8. Die orthogonale Gruppe als reelle Mannigfaltigkeit

Das Haarsche Maß auf einer lokal kompakten Gruppe ist nur bis auf einen Faktor bestimmt. Ist jedoch G die spezielle orthogonale Gruppe einer über $\mathbb Q$ definierten quadratischen Form, so besitzt ihre Adelgruppe G_A ein ausgezeichnetes invariantes Integral, das sogenannte Tamagawa-Maß. Dieses soll in den nächsten Kapiteln beschrieben werden. Dazu benötigt man eine bereits über $\mathbb Q$ definierte Differentialform, mit der man dann in allen $\mathbb Q_v$ rechnen kann.

A sei eine symmetrische Matrix mit rationalen Einträgen, und nicht singulär. Die zugehörige reelle spezielle orthogonale Gruppe ist

$$G = \{ P \in M_n(\mathbb{R}) \mid P'AP = A, \det P = 1 \}$$

Sie ist in der offenen Teilmenge det P>0 des n^2 -dimensionalen Raumes $M_n(\mathbb{R})$ das Nullstellengebilde von F(P)=P'AP-A. Als solches ist G eine reelle Mannigfaltigkeit der Dimension $\frac{n(n-1)}{2}$, nämlich:

Nach Definition beschreibt $F:\mathbb{R}^m\to\mathbb{R}^k$ durch F(P)=0 eine Mannigfaltigkeit G der Dimension m-k, wenn F in jedem Punkt P_0 von G differenzierbar ist und die Funktionalmatrix (Jacobi-Matrix) $D_{P_0}F$ den Rang k hat. Diese Funktionalmatrix ist in unserem Falle eine Matrix mit $\frac{n(n+1)}{2}$ Zeilen und n^2 Spalten, die man sich lieber nicht (in irgendeiner Anordnung der Zeilen und Spalten) hingeschrieben vorstellen möchte. Stattdessen gehen wir auf die Definition der Differenzierbarkeit von Abbildungen von \mathbb{R}^{n^2} nach $\mathbb{R}^{\frac{n(n+1)}{2}}$ zurück: F ist differenzierbar im Punkte P_0 , wenn es eine lineare Abbildung $L=L_{P_0}$ vom \mathbb{R}^{n^2} in den $\mathbb{R}^{\frac{n(n+1)}{2}}$ gibt , derart daß

$$F(P)-F(P_0)=L(P-P_0)+\ Rest(P;P_0) \quad \mathrm{mit}\ \frac{|Rest|}{|P-P_0|} \rightarrow 0 \ \mathrm{f\"{u}r}\ P \rightarrow P_0$$

L ist dann die Jacobi-Abbildung. Hier haben wir

$$F(P) - F(P_0) = P'AP - P'_0AP_0 = (P' - P'_0)AP_0 + P'_0A(P - P_0) + (P' - P'_0)A(P - P_0)$$

Der letzte Term ist quadratisch in $P-P_0$, also können wir L_{P_0} ablesen:

$$L_{P_0}(X) = X'AP_0 + P_0'AX$$

Alle Matrizen $L_{P_0}(X)$ sind symmetrisch. Umgekehrt: Wenn S=S', so muß man nur $X=\frac{1}{2}A^{-1}P_0'^{-1}S$ setzen (beachte, daß die $P_0\in G$ invertierbar sind), um $L_{P_0}(X)=S$ zu erhalten. Also besteht das Bild von L_{P_0} aus allen symmetrischen Matrizen. Nach Definition ist G eine Mannigfaltigkeit der Dimension $n^2-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}$.

Der Tangentialraum am Einselement besteht nach Definition aus allen X mit $L_1(X) = 0$. Hier ist also

$$T_1(G) = \{ X \in M_n(\mathbb{R}) \mid AX + X'A = 0 \}$$

Es gibt nun für die orthogonale Gruppe eine Besonderheit: Man kann die (0 enthaltende) offene Teilmenge $\det(1+X) \neq 0$ des Tangentialraumes rational auf die offene (Eins enthaltende) Teilmenge $\det(1+P) \neq 0$ in G abbilden und dadurch eine Parameterdarstellung erhalten. Dies ermöglicht es, dieselben Rechnungen in anderen Erweiterungskörpern von $\mathbb Q$ außer $\mathbb R$ anzustellen, zum Beispiel in den $\mathbb Q_p$. Doch bleiben wir zunächst in $\mathbb R$.

