
Preserving Containers

Klaus Rechert1, Thomas Liebetraut2, Stefan Kombrink3, Dennis Wehrle4, Susanne Mocken5,
Maximilian Rohland6

1,2,4,5,6 University of Freiburg
3 Ulm University

Abstract. Container technology has been quickly adopted as a tool to encapsulate and share complex software
setups, e.g. in the domain of computational science. With growing significance of this class of complex digital
objects their longevity is also of growing importance. This paper provides a detailed analysis of a container’s
long-term preservation risks. Based on this analysis, we propose an emulation-based preservation strategy to
maintain access to software-based research methods by converting them into a generic archival representation
for containers and providing a generic runtime environment.

Keywords. containers, long-term preservation, emulation

Introduction

Modern science is almost inconceivable without computer technology and sophisticated software,
which is leading to novel research methodology. In particular, software is able to encapsulate a
significant part of research, and thus, can be a crucial element of a research project’s outcome by
accompanying published articles and published data sets.

Computational science communities have already recognized the need for reproducible com-
pute-based research results to improve scientific practice and to create sustainable results.1 While
publication and citation of research data has made progress recently (Callaghan 2014, Altman et
al. 2015), management of software-based research methods remains an open challenge. “Software
is a critical part of modern research and yet there is little support across the scholarly ecosystem
for its acknowledgement and citation.” (Katz, Niemeyer and Smith 2016). Concepts and practice
of software citation are currently discussed 2 3, but software also needs to be available, i.e. retriev-
able from a dedicated software-archive. 4 5 Currently, several projects are working on software
preservation concepts and services.

However, if software reproducibility is defined as “the ability for someone to replicate a
computational experiment that was done by someone else, using the same software and data, and

1 Supercomputing 2017 Reproducibility Initiative, http://sc17.supercomputing.org/2017/02/07/submitting-a-
 technical-paper-to-sc17-participate-in-the-sc17-reproducibility-initiative/(online, version of Feb 22, 2017)
2 National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-17-015.html
3 https://danielskatzblog.wordpress.com/2017/02/22/creation-publication-and-citation-issues-in-software-
 citation-versus-paper-and-data-citation/
4 Software Preservation Network http://www.softwarepreservationnetwork.org
5 UNESCO PERSIST Initiative, https://www.unesco.nl/digital-sustainability

http://sc17.supercomputing.org/2017/02/07/submitting-a-technical-paper-to-sc17-participate-in-the-sc17-reproducibility-initiative/
http://sc17.supercomputing.org/2017/02/07/submitting-a-technical-paper-to-sc17-participate-in-the-sc17-reproducibility-initiative/
https://grants.nih.gov/grants/guide/notice-files/NOT-OD-17-015.html
https://danielskatzblog.wordpress.com/2017/02/22/creation-publication-and-citation-issues-in-software-citation-versus-paper-and-data-citation/
https://danielskatzblog.wordpress.com/2017/02/22/creation-publication-and-citation-issues-in-software-citation-versus-paper-and-data-citation/
http://www.softwarepreservationnetwork.org/
https://www.unesco.nl/digital-sustainability

144 — Klaus Rechert et al.

then to be able to change part of it (the software and/or the data) to better understand the experi-
ment and its bounds[.]”6 then just availability of software is usually not sufficient. A software-
based research process may contain multiple individual software components. And even with de-
tailed documentation - if available at all - manually rebuilding a complex software setup is a la-
borsome and error-prone process, in particular because (implicit) operational knowledge is lost
over time. Additionally, all of the preserved software’s dependencies also need to remain availa-
ble, e.g. operating system, libraries, build environment and a suitable hardware platform are nec-
essary to run the whole software setup. Hence, reproducible computational science requires a
portable, self-contained software setup and additionally, a defined runtime environment.

Driven by the demand for reproducible computational science, virtualization and container
technologies have been adopted quickly by researchers (Meng et al. 2015, Boettinger 2015). Con-
tainers and virtual machines (VMs) are able to encapsulate a software environment, for instance, a
complex software tool-chain including application-specific settings, into a single portable entity.
They allow researchers to develop, prepare and test a complex software setup locally and to de-
ploy this setup without additional effort in Cloud or HPC facilities. Hence, the configured envi-
ronment can be shared and (re-)used independently of its original creation environment. Com-
pared to VMs, low computational overhead is one of the main reasons for the rising popularity of
containers.

