
Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

The importance and need for system monitoring
and analysis in HPC operations and research

Florina M. Ciorba

Department of Mathematics and Computer Science
University of Basel, Switzerland

In this work, system monitoring and analysis are discussed in terms of their sig-
nificance and benefits for operations and research in the field of high performance
computing (HPC). HPC systems deliver unique insights to computational scientists
from different disciplines. It is argued that research in HPC is also computational in
nature, given the massive amounts of monitoring data collected at various levels of
an HPC system. The vision of a comprehensive system model developed based on
holistic monitoring and analysis is also presented. The goal and expected outcome
of such a model is an improved understanding of the intricate interactions between
today’s software and hardware, and their diverse usage patterns. The associated
modeling, monitoring, and analysis challenges are reviewed and discussed. The envi-
sioned comprehensive system model will provide the ability to design future systems
that are better understood before use, easier to maintain and monitor, more effi-
cient, more reliable, and, therefore, more productive. The paper is concluded with a
number of recommendations towards realizing the envisioned system model.

1 Introduction
Each of the four pillars (experiments, theory, simulation, and data) of the scientific method
produce and consume large amounts of data. Breakthrough science will occur at the interface
between empirical, analytical, computational and data-based observation. Parallel computing
systems are the workhorse of the third pillar: simulation science. These systems are highly
complex ecosystems, with multiple layers, ranging from the hardware to the application layer
(Fig. 1). Monitoring solutions exist at every single layer. Access to the monitoring data varies
between the different communities, which also have different interests in the data. For instance,
computational scientists in general have access to the monitoring data from the application layer
and in certain cases also from the application environment layer. Their interests may include
the running time of their applications but also understanding the application performance by
profiling or tracing. Computer scientists may have access to monitoring data from application
environment and cluster software layers. They are typically interested in performance data from
both software and hardware components and subsystems. System administrators typically have
access to data monitored at the hardware, system software, and cluster software layers. The

7



Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

interests regard more the operational aspects of the system, including availability, fair usage,
etc. Accessing and sharing of data based on the actual community interests (as depicted by the
arrows in Fig. 1) may require bilateral agreements between the communities or public release of
data.

Figure 1: The HPC ecosystem and the monitoring interests of the different communities.

Understanding the interaction between the software running on parallel computers and the
underlying hardware is a notorious challenge, especially given the fact that the hardware models
and designs change very often. This is due to the rapid advances in computing technologies.
Studying the interaction between hardware and software in this context will require integration
of monitoring solutions from the different system layers. System monitoring relates to data
science (the fourth pillar) in the sense that monitoring applications and systems generates a
large amount of data from various sources, at various rates, and under various formats. This
brings about all the data-related challenges also faced in other domains that require a data
science approach. Thus, scientific research in high performance computing that involves very
large amounts of monitoring data becomes computational computer science. Conducting research
in computational computer science is challenging due to the fact that the “physical world” to be
modeled is changing with every new software and hardware release. Specifically, modeling system
behavior is a significant challenge for the following reasons: (1) The hardware architecture is
heterogeneous. (2) The system stack is also heterogeneous. (3) There exist multiple types of
execution environment.
This paper describes the importance and need of holistic system monitoring in view of devel-

oping a comprehensive model of the system behavior, wherein “system” denotes both hardware
and software components. It is argued that such monitoring and modeling will have positive
impacts and ramifications in HPC operations and research, not only for existing systems, but
most importantly for the design, procurement, operation, productivity, and maintenance of
future HPC systems. A review of existing monitoring and analysis solutions of the different
system layers is also presented. The envisioned system model requires a comprehensive view of
the applications and the system that captures and integrates activities from all system layers
(Fig. 1).

2 Current Monitoring and Analysis Solutions
The process of monitoring and analysis consists of three stages: data collection, data processing,
and data visualization and analysis. Monitoring and analysis is employed at various layers of

8



Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

the HPC ecosystem, as illustrated in Fig. 1. Below is a brief review of monitoring solutions for
each layer, in a top-down manner, followed by pointers to system-wide monitoring and analysis
efforts. The purpose of this review is rather illustrative and not meant to be comprehensive.