Wenn A positiv definit ist, dann ist die Parameterdarstellung sogar überall definiert:

Lemma 1. Wenn A = A' positiv definit und AX schief und $\epsilon = \pm 1$, dann ist $1 + \epsilon X$ invertierbar.

Beweis: Wenn $v \in \mathbb{R}^n$ und $(1 + \epsilon X)v = 0$, dann ist

$$v'Av = -v'A\epsilon Xv = \epsilon v'(AX)'v = \epsilon v'X'Av = -\epsilon^2 v'Av = -v'Av$$

Daraus folgt v = 0.

Im allgemeinen beschränken wir uns auf den offenen Teil $\det(1+X) \neq 0$ von $T_1(G)$. Dort ist

$$f(X) = (1+X)^{-1}(1-X)$$

wohldefiniert.

Satz 13. (Cayley) Die Abbildung f ist eine Bijektion von $\{X \in T_1(G) \mid \det(1+X) \neq 0\}$ auf $\{Y \in G \mid \det(1+Y) \neq 0\}$.

Beweis: 1. Wenn $X \in T_1(G)$ und $det(1+X) \neq 0$, dann ist $f(X) \in G$, nämlich:

$$f(X)'Af(X) = (1 - X')(1 + X')^{-1}A(1 + X)^{-1}(1 - X) = (1 + AXA^{-1})(1 - AXA^{-1})^{-1}A(1 + X)^{-1}(1 - X) = A$$

und

$$\det(1-X) = \det(1-X') = \det(1-A^{-1}X'A) = \det(1+X)$$
, also $\det[(1+X)^{-1}(1-X)] = 1$
Also ist $f(X) \in G$. und

$$\det(1+f(X)) = \det(1+(1+X)^{-1}(1-X)) = \det\{(1+X)^{-1} \cdot 2\} \neq 0$$

2. Sei $P \in G$ und $\det(1+P) \neq 0$. Man setzt $X = (1+P)^{-1}(1-P)$. Dann ist

$$AX + X'A = A(1+P)^{-1}(1-P) + (1-P')(1+P')^{-1}A =$$

$$A(1+P)^{-1}(1-P) + (1-AP^{-1}A^{-1})(1+AP^{-1}A^{-1})^{-1}A$$

$$= A(1+P)^{-1}(1-P) + A(1-P^{-1})(1+P^{-1})^{-1} = 0$$

und

$$\det(1+X) = \det(1+(1+P)^{-1}(1-P)) = \det(1+P)^{-1}\det(1+P+1-P) \neq 0$$

Also liegt tatsächlich X im Teil $\det(1+X) \neq 0$ von $T_1(G)$, und man rechnet leicht nach, daß f(X) = P (die Matrix $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$ ist bis auf einen Faktor ihre eigene Inverse). Damit sieht man auch, daß f bijektiv ist.

Jetzt wollen wir feststellen, wie die Gruppenmultiplikation im Tangentialraum aussieht. Das heißt, zu gegebenem X, Y in $T_1(G)$ suchen wir $Z \in T_1(G)$ mit $f(Z) = f(X) \cdot f(Y)$.

$$f(Z) = f(X) \cdot f(Y) \Leftrightarrow Z = (1 - f(X) \cdot f(Y))(1 + f(X) \cdot f(Y))^{-1} \Leftrightarrow$$

$$Z = [1 - (1+X)^{-1}(1-X)(1+Y)^{-1}(1-Y)] \cdot [1 + (1+X)^{-1}(1-X)(1+Y)^{-1}(1-Y)]^{-1}$$

$$= (1+X)^{-1}[(1+X)(1+Y) - (1-X)(1-Y)](1+Y)^{-1} \cdot \{(1+X)^{-1}[(1+X)(1+Y) + (1-X)(1-Y)](1+Y)^{-1}\}^{-1}$$

$$= (1+X)^{-1}(X+Y)(1+XY)^{-1}(1+X)$$

Setzt man also

(1)
$$\lambda_X(Y) = (1+X)^{-1}(X+Y)(1+XY)^{-1}(1+X)$$

so gilt

- 1. $\lambda_X(Y)$ ist definiert für alle $X,Y\in T_1(G)$ mit $\det(1+X)\cdot\det(1+Y)\cdot\det(1+XY)\neq 0$
- 2. Für alle $X, Y \in T_1(G)$ mit $\det(1+X)\det(1+Y)\det(1+XY) \neq 0$ ist das Diagramm

$$\begin{array}{ccc} G^* & \stackrel{f(X)\bullet}{\to} & G \\ f \uparrow & & \uparrow f \\ T_1(G)^* & \stackrel{\lambda_X}{\to} & T_1(G)^* \end{array}$$

kommutativ

wobei der Exponent * bedeutet, daß nur die X,Y eingesetzt werden sollen, die den angegebenen Bedingungen genügen.