Hence, containers already offer a set of features convenient for the preservation of (complex)
software setups, e.g. portability. However, popular container implementations have been criticized
for their poor backward compatibility.7 To make scientific methods accessible, usable and citable
in the long-term, the longevity of containers themselves needs to be ensured. This paper provides
a detailed analysis on the archivability constraints of containers. Based on this analysis, we pro-
pose a preservation strategy to maintain access to software-based research methods by converting
them into a generic archival representation for containers and providing a generic runtime envi-
ronment.

Containers - A New Class of Digital Objects with Preservation Risks?

Container technology (also called operating system virtualization) is promoted as a lightweight
alternative to virtual machines, requiring less resources while maintaining portability. While vir-
tual machines provide a virtual “partitioning” of physical resources, containers leverage the ab-
straction of the underlying operating system to provide exclusive environments for individual
software setups. Thus, container technology virtualizes operating system features like starting and
running applications, filesystem access or network connectivity, i.e. virtualizing their correspond-
ing programming interfaces (operating system APIs).

For Linux-based container implementations, the virtualization of programming interfaces is
built on a specific feature set of the Linux kernel that provide isolated environments - namespac-
es (Biederman 2006) and (process) control groups (cgroups) (Menage 2007). Namespaces allow
users to create multiple isolated views on the operating system's interfaces. Anything running
inside a namespace is separated from other namespaces, e.g. other containers or the underlying

6 https://danielskatzblog.wordpress.com/2017/02/07/is-software-reproducibility-possible-and-practical/
7 https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/

https://danielskatzblog.wordpress.com/2017/02/07/is-software-reproducibility-possible-and-practical/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/

Preserving Containers— 145

host system. cgroups are able to control and limit access to system resources shared with the host
and among other containers.

Dependency Analysis

Due to the strict isolation, containers need to be self-contained, i.e. all software dependencies (li-
braries, applications etc.) have to be included within the container. Therefore, the main compo-
nent of a container is a self-contained filesystem with installed and configured software compo-
nents. The only remaining external or unresolved software dependency is the underlying operating
system, i.e. the operating system’s application binary interface (ABI).

The second container component is its runtime-configuration defining, for instance, file-
system mappings, e.g. shared folders between container and its host system, and the definition of
an entry-point within the container (i.e. a script or program).

A container's technical runtime is composed of two components: a hardware component (the
computer) and a software component. In general, the software component represents typically a
basic Linux installation with an installed and configured (vendor specific) container runtime.

Furthermore, the isolation of a container simplifies the determination of (hardware) depend-
encies. For instance, applications running within a container usually have only a very abstract
view on available hardware of the system, i.e. having only access to individual files instead of a
raw hard disk. Direct hardware access has to be explicitly allowed for by mapping entries of the
/dev-subsystem into a container’s namespace. Fig. 1 illustrates the full container software stack.

Figure 1. Container components and its technical runtime.

Unfortunately, in addition to these explicit dependencies, there are two further classes of (implic-
it) dependencies to be investigated. The first class is defined by specific dependencies of the com-

146 — Klaus Rechert et al.

piled software binary. This includes dependencies on specific kernel features, because the soft-
ware calls certain functions which may only be present from a certain kernel release. Similarly,
software binaries depend on a CPU instruction set and highly optimized scientific software may
require a very specific CPU version. In a long-term perspective, however, these risks seem man-
ageable, as long as newer kernel versions and newer CPU generations remain available as an emu-
lation environment. A second class of (implicit) dependencies are the containers' expectations on
an external (technical) environment, e.g. the availability of network services such as licensing
servers or data to be available at a certain remote server. This kind of (implicit) external depend-
encies pose not only the highest preservation risk for an individual container, but require specific
effort and infrastructure to be identified and are expensive to monitor. However, every explicit or
implicit dependency not only reduces the chances of successful long-term preservation but also
limit the portability of a container. Hence, it should be also in the research communities’ best
interest to maintain external dependencies.

