4. Der Kompaktheitssatz

Wir behalten die Bezeichnungen des vorigen Kapitels bei. Sei $0 \neq \rho \in \mathbb{Q}$ und

$$\Sigma = \{ x \in V \mid (x, x) = \rho \}$$

die "Sphäre vom Radius ρ ". Sei $e \in \Sigma_{\mathbb{Q}}$ fest. Wir kürzen (x,x) mit F(x) ab. Man definiert eine Abbildung π von G_A nach Σ_A durch

$$\pi(g) = g e \text{ für } g \in G_A$$

Lemma 1. π ist stetig und offen.

Beweis: "stetig" ist klar, weil π durch lineare Gleichungen in den Koeffizienten von g beschrieben werden kann. Für "offen" zeigen wir

1. Für alle v und alle offenen $U_v\subset G_{\mathbb{Q}_v}$ ist $\pi_v(U_v)$ offen in $\Sigma_{\mathbb{Q}_v}$; nämlich: Sei $a\in\pi_v(U_v)$, etwa $a=g_0e$ mit $g_0\in U_v$. Wenn $x\in\Sigma_{\mathbb{Q}_v}$ nahe an a ist, dann ist a+x nicht isotrop (weil nahe an 2a) und wenn S_a die Spiegelung längs a ist, dann ist $S_{a+x}S_a\in G_{\mathbb{Q}_v}$ nahe an 1, also $S_{a+x}S_ag_0$ nahe an g_0 , mithin in U_v , und

$$x = S_{a+x}S_a a = S_{a+x}S_a g_0 e \in \pi_v(U_v)$$

Damit ist $\pi_v(U_v)$ offen.

2. Für fast alle p ist $\pi_p(G(M_p))=M_p\cap \Sigma_{\mathbb{Q}_p}$. Nämlich: Sei M_p unimodular und $p\neq 2$ und $|\rho|_p=1$. Wenn $x\in M_p\cap \Sigma_{\mathbb{Q}_p}$ und wenn $|(x+e,x+e)|_p=1$, dann bilden S_e und S_{x+e} das Gitter M_p in sich ab und

$$S_{x+e}S_ee = x,$$

also $x \in \pi_p(G(M_p)$. Wenn $|(x+e,x+e)|_p < 1$, dann ist $|(x-e,x-e)|_p = 1$. Da M_p unimodular und $p \neq 2$, gibt es $u \in M_p$ mit (u,e) = 0 und $|(u,u)|_p = 1$. Dann ist $S_{x-e}S_ue = x$, also wieder $x \in \pi_p(G(M_p)$.

1 und 2 zusammen zeigen, daß π offene Mengen auf offene abbildet.

Lemma 2. Sind X und Y lokal kompakte Räume und π eine Abbildung von X auf Y, die sowohl stetig als auch offen ist, dann besitzt jedes Kompaktum in Y ein partielles kompaktes Urbild in X.

Beweis: Sei C kompakt in Y und \tilde{C} das volle Urbild von C. Da π stetig ist, ist \tilde{C} jedenfalls abgeschlossen. Für jedes $x \in \tilde{C}$ nehme man eine offene Umgebung U_x in X, deren abgeschlossene Hülle kompakt ist. Offenbar ist $\tilde{C} \subset \bigcup_{x \in \tilde{C}} U_x$ und damit $C = \pi(\tilde{C}) \subset \bigcup_{x \in \tilde{C}} \pi(U_x)$. Da π offen ist, sind alle $\pi(U_x)$ offen in Y. Da C kompakt ist, genügen endlich viele x; es ist $C \subset \bigcup_{i=1}^n \pi(U_{x_i}) = \pi(\bigcup_{i=1}^n U_{x_i})$ Die abgeschlossene Hülle C' von $\bigcup_{i=1}^n U_{x_i}$ ist kompakt, und damit ist auch ihr Durchschnitt mit der abgeschlossenen Menge \tilde{C} kompakt. Dieser wird bei π genau auf C abgebildet.

Mit Hilfe dieser beiden Lemmata beweisen wir den Kompaktheitssatz:

Satz 3. Wenn die quadratische Form über \mathbb{Q} anisotrop ist, dann ist $G_A/G_{\mathbb{Q}}$ kompakt.

Beweis: Für n=1 ist der Satz trivialerweise richtig, weil dann G nur aus der Eins besteht. Sei n>1 und der Satz bis n-1 bewiesen.