2.1 Single-Layer Monitoring and Analysis
Application Layer The monitoring and analysis solutions described herein pertain both to
the application and application environment layers (Fig. 1). The Virtual Institute for High
Productivity Supercomputing (VI-HPS) also provides a great overview and guide in selecting
application level productivity tools1.
A. Automatic profile and trace analysis: The Periscope tuning framework2 enables automatic

analysis and tuning of parallel applications. TAU3 is a set of tuning and analysis utilities that
offer an integrated parallel performance system. Score-P4 is a community-developed instru-
mentation and measurement infrastructure, targeting both performance and energy. Extra-P5:
automatic performance-modeling tool that supports the user in the identification of scalability
bugs. mpiP6 is an MPI profiling tool, while mpiPview7 is an MPI performance profile analy-
sis and viewer. Open|SpeedShop8 is an integrated parallel performance analysis environment.
IPM9 is an integrated performance monitoring profiling tool.
B. Visualization and analysis: Vampir10 is an interactive graphical trace visualization and

analysis tool supporting identification of performance hotspots. Paraver/Dimemas/Extrae11

form a suite of tools allowing the profiling, tracing and sampling of an application, supported by
graphical trace visualization and analysis. Scalasca12 a tool for large-scale parallel program per-
formance analysis supporting identification of performance bottlenecks. Allinea PR13 provides
performance reports that show the behavior of parallel HPC application runs.
C. Optimization: Rubik14 is a tool that generates topology-aware mapping of processes, op-

timized for IBM Blue Gene machines. MAQAO15 is a solution for analyzing and optimizing
binary codes on single nodes, supporting Intel64 and Xeon Phi architectures.
D. Debugging, error and anomaly detection: MUST16 is a runtime error detection tool for MPI

applications Archer17 is a low overhead data race detector for OpenMP programs. STAT18 is a
tool for identifying errors in code running at full system scale. Allinea Forge tools19 includes DDT
and MAP, and provides a single interface for debugging, profiling, editing and building code on
local and remote systems. RogueWave TotalView20 is a parallel debugging tool that allows fault
isolation, memory optimization, and dynamic visualization for high-scale HPC applications.

Cluster Layer The solutions employed at cluster level are either used for cluster management
or job scheduling and reporting.

1http://www.vi-hps.org/tools/
2http://periscope.in.tum.de
3http://www.cs.uoregon.edu/research/tau/
4http://www.score-p.org
5http://www.scalasca.org/software/extra-p
6https://computing.llnl.gov/code/mpip-llnl.html
7https://computation.llnl.gov/casc/tool_gear/

mpipview.html
8https://openspeedshop.org/
9http://ipm-hpc.sourceforge.net

10https://www.vampir.eu
11http://www.bsc.es/computer-sciences/

performance-tools
12http://www.scalasca.org
13https://www.allinea.com/products/

allinea-performance-reports
14https://github.com/LLNL/rubik
15http://www.maqao.org
16http://www.itc.rwth-aachen.de/MUST
17https://github.com/PRUNER/archer
18http://www.paradyn.org/STAT/STAT.html
19https://www.allinea.com/products/

develop-allinea-forge
20http://www.roguewave.com/products/totalview.aspx

9

http://www.vi-hps.org/tools/
http://periscope.in.tum.de
http://www.cs.uoregon.edu/research/tau/
http://www.score-p.org
http://www.scalasca.org/software/extra-p
https://computing.llnl.gov/code/mpip-llnl.html
https://computation.llnl.gov/casc/tool_gear/mpipview.html
https://computation.llnl.gov/casc/tool_gear/mpipview.html
https://openspeedshop.org/
http://ipm-hpc.sourceforge.net
https://www.vampir.eu
http://www.bsc.es/computer-sciences/performance-tools
http://www.bsc.es/computer-sciences/performance-tools
http://www.scalasca.org
https://www.allinea.com/products/allinea-performance-reports
https://www.allinea.com/products/allinea-performance-reports
https://github.com/LLNL/rubik
http://www.maqao.org
http://www.itc.rwth-aachen.de/MUST
https://github.com/PRUNER/archer
http://www.paradyn.org/STAT/STAT.html
https://www.allinea.com/products/develop-allinea-forge
https://www.allinea.com/products/develop-allinea-forge
http://www.roguewave.com/products/totalview.aspx


Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

A. Cluster management: Nagios21 represents the industry standard in IT infrastructure mon-
itoring, including critical components, log server, and network. Ganglia22 is a scalable and
distributed monitoring system used in approximately 90% of HPC shops. It represents data in
XML, uses XDR for compact and portable data transfer, and stores and visualizes data using
the RRDtool. Supermon23 is a high-speed cluster monitoring system, that emphasizes low per-
turbation and high sampling rates. Zenoss24 provides event-based IT monitoring and analytics
for cloud, virtual and physical IT environments. Cerebro25 is a collection of cluster monitoring
tools and libraries, not yet scaling to a full host level. Splunk26 is a collection of software for
searching, monitoring, and analyzing machine-generated big data, via a web-style interface and
team dashboards. RUR27 (resource utilization reporting) is an administrator tool for gathering
statistics on how system resources are being used by applications, developed by Cray for its
HPC systems. RUR runs before or after applications collecting system statistics.
B. Job scheduling and reporting: SysMon28 is a Windows-based system service that logs

system activity in XML format; it is also a batch system monitor plugin for Eclipse PTP. Other
batch scheduling systems (e.g., SLURM, UNIVA Grid Engine, PBS/Pro, LSF, Moab/Torque)
provide statistics from batch jobs by running daemons on the compute nodes during application
execution.

System Layer Current solutions for system monitoring and analysis mainly target the operat-
ing system and storage/file system behavior.
A. Operating system: Collectd29 is a system statistics collection daemon, which collects per-

formance metrics periodically and can interface with Nagios (see above) and LMT (see below).
Perf30 is a lightweight profiling command line tool for Linux 2.6+ systems (included in the kernel
tools); it abstracts CPU hardware differences. Collectl31 is a comprehensive OS-level monitoring
tool which gathers information about Linux system resources: CPU, memory, network, inodes,
processes, nfs, tcp, sockets, and others. ProcMon32 is an advanced monitoring tool for Windows
(part of Sysinternals), which shows real-time file system, Registry and process/thread activity.
B. Storage/File system: LMT (Lustre Monitoring Tool, http://wiki.lustre.org/Lustre_

Monitoring_Tool) is an open-source tool for capturing and displaying of Lustre file system
activity. It monitors Lustre file system servers, collects data using the Cerebro monitoring
system in a MySQL database. Lltop (https://github.com/jhammond/lltop is a command
line utility that monitors file system load (Lustre I/O statistics) and is integrated with job
assignment data from cluster batch schedulers. GPFS Monitor Suite (https://sourceforge.
net/projects/gpfsmonitorsuite/) uses Perl scripts and Ganglia to monitor IBM’s general
parallel file system (GPFS) multi-cluster environments, and can interface with Nagios.

Server Layer The solutions employed at the server level target the different node-level (and
not only) subsystems: CPU, memory, network, I/O, and storage, respectively.
A. Node/CPU : PAPI33 (performance API) is an interface to hardware performance counters

found in most microprocessors. Syslog34 is a Linux system logging utility, which has become
21https://www.nagios.org
22http://ganglia.info
23http://supermon.sourceforge.net
24https://www.zenoss.com/
25https://github.com/chaos/cerebro
26https://www.splunk.com/
27http://pubs.cray.com/#/00241000-FA/FA00240785
28http://ss64.com/nt/sysmon.html

29https://collectd.org
30https://perf.wiki.kernel.org/
31http://collectl.sourceforge.net
32https://technet.microsoft.com/en-us/sysinternals/

bb896645.aspx
33http://icl.cs.utk.edu/papi/
34https://linux.die.net/man/8/syslogd

10

http://wiki.lustre.org/Lustre_Monitoring_Tool
http://wiki.lustre.org/Lustre_Monitoring_Tool
https://github.com/jhammond/lltop
https://sourceforge.net/projects/gpfsmonitorsuite/
https://sourceforge.net/projects/gpfsmonitorsuite/
https://www.nagios.org
http://ganglia.info
http://supermon.sourceforge.net
https://www.zenoss.com/
https://github.com/chaos/cerebro
https://www.splunk.com/
http://pubs.cray.com/#/00241000-FA/FA00240785
http://ss64.com/nt/sysmon.html
https://collectd.org
https://perf.wiki.kernel.org/
http://collectl.sourceforge.net
https://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
https://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://icl.cs.utk.edu/papi/
https://linux.die.net/man/8/syslogd


Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

standard for message logging, applied to various facilities: kernel, user, mail, printer, network,
and others.
B. Memory: Callgrind35 is an open-source profiler using execution-driven cache simulation. It

is accompanied by KCachegrind, a visualization GUI that provides various views of performance
data (annotated call graphs and tree maps, annotated source and machine code). Memchecker36

a framework integrated within Open MPI that finds hard-to-catch memory errors in parallel
applications.
C. Network: Monitoring of fabric (e.g., InfiniBand, OmniPath) counters is performed with

operating system-level tools such as collectl (see above). Pandora FMS, OpenNMS, NetXMS,
and Zabbix are open source network management systems which also perform network perfor-
mance monitoring. They have recently been compared in a recent article published by Network
World37.
D. I/O: SIONlib38 is a scalable I/O library for parallel access to task-local files that uses shared

files for task-local data, written through collective I/O operations. Darshan (http://www.
mcs.anl.gov/research/projects/darshan/) is a characterization tool of the I/O behavior of
scalable HPC applications. IOTA39 (I/O tracing and allocation library) is a lightweight scalable
tracing tool for diagnosing poorly performing I/O operations to parallel file systems, especially
Lustre.
E. Storage: DirectMon40 is a configuration and monitoring solution for DDN storage devices.

Iostat41 is part of the sysstat family of Linux tools, which reports statistics for CPU, input and
output storage devices, partitions, and network file systems.

Remarks Most of the solutions described above are released under open-source licenses while
certain are licensed commercially (e.g., tools from Allinea, Splunk, Zenoss). The majority of
the tools are also interoperable (e.g., those included in the VI-HPS Tools Guide42). One can
observe that more and more tools are being developed and released per layer over time. Truly
needed, however, are efforts that integrate these or other tools ideally across all four layers (with
respect to Fig. 1), such that a holistic view of the behavior of the applications, the software they
employ, as well as the hardware on which they run can become feasible.

2.2 System-Wide Monitoring and Analysis
The following efforts employ, to different extents, solutions for system-wide or, in some cases,
integrated monitoring and analysis of HPC applications and systems.
Elastic Stack43 consists of Elasticsearch, which along with Logstash and Kibana, provides a

powerful platform for indexing, searching and analyzing the data stored in logs. It also includes
Beats, an open source platform for building lightweight data shippers for log files, infrastructure
metrics, network packets, and more.
Graylog44 is a powerful open source log management and analysis platform, that has many

use cases, from monitoring SSH logins and unusual activity to debugging applications. It is
based on Elasticsearch, Java, MongoDB, and Scala.
35http://kcachegrind.sourceforge.net/html/Home.html
36http://www.open-mpi.org/
37http://www.networkworld.com/

article/3142061/open-source-tools/
pandora-fms-wins-open-source-management-shootout.
html

38http://www.fz-juelich.de/SIONlib

39https://bitbucket.org/mhowison/iota
40www.ddn.com/products/storage-management-directmon/
41https://linux.die.net/man/1/iostat
42http://www.vi-hps.org/upload/material/general/

ToolsGuide.pdf
43https://www.elastic.co
44https://www.graylog.org

11

http://www.mcs.anl.gov/research/projects/darshan/
http://www.mcs.anl.gov/research/projects/darshan/
http://kcachegrind.sourceforge.net/html/Home.html
http://www.open-mpi.org/
http://www.networkworld.com/article/3142061/open-source-tools/pandora-fms-wins-open-source-management-shootout.html
http://www.networkworld.com/article/3142061/open-source-tools/pandora-fms-wins-open-source-management-shootout.html
http://www.networkworld.com/article/3142061/open-source-tools/pandora-fms-wins-open-source-management-shootout.html
http://www.networkworld.com/article/3142061/open-source-tools/pandora-fms-wins-open-source-management-shootout.html
http://www.fz-juelich.de/SIONlib
https://bitbucket.org/mhowison/iota
www.ddn.com/products/storage-management-directmon/
https://linux.die.net/man/1/iostat
http://www.vi-hps.org/upload/material/general/ToolsGuide.pdf
http://www.vi-hps.org/upload/material/general/ToolsGuide.pdf
https://www.elastic.co
https://www.graylog.org


Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

Perfsuite45 is an accessible, open source performance analysis environment for Linux. It
consists of a collection of tools, utilities, and libraries for software performance analysis that
are easy to use, comprehensible, interoperable, and simple. It serves as starting point for more
detailed analyses and for selection of other more specialized tools/techniques.
The SUPReMM46 project targeted integrating monitoring and modeling of HPC systems

usage and performance of resources of XSEDE cluster, and was jointly carried out between the
University at Buffalo and Texas Advanced Computing Center (TACC) from 2012-2015. One
outcome of this project is TACC stats.
TACC Stats47 is a package providing tools for automated system-wide resource-usage moni-

toring and analysis of HPC systems at multiple levels of resolution.
Decision HPC48 is an analytics and monitoring tool developed by X-ISS, hooks into existing

HPC schedulers (e.g., Torque, PBS Pro, LSF, CJM, and Univa Grid Engine) and can interface
with common (e.g., Ganglia) or custom cluster monitoring tools. It displays a live dashboard
for real-time monitoring in a single pane of glass view.
OVIS49 is an open source modular software system for data collection, transport, storage,

analysis, visualization, and response in HPC systems under active development at Sandia Na-
tional Laboratories and Open Grid Computing50. It provides real-time, intelligent monitoring
of the performance, health and efficiency of large scale computing systems.
“Holistic, Measurement-Driven Resilience: Combining Operational Fault and Failure Mea-

surements and Fault Injection for Quantifying Fault Detection and Impact”51 (HDMR) is a
collaboration between the University of Illinois at Urbana-Champaign; Sandia, Los Alamos, and
Lawrence Berkeley National Laboratories; and Cray Inc. The goal is to determine fault-error-
failure paths in extreme scale systems of today, to help improve those and future systems.
The NSF project “Computer System Failure Data Repository to Enable Data-Driven De-

pendability”52 (CSFDR) (2015-2018) will address the need for an open failure data repository
for large and diverse computing infrastructures that will provide enough information about the
infrastructures and the applications that run on them.

Remarks All these efforts address the challenge of system-wide monitoring and analysis in dif-
ferent manners. System-wide monitoring is not necessarily equivalent to comprehensive or holis-
tic system monitoring. The failure data repository (CSFDR) and resiliency modeling (HMDR)
projects take a comprehensive and holistic, respectively, approach to fault monitoring and mod-
eling. However, modeling faulty behavior alone may leave out significant aspects such as logi-
cal reconfigurability, heterogeneity, performance variability, utilization of resources, and others.
Therefore, all above efforts are a strong source of inspiration and motivation for considering all
aspects of applications and system behavior holistically.

3 Modeling System Behavior based on Holistic System Monitoring
The author’s vision is that system behavior can be modeled comprehensively based on insights
and information obtained by holistic system monitoring. In this context, system is understood
as the entirety of all its software (the four upper layers in Fig. 1) and hardware (the bottom layer
45http://perfsuite.ncsa.illinois.edu
46https://github.com/ubccr/supremm
47https://github.com/TACC/tacc_stats
48https://www.hpcwire.com/2014/09/18/

modernizing-hpc-cluster-monitoring/
49https://ovis.ca.sandia.gov/mediawiki/index.php/

Main_Page
50https://www.opengridcomputing.com
51http://portal.nersc.gov/project/m888/resilience/
52https://www.nsf.gov/awardsearch/showAward?AWD_ID=

1513197

12

http://perfsuite.ncsa.illinois.edu
https://github.com/ubccr/supremm
https://github.com/TACC/tacc_stats
https://www.hpcwire.com/2014/09/18/modernizing-hpc-cluster-monitoring/
https://www.hpcwire.com/2014/09/18/modernizing-hpc-cluster-monitoring/
https://ovis.ca.sandia.gov/mediawiki/index.php/Main_Page
https://ovis.ca.sandia.gov/mediawiki/index.php/Main_Page
https://www.opengridcomputing.com
http://portal.nersc.gov/project/m888/resilience/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1513197
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1513197


Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

in Fig. 1) components. Studying system behavior based on single-layer monitoring data limits
the insight to the extent corresponding to that particular layer. A model of system behavior
captures the intricate relation between the behavior of the components in each layer and across
layers (Fig. 2). This intricate relation can only be observed and understood, by a “diagnosis
team”, through holistic system monitoring (Fig. 3). Such monitoring will offer a holistic view
of the system and facilitate the comprehensive understanding of the system behavior.