Preservation Risks

The aforementioned properties are not only useful to share software-based research methods but
also provide a solid foundation for long-term preservation. Portability, defined/limited external
dependencies and a common runtime environment provide the basis for developing a preservation
strategy. Furthermore, preservation planning of containers and their technical runtime can be de-
coupled: while preservation planning of individual containers focuses on determining and moni-
toring external dependencies (license servers, data dependencies, etc.), preservation planning of
the technical runtime focuses on keeping the Linux container runtime usable by replacing outdat-
ed hardware with virtual hardware.

Even though containers build on the same technical foundations, currently popular container
implementations such as Docker8, Singularity9 or Shifter10 use different container representations
and configuration formats. These representations require a specific technical runtime to be used.
But ideally, only a small number of software runtimes are necessary to run a large number of con-
tainers, hence a common container representation and especially configurations reduces the
preservation risk to the availability of a common software runtime. If we assume that the operat-
ing system interface rarely changes in incompatible ways, only a few variations of such runtimes
are necessary.

With regards to long-term archival, we can assume that a software runtime instance is fixed
and achievable. Hence, the long-term preservation risk of containers can be reduced to the availa-
bility of hardware required to host the software runtime, i.e. providing necessary hardware sup-
ported by the Linux kernel version used as software runtime. When compatible physical hardware
becomes unavailable, virtual hardware can be used by means of emulation. In this case, specific
properties of containers come in handy again. Typically, software running within containers has
no access at all or only a very limited one to the underlying hardware (see discussion above). Fur-
thermore, Linux operating systems support a wide range of hardware. Both properties ease the

8 https://www.docker.com/
9 http://singularity.lbl.gov/
10 http://www.nersc.gov/research-and-development/user-defined-images/

https://www.docker.com/
http://singularity.lbl.gov/
http://www.nersc.gov/research-and-development/user-defined-images/

Preserving Containers— 147

process of replacing physical hardware by emulators. A generic emulation-based preservation
strategy is described by Rechert, Falcao and Emson 2016.

Implementation and Preliminary Results

In order to be able to reduce the containers’ preservation risks to a generic emulation strategy,
container and their runtime require a common archive format, such that for an archive’s perspec-
tive all container “objects” share the same technical properties, i.e. technical dependencies. For
this it is necessary to

1. define a common archive representation of container, as well as provide tool
support to ingest and convert container “flavours” into this common format;

2. develop a common runtime for the common container archive format and keeping this
runtime long-term available and usable.

Our development builds on the existing Emulation as a Service (EaaS) framework (Liebetraut et
al. 2014, Rechert et al. 2012), which provides abstract emulation-based services, the foundation
for an emulation-based preservation strategy, and is able to allocate and utilize compute resources
in public or private Cloud services. Within the EaaS framework we distinguish between a render-
ing environment and a digital object to be rendered. A rendering environment is typically repre-
sented by a hardware emulator and a software environment (operating system and installed appli-
cations) and is able to render a certain class of digital objects. Digital objects are stored and main-
tained independently and are assigned either manually or in an automated way to a suitable emu-
lation environment (Rechert et al. 2015). To make use of this model, in a first step, a suitable
EaaS rendering environment for container has to be defined and implemented.

Integrating a Container Runtime

The Open Container Initiative (OCI)11 is a governance body formed to create an industry standard
for container technology. As part of their work a runtime specification (runtime-spec12), an image
specification (image-spec13) and a reference runtime implementation (runC14) have been released.

For preservation purposes, we focus on the runtime-spec and the reference implementation
runC as a generic container runtime. We have implemented an EaaS rendering environment for
containers based on runC.

In a second step we have implemented an object ingest process for Docker and Singularity
containers. The result of this process is a representation of the the container’s file system and a
runtime configuration. In OCI terms this is called filesystem bundle15. Of course, through convert-
ing a specific container format into a generic one, information is typically lost, for instance the
container creation history represented by Docker’s image layers. However, the resulting flat con-

11 Open Container Initiative (OCI), http://www.opencontainers.org
12 https://github.com/opencontainers/runtime-spec
13 https://github.com/opencontainers/image-spec
14 https://github.com/opencontainers/runc
15 https://github.com/opencontainers/runtime-spec/blob/master/bundle.md

http://www.opencontainers.org/
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runc
https://github.com/opencontainers/runtime-spec/blob/master/bundle.md

148 — Klaus Rechert et al.

tainer state is identical with the state of a specific container at the moment of execution, i.e. the
container’s filesystem is fully assembled, unpacked and usable. Extracting and archiving addi-
tional meta-data, e.g. the original Dockerfile, which documents the creation process, has to be
addressed separately.

