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Dune, the Distributed and Unified Numerics Environment1, has been under continuous develop-
ment for more than 13 years. Several European institutions participate in this development, and
over time, a substantial user community has evolved. In order to establish and foster personal
contacts within the community as well as between users and developers, a first DuneUser Meet-
ing was held in Stuttgart in 2010, followed by a second one that took place in 2013 in Aachen. In
2015, the third Dune User Meeting was held in Heidelberg from 28th to 29th of September. More
than 30 users and developers from five European countries attended, presented Dune-related
work and engaged in lively discussions. Ten presentations resulted in contributions to these
proceedings.

M. Alkämper and A. Langer demonstrate how the dune-acfemmodule simplifies the use of dune-
fem, using for a case study the minimization of total variation functions.

A. Dedner, S. Girke, R. Klöfkorn and T. Malkmus presentdune-Fem-DG, a module that implements
the Discontinuous Galerkin method for solving a wide range of nonlinear partial differential
equations.

A. Dedner and A. Radcliffe introduce a computational toolbox based on Dune and the software
package Bem++2 for the solution of coupled finite and boundary element systems on multi-core
computers.

C. Engwer, C. Gräser, S. Müthing and O. Sander introduce the module dune-Functions providing
new interfaces for discrete and non-discrete functions, using type erasure for efficient and readable
code.

F. Gruber, A. Klewinghaus and O. Mula introduce dune-DPG, a library for solving partial dif-
ferential equations with discontinuous Petrov–Galerkin finite elements, a modern approach for
formulating inf–sup stable discrete variational formulations.

B. Kane presents higher order discontinuous Galerkin discretizations of a two-phase flow model
describing subsurface flow in strongly heterogeneous porous media, considering a fully implicit,
locally conservative approach on adaptively generated meshes.

1dune-project.org
2www.bempp.org



2

D. Kempf and T. Koch describe a collection of tools for system testing of scientific software.

L. Lubkoll presents a highly efficient library for the automatic differentiation of energy functionals
from hyperelasticity.

R. Milk, F.T. Schindler and T. Leibner introduce the dune-Xt library that complements the core
Dunemodules by several concepts and utilities that make generic programming using Dune even
more powerful.

O. Sander, T. Koch, N. Schröder and B. Flemisch introducedune-FoamGrid, a new implementation
of the Dune grid interface for one- and two-dimensional grids in a physical space of arbitrary
dimension, allowing for curved domains and network grids.

Acknowledgment We would like to thank all authors and reviewers for writing and evaluating
the excellent contributions to this special issue. We would also like to express our gratitude to
Guido Kanschat, editor of the Archive of Numerical Software, for his guidance and encourage-
ment.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



Archive of Numerical Software
vol. 5, no. 1, 2017, pages 3–19

DOI: 10.11588/ans.2017.1.27475

Using DUNE-ACFEM for Non-smooth Minimization of
Bounded Variation Functions

Martin Alkämper1 and Andreas Langer1

1Institute for Applied Analysis and Numerical Simulation, University of Stuttgart

Received: January 29th, 2016; final revision: October 6th, 2016; published: March 6th, 2017.

Abstract: The utility of Dune-ACFem is demonstrated to work well for solving a non-smooth
minimization problem over bounded variation functions by implementing a primal-dual algo-
rithm. The implementation is based on the simplification provided by Dune-ACFem. Moreover,
the convergence of the discrete minimizer to the continuous one is shown theoretically.

1 Introduction

The Dune-framework [7] and in particular the discretization module Dune-Fem [11] provides the
means to handle discrete functions, operators and solvers on different grids. Still, implementing
complicated partial differential equations (PDEs) and their solvers is cumbersome and tedious.
The Dune-module Dune-ACFem aims to simplify the usage of Dune-Fem by defining expression
templates for discrete functions and PDE models. This allows to linearly combine discrete
functions and PDE models. Additionally it supports parallel and adaptive finite-element schemes
on continuous discrete functions for the predefined and combined models [14]. The flexibility of
Dune (and Dune-Fem, Dune-ACFem) allows e.g. to exchange discrete spaces by a single line of
code or to change the gridtype and linear solvers.