Jetzt ist es nicht so schwierig, die Jacobi-Abbildung von λ_X (als Funktion von Y) zu berechnen:

$$\lambda_X(Y) - \lambda_X(Y_0) = (1+X)^{-1} \{ (X+Y)(1+XY)^{-1} - (X+Y_0)(1+XY_0)^{-1} \} (1+X)$$

Die geschweifte Klammer ist

$$= (Y - Y_0)(1 + XY)^{-1} + (X + Y_0)[(1 + XY)^{-1} - (1 + XY_0)^{-1}]$$

Die eckige Klammer ist

$$= (1 + XY)^{-1}[X(Y_0 - Y)](1 + XY_0)^{-1}$$

Die Summe ist

$$= (Y - Y_0)(1 + XY_0)^{-1} - (X + Y_0)((1 + XY_0)^{-1}X(Y - Y_0)(1 + XY_0)^{-1} + \dots$$

$$= [1 - (X + Y_0)(1 + XY_0)^{-1}X](Y - Y_0)(1 + XY_0)^{-1} + \dots$$

wobei Terme bedeutet, die mindestens quadratisch in $Y - Y_0$ sind.

Es ist $(1+XY_0)^{-1}X = X(1+Y_0X)^{-1}$. Dies eingesetzt, erhält man nach kurzer Rechnung

$$\lambda_X(Y) - \lambda_X(Y_0) = (1 - X)(1 + Y_0X)^{-1}(Y - Y_0)(1 + XY_0)^{-1}(1 + X) + \dots$$

Hieraus kann man die Jacobi-Abbildung ablesen:

$$Jac_{Y_0}(\lambda_X)(T) = (1-X)(1+Y_0X)^{-1} \cdot T \cdot (1+XY_0)^{-1}(1+X)$$
 für alle $T \in T_1(G)$

 $Jac_{Y_0}(\lambda_X)$ ist eine lineare Abbildung von $T_1(G)$ auf sich. Ihre Determinante ist von der (zur Berechnung benutzten) Basis von $T_1(G)$ unabhängig. $T_1(G) = \{T \mid AT = -(AT)'\}$ besitzt als Basis die $\frac{n(n-1)}{2}$ Matrizen $A^{-1}(e_{rs} - e_{sr}), r > s$, und für diese ist

$$Jac_{Y_0}(\lambda_X)(A^{-1}(e_{rs} - e_{sr}) = (1 - X)(1 + Y_0X)^{-1}A^{-1}(e_{rs} - e_{sr})(1 + XY_0)^{-1}(1 + X)$$
$$= A^{-1}(1 + X')(1 + Y_0'X')^{-1}(e_{rs} - e_{sr})(1 + XY_0)^{-1}(1 + X) = A^{-1}C'(e_{rs} - e_{sr})C$$

mit $C = (1 + XY_0)^{-1}(1 + X)$. Das zeigt: Die Determinante von $Jac_{Y_0}(\lambda_X)$ ist dieselbe wie die Determinante der Abbildung $S \mapsto C'SC$ im Raum der schiefsymmetrischen Matrizen. Diese Determinante ist eine multiplikative Funktion von C und deshalb = 1, wenn C eine elementare Matrix $1 + \lambda e_{ik}$ ist (weil jede elementare Matrix ein Kommutator von zwei Matrizen ist). Also brauchen wir die Determinante nur auszurech-

nen, wenn $C=\begin{pmatrix}\lambda_1&&&\\&\ddots&&\\&&\lambda_n\end{pmatrix}$ eine Diagonalmatrix ist. In diesem Falle ist sie $=\prod_{i>j}\lambda_i\lambda_j=\prod_{i=1}^n\lambda_i^{n-1}=\det C^{n-1}\,.$ Das ergibt

$$\det Jac_{Y_0}(\lambda_X) = \left[\frac{\det(1+X)}{\det(1+XY_0)}\right]^{n-1}$$