Figure 2: Vision of a system model. Figure 3: Holistic system monitoring.

The envisioned system model will allow the systematic investigation of the interaction between
hardware, software and operating conditions in high performance computers. Moreover, it will
provide the ability to study the behavior and efficiency of high performance computers on
application, cost, performance, and operational levels.

3.1 Challenges
Modeling Capturing the complex behavior of computer systems in a model is highly challeng-
ing because the “physical world” to be modeled is always changing, with every new software
and hardware release. Since the interaction between newly released software and/or hardware
components cannot be foreseen a priori, this interaction needs to be studied by observation in
situ. In this context, the integration of monitoring solutions from the different system layers is
the only path forward. Verification and validation of computer system models is a challenging
and rewarding task. The same holds for the verification and validation of the envisioned system
model, and will require experiments, simulation, and analytical work.

Monitoring Applications and systems monitoring generates large amounts of data from various
sources (i.e., the system layers of Fig. 1), at various rates, and under various formats.
The data generated by different layers is “owned” by the different communities. For instance,

application performance data is “owned” by the computational scientists, while system perfor-
mance data is “owned” by the system administrators. Computer scientists may “own” data from
the application environment layer. However, accessing data from higher or lower layers is not a
trivial pursuit. In most cases, such data can be accessed either based on bilateral agreements
between the computer scientists and computational scientists/system administrators, or if the
data is publicly available.
Holistic monitoring and analysis requires a unified real-time view of all cluster(s) activities,

presented in a comprehensive way. This implies that monitoring data needs to be gathered

13



Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

from application, cluster, system, and server levels, and integrated accordingly. In addition
to the data ownership challenge mentioned earlier, data processing challenges include filtering,
de-noising, curating, and de-identifying all the data, in view of extracting system behavior.
In terms of infrastructure, larger computing systems require correspondingly larger monitoring

infrastructure(s). Consequently, the following questions arise naturally: (1) How can monitoring
infrastructures be budgeted and funded? (2) How and where is the monitoring infrastructure
hosted? (3) How does the quality of the monitoring hardware influence the quality of the
monitoring information? (3) Does the monitoring infrastructure need any form of monitoring?
(4) How can the monitoring data be collected on shared resources (e.g., network, storage, etc.)
without requiring additional investments? (5) Can comprehensive monitoring be realized in a
light-weight manner, to ensure minimal perturbation in system behavior?

Analysis The goal of monitoring applications and systems is to gain insight into their be-
havior by analyzing the empirically collected data, ultimately resulting in an analytical behav-
ioral model. The data analysis process faces the following challenges: (1) De-identification and
anonymization of sensitive data (e.g., user identifiers and activities, malfunctions, and security
vulnerabilities). (2) Extracting value from monitoring data, such as job and project level statis-
tics. This challenge is closely coupled with the choice of relevant metrics, which can be different
for across systems. (3) Support of various types of analyses (e.g., qualitative, quantitative).
(4) Correlation of data sources, in the form of e.g., integrated databases, multiple databases due
to multiple data types. (5) Storing and near-real time indexing of monitoring metrics and logs
storing. (6) Concerns about bandwidth consumption on shared resources and denial of service
attacks.

Other Challenges There are several other challenges on the path to modeling system behavior
through holistic monitoring and analysis. (1) Finding the best monitoring and analysis solution
for a given HPC system, given that not all comprehensive monitoring solutions will work in
practice for all HPC systems. (2) Diagnosing system behavior (including performance) without
the right data available is difficult. (3) Data collection and processing noise needs to be minimum
(e.g., system logs are quite “noisy” as they collect most of the activities).

3.2 Importance and Value
Importance Comprehensive system monitoring is important as it provides the basis for main-
taining good management and facilitating improvements of HPC systems operations. Under-
standing the current usage and behavior of HPC systems is the prerequisite for designing and
purchasing future systems.

Value and Benefits Comprehensive system monitoring can be analogized to personalized sys-
tem health and has a high value for the HPC stakeholders. More productive HPC operations
and research at decreased costs is for the benefit of all scientists, system owners, administrators,
and sponsors.

