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Our goal is to design and test new methods to reconstruct causal interactions be-
tween local populations of neurons based on population signals measured at multiple
sites. This involves a number of challenges for which the usage of high performance
computing is essential. These challenges occur in both the data analysis itself, as
well as in large-scale network simulations to validate the data analysis.

1 Introduction
Inference of brain connectivity is of great importance both in basic research and for clinical
applications. To this end, we have devised a new method for inferring effective connectivity
from a complete set of covariances of neuronal activity measured at multiple sites. In other
words, we are looking for causal relations reflected by measured brain signals. Our method
exploits the covariance structure of the activity very efficiently. This makes our method robust
with regard to temporal resolution and renders it applicable to various data types occurring
in clinical practice, including electrocortigograms (ECoG) and functional magnetic resonance
imaging (fMRI).
Our inference method uses statistical data analysis and machine learning. Since in the analy-

sis of real data the ground truth is unknown, we employ biophysically informed large-scale
numerical simulations to validate the results of data analysis. For both fields of application high
performance computing is essential.

2 Data analysis
Inspired by [4], which focused on estimating effective connectivity among single neurons using
spike train covariances, we extended the method to continuous population signals recorded from
the brain.
As model we use a linear system with a vector of continuous signals Y (t) given by

Y (t) = X(t) +
∫
G(τ)Y (t− τ)dτ

= X(t) + (G ∗ Y )(t) (1)

where X(t) is the external input, and G(τ) is a matrix of kernels describing the pairwise inter-
action between nodes. Fourier transformation and rearranging equation (1) yields

Ŷ (ω) = (1− Ĝ(ω))−1X̂(ω).
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Figure 1: Small networks with 4 nodes each and different connectivity between them (top). They ex-
hibit different activity dynamics, which is also reflected in the associated covariance matrix
(bottom). In general, many different networks can lead to the same covariance matrix, and in-
ferring connectivity from covariance is not possible; the inverse problem is ill-defined. However,
assuming that the network is sparse (only a small fraction of links are actually present), the
method of L1-minimization (using gradient descent) helps to disambiguate the solution. The
second order statistics of activity is particularly sensitive to collider structures (red arrows) in
a network, and our method is able to exploit exactly these entries in the inverse covariance
matrix (“precision matrix”) to infer both the existence and the direction of connections [3]
(image source: Schiefer et al, arXiv:1708.02423 [q-bio.NC], 2017).

The covariance matrix C for Y is then given by

Ĉ(ω) = E[Ŷ (ω)Ŷ ∗(ω)] = (1− Ĝ(ω))−1D̂(ω)(1− Ĝ∗(ω))−1, (2)

where the matrix
D̂(ω) = E[X̂(ω)X̂∗(ω)],

is diagonal, provided the components of external input are pairwise uncorrelated.
We can now reconstruct Ĝ(ω) from equation (2)

C̃−1 = B∗B = B∗U∗UB (3)

with B =
√
D̂−1(1 − Ĝ) and a unitary matrix U ∈ Matn(C). We are looking for the sparsest

matrix G with this property. This means that starting with an initial matrix B0, we have to
minimize the (modified) L1-Norm of

‖UB0‖1 =
∑

i6=j

|(UB0)ij |

with respect to U . For the optimization procedure, we use a gradient descent algorithm described
in [3]. The number of times this optimization has to be executed depends on the required
frequency resolution. Additionally, the estimation of the connectivity can be improved using
bootstrapping. This introduces the additional cost that the number of boots necessary to achieve
significant results is quite high.
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The optimization via gradient descent is a procedure where no parallelization is possible.
In total, with a frequency resolution of 256 DFT points and 10 000 boots, the optimization
has to be performed 129 × 10 000 = 1 290 000 times. This task is split up by calculating the
bootstrap covariance matrices and then performing the optimization for each boot separately,
for all frequency bands. This results in single core jobs where each job takes approximately 20
minutes.

3 Simulation
For validation of the estimation of effective connectivity, we use biophysically informed numerical
simulations of very large networks. These simulations are supposed to generate the same data
types as the ones we use for the network inference. For simulation ECoG data we set up a
simulation scheme using NEST (Neural simulation tool [2]).
As shown in [1], downscaling the size of networks has limitations regarding effective connec-

tivity and covariances. This means that reducing the number of neurons in a network can either
keep the effective connectivity of the network or the covariance structure of the resulting activity
unchanged, but not both at the same time. In our project we are studying the relation of these
measures, so we have a strong interest in avoiding any downscaling as far as possible. This
means the networks we simulate in terms of size should be as biologically realistic as possible.
Since the commonly used ECoG electrode grids have 64 macro-contacts each, we also simulated

a network of 64 mesoscopic sub-networks, consisting of 1 000 LIF-neurons each. Each of the 64
sub-networks represents the neural population recorded by one ECoG electrode. Within each
sub-network the neurons are randomly connected with a connection probability of 10%. These
subnetworks are connected by excitatory neurons, which form additional long-range connections
to neurons in other populations. The extracellular fields that are induced by synaptic activity
in every individual neuron are then accumulated over each population and recorded. These 64
signals are then used for estimating the meso-scale connectivity among the 64 populations. In
our approach, the relevant aspects for the estimation of effective connectivity are the first and
second order signal statistics. Therefore, our simulation should be consistent with measured
data regarding these properties. To achieve this, we developed a new model of ongoing activity
projecting to the recorded populations from other parts of the brain.
For the simulation we use the parallelization methods provided by NEST including MPI and

multi-threading. These make the simulation of 64 000 neurons plus external input and measuring
devices feasible.

4 Conclusion
As described above the availability of high performance computing (here, the HPC cluster
NEMO with high speed interconnect) is essential for our project In both data analysis and
simulation, HPC is a key factor to achieve results in a biologically realistic setting. In data
analysis, NEMO enables us to apply bootstrap methods which would not be feasible without
HPC. In the case of numerical simulations we are able to treat bigger networks, which reduce
the unwanted scaling effects that are detrimental to our method. Even with up-to-date high-end
HPC facilities it is currently not possible to simulate networks of the same sizes as they occur
in human brains, but the new possibilities offered by NEMO represent an important step in the
right direction.
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Figure 2: Scheme of the simulated network. Each circle represents the neural population underneath
one ECoG electrode. Within each population neurons are randomly connected with 10%
probability, but excitatory neurons form additional long-range connections to neurons in other
populations according to a pre-defined connectivity scheme on a mesoscopic scale. The goal
now is to reconstruct this mesoscopic long-range connectivity from the recorded accumulated
extracellular fields (induced by synaptic activity) of all neurons in each population [5].
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