focus of the researchers. This can be done in particular by using
the continuous integration technology, which is already integrated in the version control
collaboration platform GitLab.
Finally, with regard to the joint publication of research results and data, the meth-

ods of packaging used in software engineering, both for data and for software, can be
adapted. The previous complexity in the challenge of compiling the relevant research
data can be significantly reduced by using the tagging feature provided by the VCS Git-
Lab. Combined with the use of a structured quality assurance process started early in
the research workflow, researchers within the CRC can ensure the overall reproducibility
of their results.

14 These best practices were not covered in this article.

41



Before After

Research
Data

• High number of less-structured
files
• Implicitly given meta data
• Copy-Paste programming

• Unified file structures
• Explicitly given, standardized

meta data
• Software reuse

Collaboration • Document exchange via Email
or file hosting services
• File versioning by different

names with different nomencla-
tures

• VCS server with central and
distributed repositories
• Versioned files with permanent

names

Quality
Assurance

• Basic quality (syntactical
checks only, redundancy, etc.)
• Nearly no automation

• High quality (conformity, com-
prehensibility, reusability, etc.)
• CI pipeline within VCS

Publication • Complex (time-consuming,
error-prone, etc.)
• Low utility (data reuse diffi-

cult)

• Effortless due to using tagged
data versions
• High utility (data reuse easy)

Table 1.: Before/after comparison when adapting best practices from software engineering

42



4. Current and Future Work

As already mentioned in the previous section, we will set up a local instance of the GitLab
web application at the UMR University Computer Center that is based on the distributed
version control system git. This will represent the core of the NOWA workflow assistance
system. By using the possibilities given by GitLab, a continuous and distinctive versioning
of the active research data in the CRC projects will be supported in the best possible way.
In particular, the Git LFS (Large File Storage)15 extension optimally manages large files
such as fMRI data. Additionally, using GitLab will facilitate improved collaborative work
within the interdisciplinary working groups of the CRC. For this purpose, we will prepare
and integrate specific security and authorization concepts. Parallel to the set-up of the
assistance system, we analyze the research workflows within the CRC in close collaboration
with the researchers involved. These workflows will be consecutively optimized by the
possibilities provided by GitLab. Together with good practices for the general use of
GitLab we will pass on the improved workflows to the researchers in regular training
courses.
Since GitLab also provides a continuous integration and testing subsystem, our workflow

assistance system will provide measures to ensure the quality of research data on top of
this. On the one hand, we integrate existing quality assurance techniques for the software
code that is currently used within the CRC research processes. On the other hand, we plan
to develop further –possibly project-specific– quality assurance techniques together with
the researchers which will then also be integrated into the assistance system. Moreover,
NOWA will provide a collection of reusable libraries for research software such as data
analysis scripts. The basis for this can be, for example, established libraries for the
languages Python or MATLAB as provided in [17, 21] or [16, 22], respectively. These
are then successively extended by own implementations. NOWA will initially make these
libraries available to the researchers of the CRC and, ultimately, in a public repository of
the GitLab instance.
In addition to the opportunities provided by GitLab, the workflows of the researchers

will be supported by additional services offered in the infrastructure facilities of the par-
ticipating universities. On the one hand, the collaborative work can be supplemented by
the Sync&Share solution HessenBox, which is currently being tested. On the other hand,
active research data management can be optimally supported by the use of HeRDMO, the
HeFDI-administered prototypical installation of the research data management solution
RDMO (Research Data Management Organizer)16 also funded by the DFG. This tool
captures all relevant planning information in data management plans and manages all
data management tasks throughout the entire research data lifecycle. In passive research
data management, the publication of research results and associated research data can
then finally be achieved via the existing publication servers in conjunction with the data
repository DSpace17 currently under test at the UMR computer center.
The mere publication of research results and data of any kind within the World Wide

15 https://git-lfs.github.com/
16 https://rdm1organiser.github.io/
17 https://duraspace.org/dspace/

43

https://git-lfs.github.com/
https://rdm1organiser.github.io/
https://duraspace.org/dspace/


Web together with their linking in a standardized format often does not guarantee the
reproducibility of the underlying research. Current approaches and efforts to overcome
these challenges include, for example, the concept of so-called research objects [3]18 as
well as the publication of all relevant information in a reproducible article of the eLife
Science Magazine19. In the future, we will also pursue and integrate these approaches in
our NOWA assistance system.

Acknowledgements

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project number 222641018 – SFB/TRR 135 TP INF.