3.3 Expected Outcome and Impact
Outcome The expected outcome of the envisioned system mode based on comprehensive mon-
itoring and analysis is the ability to (1) Give a personalized system diagnosis. (2) Identify
application and system performance variation. (3) Detect contention for shared resources and

14



Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

assess impacts. (4) Discover misbehaving users and system components. (5) Reduce operational
cost. (6) Improve system reliability. Ideally, these analyses should be automated. The system
model will offer an improved understanding of the intricate interactions between today’s software
and hardware, and their diverse usage patterns.

Impact The impact of holistic system monitoring and analysis includes: a broader application
and project performance assessment, historical trends of applications and systems, estimates of
job and operational costs, as well as a positive impact on more targeted future HPC system
procurements.
The impact of a comprehensive system model is providing the ability to design future sys-

tems that are: (1) Better understood before they are deployed and released for production use.
(2) Easier to maintain and monitor, right from the start, decreasing the operational and main-
tenance costs. (3) Larger, more efficient (in terms of performance and energy), more reliable,
and, therefore, more productive.

4 Summary and Conclusions
Summary System monitoring and analysis are important topics of high relevance to a wide
range of stakeholders, ranging from system administrators to sponsors, and including computer
and computational scientists, that share different interests. The importance of these topics is
also supported by the increasing number of workshops, bird-of-a-feather session, panels and dis-
cussion events organized at different venues, as well as by the large ongoing and several new
funding grants. Remarkable monitoring and analysis efforts exist for different system layers, as
well as several system-wide efforts. In this paper, a vision for a system model describing the be-
havior and interaction between the software and hardware components is presented. The model
is based on insights and information obtained by holistic system monitoring. Such monitoring
offers a holistic view of the system to a “diagnosis team” which analyzes the information and
captures the system behavior in a comprehensive model. The envisioned system model will allow
systematic investigation of the interaction between hardware, software and operating conditions
in high performance computers. Moreover, it will provide the ability to study the behavior and
efficiency of high performance computers on application, cost, performance, and operational
levels. A number of challenges have been identified regarding holistic system monitoring as well
as comprehensive system modeling. The importance, value, expected outcome, and impact of
the envisioned model have also been outlined.

Recommendations To conclude the paper, a set of recommendations for going forward are
enumerated below. (1) Transform all challenges described herein as opportunities to gain better
systems insights that will lead to better systems designs and happier stakeholders. (2) Include
the design of the monitoring infrastructure and associated costs as part of the system design,
procurement, and maintenance process. Monitoring is often excluded from this process, and
seldom designated for performance. (3) Monitor both software and hardware. (4) Decide what
aspects are important to record and analyze. (5) Perform a holistic, versus a disjoint, analysis
of the monitoring data originating both in software and hardware. (6) Understand the behavior
of current (smallest-to-largest) systems before building and using the next (largest) system.

15



Proceedings of the 3rd bwHPC-Symposium, Heidelberg 2016

Acknowledgements
The author acknowledges Prof. Wolfgang E. Nagel, Director of the Center for Information
Services and High Performance Computing at TU Dresden, for his support in establishing a
system monitoring infrastructure on Taurus53. Thanks also go to Dr. Sadaf Alam, Associate
Director at the Swiss National Supercomputing Centre, for establishing a system monitoring
infrastructure to collect monitoring data on CSCS machines54. Acknowledgements also go to
Dr. Ann Gentile and Dr. Jim Brandt for building a community site for monitoring large-scale
HPC systems collaborations55 and exchange of ideas. The author further acknowledges the HPC
Team, Rechenzentrum, Universität Freiburg, lead by Prof. Gerhard Schneider for welcoming
the idea of monitoring the bwForCluster NEMO56 in view of collecting failure information and
optimizing application performance.

53https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/
Compendium/SystemTaurus

54http://www.cscs.ch/computers/index.html

55https://sites.google.com/site/
monitoringlargescalehpcsystems/

56https://www.hpc.uni-freiburg.de/nemo

16

https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
http://www.cscs.ch/computers/index.html
https://sites.google.com/site/monitoringlargescalehpcsystems/
https://sites.google.com/site/monitoringlargescalehpcsystems/
https://www.hpc.uni-freiburg.de/nemo