A basic runtime configuration (default.json) has been pre-configured and will be en-
riched by the conversion process. Furthermore, defaults can be altered to satisfy the needs of dif-
ferent host environments. For instance, specific namespaces can be set up or specific devices can
be mounted.

Example Docker

The conversion process for Docker uses the docker export command to extract the contain-
er's file system. The conversion process further uses docker inspect to determine the contain-
er’s entry point and environment variables, specified during the creation of the container. For
instance, the official MariaDB image from the Docker Hub provides a docker-

entrypoint.sh as entry point and adds mysqld as command that can be altered during the
creation of a container, resulting in the final command line “docker-entrypoint.sh
mysqld”. If no entry point is defined, the default entry point is set to /bin/sh.
The docker export command only exports the root file system of a container, mounted vol-
umes are not included in the generated archive. Therefore, it is necessary to archive volumes sepa-
rately. Changes that are made during the runtime of the filesystem bundle are stored in the root file
system by default. If a volume does contain data needed for the execution of the bundle, e.g. con-
figuration or research data, it has to be mounted manually in the config.json. Currently, the
conversion process is not able to recreate the network environment of converted containers. The
basic configuration does not utilize network namespaces, such that contained applications share
the network configuration with the host machine. If it is desired to isolate the network, appropriate
namespaces can be set up. This shortcoming might be an issue especially if the container to be
archived is part of a multi-container environment where some containers are linked with others,
e.g. an application with a database backend. These links are not part of the Open Container Speci-
fication and are set up by the Docker Daemon. To recreate the functionality of such containers it
is necessary to rebuild the needed network environment and provide the runC bundle with a suita-
ble /etc/hosts file. Alternatively, the application configuration has to be changed, which would
imply a content-related analysis of the container.

Example Singularity

Similar to the Docker conversion process, the configuration is generated based on the same de-
fault.json, which is altered to satisfy the needs of different host environments. The command for
the runC configuration is Singularity's /.run.sh script, which not only contains the command
to be executed but also sets the environment variables defined by the author. If the script is not
present, a shell (/bin/sh) is used as command.
Because of Singularity's focus on portability images created with it already contain all infor-
mation needed for a successful execution. As described above, the run script sets up the environ-

Preserving Containers— 149

ment of the contained application. Setups consisting of multiple, linked containers are not intend-
ed, since Singularity does not utilize network namespaces. Because of this, a correctly authored
Singularity image should pose no problem. Successful migration from an bare-metal HPC setup
into a cloud-computing environment has been shown using a singularity container of GROMACS.
The container was originally designed for the JUSTUS HPC Compute Cluster16.

Access

A container prepared in the aforementioned way can then be accessed using the EaaS framework.
Containers map directly to rendering environments in the EaaS terminology and can be started
just like any other environment using the provided EaaS REST API by posting a JSON request
similar to the following:

HTTP POST "http://emulation.solutions/api/components"
{

 "containerId": "gromacs"

}

Because the EaaS framework’s core component is an abstract rendering environment, containers
fall into the same category. The selected environment in this case is the GROMACS container
which automatically starts its computation when it is invoked and prints results to the standard
console output. The framework will return a session ID, which enables allows the user to control
the session and send further related requests.

In order to provide different types of access, each component in the EaaS framework has a set
of so-called control URLs. Once a session is initiated and a session ID has been retrieved, a con-
trol URL can be requested for this session. Depending on the session type the user is either able to
interact with the running instance (HTML5) and/or is able to retrieve the container’s output.

Since containers usually provide no interactive user interface, we have implemented a head-
less access method, which invokes the container’s entrypoint and retrieves output from standard-
and error-out output (stdout and stderr). Both outputs are available as zipped text files. Conse-
quently, in order to retrieve the container’s result, the component’s control URL. This URL can be
downloaded e.g. using a regular web browser at any time. Data transfer does not start until the
container’s computation is finished. Once downloaded, the ZIP archive contains the mentioned
output text files. This mechanism can later be extended to also put a certain directory into the ar-
chive where the contained application is known to store its results. A network-based live-
interaction mode is currently work in progress. Furthermore, research data needs to be integrated,
ideally directly via DOI references.