Die $Y \in T_1(G)$ drücken wir durch die eben benutzte Basis aus: $Y = \sum_{r>s} y_{rs} A^{-1}(e_{rs} - e_{sr})$ und setzen $dY = \wedge_{r>s} dy_{rs}$. Das ist eine Differentialform höchsten Grades auf $T_1(G)$. Für $Z = \lambda_X(Y)$ ist

$$dZ = \det Jac_Y(\lambda_X) dY$$

Satz 14.

$$\frac{dZ}{\det(1+Z)^{n-1}} = \frac{dY}{\det(1+Y)^{n-1}}$$

Beweis: Wir setzen den gefundenen Ausdruck für die Jacobi-Determinante ein:

$$\frac{dZ}{\det(1+Z)^{n-1}} = \frac{\det(1+X)^{n-1}}{\det(1+XY)^{n-1} \cdot \det(1+\lambda_X(Y))^{n-1}} \, dY$$

Setzt man den Ausdruck (1) für $\lambda_X(Y)$ ein, so erhält man nach kurzer Rechnung die Behauptung.

Satz 14 kann man auch so ausdrücken: Die Differentialform

$$\frac{dY}{\det(1+Y)^{n-1}}$$

ist invariant gegen λ_X . (Das gilt für alle X,Y, für die $\det(1+X)\det(1+Y)\det(1+XY)\neq 0$)

Mit Hilfe der Cayley-Transformation wird daraus eine in einer Zariski-offenen Einsumgebung in G definierte Differentialform ω höchsten, das heißt $\frac{n(n-1)}{2}$ -ten Grades: Sei

$$U = \{ P \in G \mid \det(1+P) \neq 0 \}$$

Offenbar ist $U = U^{-1}$. Für $P \in U$ setzen wir

$$\omega(P) = \frac{dX}{\det(1+X)^{n-1}}, \text{ wenn } P = f(X) = (1+X)^{-1}(1-X)$$

Ist $P_0 \in G$ beliebig, so ist P_0U eine offene Umgebung von P_0 . Die $P \in P_0U$ sind durch die Parameterdarstellung $P = P_0f(X)$ mit $X \in T_1(G)$ und $\det(1+X) \neq 0$ gegeben. Wir setzen

(2)
$$\omega_{P_0}(P) = \frac{dX}{\det(1+X)^{n-1}}$$

Satz 15. Wenn $P \in P_0U \cap P_1U$, dann ist

$$\omega_{P_0}(P) = \omega_{P_1}(P)$$

Beweis: Wenn $P = P_0 f(Y) = P_1 f(Z)$, dann ist $f(Z) = P_1^{-1} P_0 f(Y) =: Q \cdot f(Y)$. Wenn Q = f(X), dann ist $f(Z) = f(X) \cdot f(Y)$, also $Z = \lambda_X(Y)$ und nach Satz 14

$$\frac{dZ}{\det(1+Z)^{n-1}} = \frac{dY}{\det(1+Y)^{n-1}}, \text{ also } \omega_{P_0}(P) = \omega_{P_1}(P)$$

Ist hingegen $P_1^{-1}P_0 \not\in U$, so nehmen wir einen Punkt $R \in U \cap PU \cap P_0U \cap P_1U$ (dieser Durchschnitt ist nicht leer, weil U Zariski-offen und G (als algebraische Menge) irreduzibel ist). Dann haben wir (unter Benutzung von $U = U^{-1}$)

$$P \in P_0U \cap RU$$
 und $R^{-1}P \in U$ also $\omega_{P_0}(P) = \omega_R(P)$ nach Schritt 1

und dasselbe mit P_1 statt P_0 , also zusammen $\omega_{P_0}(P) = \omega_R(P) = \omega_{P_1}(P)$.

Folgerung: Durch (2) wird eine Differentialform ω auf G wohldefiniert. Nach Konstruktion ist sie linksinvariant.

Diese Differentialform liefert ein Integral auf $G_{\mathbb{R}}$, das zugehörige (nicht orientierte) Volumenelement bezeichnen wir mit ω_{∞} und das Lebesguemaß im $\mathbb{R}^{\frac{n(n-1)}{2}}$ mit dX_{∞} . Nach der Integraltransformationsformel aus Analysis III ist ω_{∞} nur von ω , aber nicht von der Parameterwahl abhängig. Insbesondere ist ω_{∞} auch linksinvariant. Für alle Funktionen g mit Träger in U ist

$$\int_G g(P)\omega_\infty(P) = \int_{T_1(G)} g(f(X)) \frac{dX_\infty}{|\det(1+X)^{n-1}|_\infty}$$

 $|\cdot|_{\infty}$ ist der Absolutbetrag.