Man wählt ein Kompaktum $C \subset V_A$ mit $vol(C) > 1 (= vol(V_A/V_{\mathbb{Q}}))$. Für $X \in G_A$ ist $vol(X^{-1}C) = vol(C) > 1$. Daher ist die Projektion $V_A \to V_A/V_{\mathbb{Q}}$ auf $X^{-1}C$ nicht injektiv. Das bedeutet: es gibt $x,y \in X^{-1}C$ mit $0 \neq x-y \in V_{\mathbb{Q}}$. Dann ist $\xi := x-y \in X^{-1}C'$, wobei C' = C-C ebenfalls kompakt ist. Sei etwa $\xi = X^{-1}c$. Dann ist $F(\xi) = F(c) \in \mathbb{Q} \cap F(C')$. Da \mathbb{Q} diskret in A und F(C') kompakt ist, ist $\mathbb{Q} \cap F(C')$ endlich. Daher gehört $F(\xi)$ einem endlichen Vorrat (von 0 verschiedener, weil $V_{\mathbb{Q}}$ anisotrop) Zahlen $\{\zeta_1,, \zeta_h\}$ an. Die Betrachtung zeigt: Zu jedem $X \in G_A$ gibt es i mit $1 \leq i \leq h$ und $\xi \in V_{\mathbb{Q}}$ mit $X \notin C'$ und $F(\xi) = \zeta_i$

Die Sphäre $\Sigma_{i,A}$ vom Radius ζ_i ist abgeschlossen in V_A , also ist $E_i := \Sigma_{i,A} \cap C'$ kompakt in V_A . Sei e_i ein fester Vektor in $\Sigma_{i,\mathbb{Q}}$. Da $G_{\mathbb{Q}}$ transitiv auf $\Sigma_{i,\mathbb{Q}}$ ist, gibt es $\gamma \in G_{\mathbb{Q}}$ mit $\xi = \gamma e_i$. Die Projektion $G_A \to \Sigma_{i,A}$, gegeben durch $X \mapsto X e_i$, ist nach Lemma 1 stetig und offen. Nach Lemma 2 gibt es ein partielles kompaktes Urbild K_i , so daß also $E_i = K_i(e_i)$. Nun ist

$$(1) X\gamma e_i = X\xi \in E_i = K_i(e_i)$$

Sei g_i der Stabilisator von e_i . Nach (1) ist $X\gamma \in K_i g_{i,A}$. Damit ist gezeigt, daß

$$(2) G_A = \bigcup_{i=1}^h K_i \cdot g_{i,A} \cdot G_{\mathbb{Q}}$$

Da $F(e_i) \neq 0$, ist der Stabilisator g_i die spezielle orthogonale Gruppe von e_i^{\perp} , also eines (n-1)-dimensionalen nicht ausgearteten Raumes. Nach Induktionsannahme gibt es Kompakta $B_i \subset g_{i,A}$ mit $g_{i,A} = B_i g_{i,\mathbb{Q}}$. Die Bilder der B_i bei der Einbettung von $g_{i,A}$ in G_A sind natürlich kompakt in G_A . Trägt man diese in (2) ein, so ist Satz 3 bewiesen.

Wenn $V_{\mathbb{Q}}$ die null darstellt, gilt der Satz offensichtlich nicht mehr; die orthogonale Gruppe enthält dann eine Gruppe von Diagonalmatrizen $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, $\lambda \neq 0$. Für diesen Fall wollen wir einen anderen Satz beweisen, wozu wir "Höhen" erklären müssen: In V_{∞} wählen wir eine positiv definite quadratische Form <, >, welche unter der Gruppe $K_{\infty} = O(V^+)O(V^-) \cap G_{\infty}$ invariant ist, zum Beispiel $< x, x >= (x^+, x^+) - (x^-, x^-) = (x^+, x^+) + |(x^-, x^-)|$, wenn $x = x^+ + x^-$ in $V = V^+ \perp V^-$ ist. Dann setzen wir

$$||x||_{\infty} = \sqrt{\langle x, x \rangle}$$

Sodann nehmen wir ein Gitter M in $V_{\mathbb{Q}}$ (vorzugsweise gleich eines, dessen sämtliche Komplettierungen M_p Standardgitter sind) und setzen für $x \in V_{\mathbb{Q}_p}$

 $||x||_p = p^n$ wenn $p^n x$ ein primitiver Vektor in M_p ist

(also $||x||_p \le 1 \Leftrightarrow x \in M_p$). Dann sei

$$V_A^* = \{x \in V_A \mid x_p \text{ primitiv in } M_p \text{ für fast alle } p\}$$

Für $x \in V_A^*$ definieren wir die Höhe

$$||x|| = \prod_{v} ||x_v||_v$$

Lemma 3. Zu $g \in G_A$ gibt es c(g) mit

$$||gx|| \le c(g) ||x||$$
 für alle $x \in V_A^*$

Beweis: Sei $g \in G_A$ und $x \in V_A^*$. Für fast alle p ist $g_p M_p = M_p$ und x_p primitiv in M_p , also $||g_p x_p||_p = 1$, und $\prod_v ||g_v x_v||_v$ ist wohldefiniert. Zu jedem v gibt es eine Schranke $c_v = c_v(g_v)$ mit $||g_v x_v||_v \le c_v ||x_v||_v$ für alle x_v . Wenn $g_p M_p = M_p$, kann $c_p = 1$ genommen werden. Dann ist $c := \prod_v c_v$ wohldefiniert, und mit diesem c gilt die Behauptung.