The presented REST API can be used completely automated, which can also serve as a veri-
fication tool to assert that a container ingested into the EaaS system produces the same results as
the original container.

16 JUSTUS Compute Cluster, https://www.uni-ulm.de/einrichtungen/kiz/service-katalog/high-performance-
 computing/justus/

https://www.uni-ulm.de/einrichtungen/kiz/service-katalog/high-performance-computing/justus/
https://www.uni-ulm.de/einrichtungen/kiz/service-katalog/high-performance-computing/justus/

150 — Klaus Rechert et al.

Discussion & Outlook

Containers are and will be interesting research topic in the domain of digital preservation and in
particular, reproducible science, not only because of their widespread use but also because of their
technical characteristics. This initial study suggests, that if the long-term preservation of contain-
ers focuses on their technical runtime, e.g. by structured archival of the software runtime, the
preservation risks can be reduced to a generic emulation strategy, which seem to be manageable in
a (cost) efficient way (compared to the number of objects to be preserved). However, preserving
containers is only a complementary strategy to software archiving and not a substitute. Containers
are able to capture a complex software-based research method with built-in quality control (com-
pleteness), but for individual re-use of software components an independent software archive
strategy is necessary.

While this work provides the necessary conceptual and technical groundwork for preserving
containers, a main success factor lies still within the scientific community. Research communities
need to agree on usage and access pattern to support interoperability of their research methods.
Common, documented access to external services, creates awareness of external preservation
risks. This should also include maintaining external dependencies.

References

Altman, Micah, Christine Borgman, Mercè Crosas, and Maryann Matone. 2015 "An introduction
to the joint principles for data citation." Bulletin of the American Society for Information Sci-
ence and Technology 41 (3): 43-45.

Callaghan, Sarah. 2014. "Joint declaration of data citation principles." Data Citation Synthesis
Group: FORCE11.

Smith, Arfon M., Daniel S. Katz, and Kyle E. Niemeyer. 2016. "Software citation prin-
ciples." PeerJ Computer Science 2: e86.

Katz, Daniel S., Kyle Niemeyer, and Arfon M. Smith. 2016. "Strategies for biomedical software
management, sharing, and citation." PeerJ Preprints 4: e2640v1.

Meng, Haiyan, Rupa Kommineni, Quan Pham, Robert Gardner, Tanu Malik, and Douglas Thain.
2015. "An invariant framework for conducting reproducible computational science." Journal
of Computational Science 9: 137-142.

Boettiger, Carl. 2015. "An introduction to Docker for reproducible research." ACM SIGOPS Op-
erating Systems Review 49 (1): 71-79.

Biederman, Eric W., and Linux Networx. 2006. "Multiple instances of the global linux namespac-
es." In Proceedings of the Linux Symposium, vol. 1: 101-112.

Preserving Containers— 151

Menage, Paul B. 2007. "Adding generic process containers to the linux kernel." In Proceedings of
the Linux Symposium, vol. 2: 45-57.

Goecks, Jeremy, Anton Nekrutenko, and James Taylor. 2010. "Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research in the life
sciences." Genome biology 11 (8): R86.

Rechert, Klaus, Patricia Falcao, and Tom Emson. 2016. “Towards a Risk Model for Emulation-
based Preservation Strategies: A Case Study from the Software-based Art Domain.” In Digi-
tal Preservation (iPRES) 2016 13th International Conference on: 139 - 148.

Liebetraut, Thomas, Klaus Rechert, Isgandar Valizada, Konrad Meier, and Dirk Von Suchodoletz.
2014. "Emulation-as-a-Service-The Past in the Cloud." In Cloud Computing (CLOUD), 2014
IEEE 7th International Conference on: 906-913. IEEE.

Rechert, Klaus, Isgandar Valizada, Dirk von Suchodoletz, and Johann Latocha. 2012. "bwFLA –
A functional approach to digital preservation." PIK-Praxis der Informationsverarbeitung und
Kommunikation 35 (4): 259.

Rechert, Klaus, Thomas Liebetraut, Oleg Stobbe, Isgandar Valizada, and Tobias Steinke. 2015.
"Characterization of CD-ROMs for Emulation-based Access." Digital Preservation (iPRES)
2015 12th International Conference on (2015): 144.