Bibliography

[1] Thorsten Arendt. Quality Assurance of Software Models - A Structured Quality As-
surance Process Supported by a Flexible Tool Environment in the Eclipse Model-
ing Project. Doctoral thesis, Philipps-University Marburg, pp. 1–385 (2014). DOI:
10.17192/z2014.0357

[2] Thorsten Arendt, Ortrun Brand, Christian Krippes, Andreas Gabriel, Matteo Valsec-
chi, Clemens Helf, Karl R. Gegenfurtner, and Alexander C. Schütz. NeurOscientific
Workflow Assistance (NOWA), Poster presented at DINI Jahrestagung 2018, Biele-
feld, Germany (2018). DOI: 10.17192/es2019.0002

[3] Sean Bechhofer, Iain Buchan, David De Roure, Paolo Missier, John Ainsworth, Jiten
Bhagat, Philip Couch, Don Cruickshank, Mark Delderfield, Ian Dunlop, Matthew
Gamble, Danius Michaelides, Stuart Owen, David Newman, Shoaib Sufi, and Carole
Goble. Why linked data is not enough for scientists, In: Future Generation Computer
Systems, vol. 29, pp. 599 – 611 (2013). DOI: 10.1016/j.future.2011.08.004

[4] Kent Beck and Martin Fowler. Bad Smells in Code. In: Refactoring: Improving the
Design of Existing Code, 2nd Edition, Addison-Wesley Professional (2018)

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data: The Story so Far,
In: Semantic Services, Interoperability and Web Applications: Emerging Concepts,
ed. Amit Sheth, pp. 205–227 (2011). DOI:10.4018/978-1-60960-593-3.ch008

[6] Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical comparison of
dependency network evolution in seven software packaging ecosystems, In: Empirical
Software Engineering, vol. 24, pp. 381–416 (2019). DOI: 10.1007/s10664-017-9589-y

[7] Barry Devlin and Lynne Doran Cote. Data Warehouse: From Architecture to Imple-
mentation, Addison-Wesley Longman Publishing Co., Inc. (1996).

18 http://www.researchobject.org/
19 https://elifesciences.org/

44

http://www.researchobject.org/
https://elifesciences.org/


[8] Shouki A. Ebad and Moataz Ahmed. Software Packaging Approaches – A Comparison
Framework, In: Software Architecture, Springer Berlin Heidelberg, LNCS, vol. 6903,
pp. 438–446 (2011)

[9] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: Some Issues and
Experiences. In: Communications of the ACM, vol. 34, pp. 39–58 (1991). DOI:
10.1145/99977.99987

[10] Francesca Arcelli Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessandro Marino.
Comparing and experimenting machine learning techniques for code smell detec-
tion. In: Empirical Software Engineering, vol. 21, pp. 1143–1191 (2016). DOI:
10.1007/s10664-015-9378-4

[11] Steven Geffner, Divakant Agrawal, and Amr El Abbadi. The Dynamic Data Cube,
In: Advances in Database Technology – EDBT 2000, Springer Berlin Heidelberg,
LNCS, vol. 1777, pp. 237–253 (2000)

[12] Rihan Hai, Sandra Geisler, and Christoph Quix. Constance: An Intelligent Data
Lake System, In: Proceedings of the 2016 International Conference on Management
of Data (SIGMOD), ACM, pp. 2097–2100, (2016). DOI: 10.1145/2882903.2899389

[13] Tobias Hildenbrand, Franz Rothlauf, and Armin Heinzl. Ansätze zur kollaborativen
Softwareerstellung. Arbeitspapier, Universitätsbibliothek Mannheim (2006)

[14] Konrad Hinsen, Konstantin Läufer, and George K. Thiruvathukal. Essential Tools:
Version Control Systems, In: Computing in Science and Engineering, vol. 11, pp.
84–91(2009). DOI:10.1109/MCSE.2009.194

[15] Hans-Erik Källman, Erik Halsius, Magnus Olsson, and Mats Stenström. DI-
COM Metadata repository for technical information in digital medical images.
In: Acta Oncologica, vol. 48, pp. 285–288, Taylor & Francis (2009). DOI:
10.1080/02841860802258786

[16] Mario Kleiner, David H. Brainard, and Denis Pelli. What’s new in Psychtoolbox-3.
In: Perception, 36 (2007). DOI: 10.1068/v070821.

[17] Florian Krause and Oliver Lindemann. Expyriment: A Python library for cognitive
and neuroscientific experiments. In: Behavior Research Methods, vol. 46, pp. 416–428
(2014). DOI: 10.3758/s13428-013-0390-6

[18] Mathias Meyer. Continuous Integration and Its Tools. In: IEEE Software, vol. 31,
pp. 14–16 (2014). DOI: 10.1109/MS.2014.58

[19] A. Mili, R. Mili, and R.T. Mittermeir. A survey of software reuse libraries. In: Annals
of Software Engineering, vol. 5, pp. 349–414 (1998). DOI: 10.1023/A:1018964121953

45



[20] Jung-Ran Park and Yuji Tosaka. Metadata Quality Control in Digital Repos-
itories and Collections: Criteria, Semantics, and Mechanisms. In: Cata-
loging & Classification Quarterly, Routledge, vol. 48, pp. 696–715 (2010). DOI:
10.1080/01639374.2010.508711

[21] Jonathan Peirce, Jeremy R. Gray, Sol Simpson, Michael MacAskill, Richard Höchen-
berger, Hiroyuki Sogo, Erik Kastman, and Jonas Kristoffer Lindeløv. PsychoPy2:
experiments in behavior made easy. In: Behavior Research Methods, vol. 51, pp.
195–203 (2019). DOI: 10.3758/s13428-018-01193-y

[22] Sabine Verboven and Mia Hubert. LIBRA: a MATLAB library for robust analysis.
In: Chemometrics and Intelligent Laboratory Systems, vol. 75, pp. 127–136 (2005).
DOI:10.1016/j.chemolab.2004.06.003

46