Lemma 4. Zu festem r gibt es nur endlich viele mod \mathbb{Q}^* verschiedene $\xi \in V_{\mathbb{Q}}$ mit $||\xi|| \leq r$.

Beweis: Aus der Definition folgt $||\gamma x|| = |\gamma| \cdot ||x||$ für jedes Idel γ und $x \in V_A^*$. Wegen der Produktformel ist $||\gamma x|| = ||x||$ wenn $\gamma \in \mathbb{Q}^*$. Ist nun $\xi \in V_{\mathbb{Q}}$, so gibt es $\gamma \in \mathbb{Q}^*$ so, daß $\eta := \gamma \xi$ ein primitiver Vektor in M ist. Für diesen ist $||\eta||_{\infty} = ||\eta|| = ||\xi|| \le r$. In der Kugel vom Radius r in V_{∞} gibt es aber nur endlich viele Gittervektoren.

Mit Hilfe der Höhe können wir formulieren und beweisen

Satz 4. Wenn $V_{\mathbb{Q}}$ die Null darstellt, dann gibt es eine Konstante c = c(V) mit der Eigenschaft: Zu jedem $g \in G_A$ gibt es einen isotropen Vektor $\xi \neq 0$ in $V_{\mathbb{Q}}$ mit $||g\xi|| \leq c$.

Beweis: Ist n=2, so wird V aufgespannt von einem hyperbolischen Paar u,v, und für $g\in G_A$ ist $gu=\lambda u,\ gv=\frac{1}{\lambda}v$, und man kann c=max(||u||,||v||) nehmen. Sei also $n\geq 3$.

M sei das Gitter in $V_{\mathbb{Q}}$, welches oben zur Definition der Höhe gedient hat. Damit das Argument durchsichtiger wird, benutzen wir ein Kompaktum $C = C_{\infty} \times \prod_p M_p$, wobei C_{∞} die Kugel $< x, x > \le R^2$ und R so groß ist, daß $vol(C) > vol(V_A/V_{\mathbb{Q}})$. Dann ist $C' := C - C = 2C_{\infty} \times \prod_p M_p$.

Wie im Beweis von Satz 3 gibt es eine endliche Menge $\{\zeta_0, \zeta_1,, \zeta_h\} \subset \mathbb{Q}$ und Vektoren $e_0,, e_h \in V_{\mathbb{Q}}$ mit $(e_i, e_i) = \zeta_i$ und der Eigenschaft: Zu $g \in G_A$ gibt es $\gamma \in G_{\mathbb{Q}}$ und ein i so, daß $g\gamma e_i \in C'$. Nur kann jetzt eines der ζ_i , etwa $\zeta_0 = 0$ sein. Jetzt gibt es für g drei Möglichkeiten:

1. i=0. Wir nehmen $\xi=\gamma e_0$. Jeder Vektor $\neq 0$ in $V_{\mathbb{Q}}$ ist in fast allen M_p primitiv, und $g_pM_p=M_p$ für fast allen p. Daher ist $g\xi\in V_A^*$, und wegen $g\xi\in C'$ ist

$$||g\xi|| = ||g_{\infty}\xi||_{\infty} \cdot \prod_{p} ||g_{p}\xi||_{p} \le 2R$$

2. $i \neq 0$ und $(e_i^\perp)_{\mathbb{Q}}$ enthält isotrope Vektoren. Bei der Abbildung $g \mapsto ge_i$ von G_A auf die Sphäre $\Sigma_{i,A}$ besitzt das Kompaktum $C' \cap \Sigma_{i,A}$ ein partielles kompaktes Urbild K_i . Es gibt $k \in K_i$ mit $g\gamma e_i = ke_i$. Nach Induktionsannahme gibt es c_i und zu $k^{-1}g\gamma \in Stab(e_i)_A$ ein isotropes $\eta \in (e_i^\perp)_{\mathbb{Q}}$ mit $||k^{-1}g\gamma\eta|| \leq c_i$. Die Konstanten c(g) aus Lemma 1 sind auf dem Kompaktum K_i beschränkt, etwa $\leq d_i$, und mit $\xi = \gamma\eta$ ist

$$||g\xi|| \le d_i c_i$$

3. $i \neq 0$ und $(e_i^{\perp})_{\mathbb{Q}}$ ist anisotrop. Nach Satz 3 gibt es ein Kompaktum $D_i \subset g_{iA}$ mit $g_{iA} = D_i g_{i\mathbb{Q}}$. Wie unter 2. ist $k^{-1}g\gamma \in g_{iA}$, also nun etwa $k^{-1}g\gamma = d \cdot \delta$ mit $d \in D_i$

und $\delta \in g_{\mathbb{Q}}$. Nach Voraussetzung gibt es in $V_{\mathbb{Q}}$ einen istropen Vektor u_0 . Man setzt $\xi = \gamma \delta^{-1} u_0$ und hat

$$||g\xi|| = ||kdu_0|| \le const_i$$

weil u_0 fest und k und d in einem Kompaktum laufen. Damit ist Satz 4 bewiesen.