We will demonstrate the ease of implementation with Dune-ACFem by minimizing a non-smooth
functional consisting of a combined L1/L2-data fidelity term and a total variation term. Such an
optimization problem has been shown to effectively remove Gaussian and salt-and-pepper noise,
see [16, 19]. In order to compute an approximate solution we use the primal-dual algorithm
proposed in [10], which requires a saddle point formulation of the problem. For the numerical
implementation we discretize using finite-element spaces defined over locally refined conforming
grids. Motivated by the works [3, 4, 5, 17], where the considered functional is composed solely of
an L2-data term and a total variation term, we refine the grid adaptively using an a priori criterion.
Similar as in [3] we show for the considered minimization problem, that a minimizer over a finite
element space converges to a minimizer in the space of functions of bounded variation as the
mesh-size goes to 0.

In contrast to previous works [3, 4, 5, 17], we consider an additional non-smooth L1-data term
in the objective, which has to be treated carefully. Moreover, due to the use of Dune-ALUGrid
[1] and the capabilities of Dune-ACFem the resulting algorithm is intrinsically parallelized by
domain decomposition.



4 M. Alkämper and A. Langer

The rest of the paper is structured as follows. In Section 2 we formulate the continuous and the
discrete problem with the respective discrete spaces. In particular for a certain discretization we
prove that the discrete problem converges to the continuous one as the mesh-size goes to zero.
In Section 3 we give a short overview of Dune-ACFem and discuss how it is used to implement
the primal-dual algorithm. Numerical examples showing applicability of our proposed imple-
mentation and experiments testing different discretizations are presented in Section 4. Finally in
Section 5 we conclude with a short summary and possible future research.

2 Problem Formulation

We consider the following problem

min
v∈BV(Ω)∩L2(Ω)

Jα1,α2 (v) := α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) + |Dv|(Ω), (1)

where Ω ⊂ Rd, d ∈ N, is an open bounded set with Lipschitz boundary, g ∈ L2(Ω) is a given
datum, αi ≥ 0 for i = 1, 2 with α1 + α2 > 0 and BV(Ω) ⊂ L1(Ω) denotes the space of functions with
bounded variation. That is, v ∈ BV(Ω) if and only if

|Dv|(Ω) := sup
{∫

Ω

v div ~φdx, ~φ ∈ C∞0 (Ω,Rd), ‖ |~φ|2‖C0(Ω) ≤ 1
}

(2)

is finite, see [2, 13]. The space BV(Ω) endowed with the norm ‖v‖BV(Ω) = ‖v‖L1(Ω) + |Dv|(Ω) is a
Banach space [13]. For α2 > 0 the minimization problem (1) admits a unique solution owing to
the strict convexity of the quadratic term [19]. Note, that if α1 = 0 in (1), then we obtain the
functional used in [3, 4, 5, 17].

2.1 Discretization

Let (Th)h>0 be a sequence of shape-regular triangulations of Ω with diameter h = maxT∈Th diam(T)
and Sh be the set of its mesh entities of codimension 1 (i.e. edges for d = 2). We define the
following finite element spaces

L
0(Th) = {qh ∈ L1(Ω) : qh |T is constant for each T ∈ Th}

S
1(Th) = {vh ∈ C(Ω) : vh |T is affine for each T ∈ Th}.

For the vector-valued versions, we write L0(Th)d and S1(Th)d, respectively, and boundary condi-
tions are denoted via a subindex. In particular we use the subindex 0 for zero boundary values
and the subindex N for zero boundary values in normal direction, e.g., S1

0(Th) := {vh ∈ S
1(Th) :

vh = 0 on ∂Ω} and L0
N(Th)d = {qh ∈ L

0(Th)d : qh · ~n = 0 on ∂Ω}where ~n is the unit vector in normal
direction. The nodal interpolant Ihv ∈ S1(Th) of a function v ∈ W2,p, with d

2 < p ≤ ∞ or p = 1 if
d = 2, satisfies

‖v − Ihv‖Lp(Ω) + h‖∇(v − Ihv)‖Lp(Ω) ≤ cIh2
‖D2v‖Lp(Ω),

where cI > 0 is a constant independent of h; cf. [8].

We recall, that the space BV(Ω) is continuously embedded in Lp(Ω) for 1 ≤ p ≤ d
d−1 , i.e., there is

a constant cBV > 0 such that ‖v‖Lp(Ω) ≤ cBV‖v‖BV = cBV

(
‖v‖L1(Ω) + |Dv|(Ω)

)
for any v ∈ BV(Ω). For

1 ≤ p < d
d−1 this embedding is compact; cf. [2]. Smooth functions are dense in BV(Ω) ∩ Lp(Ω),

1 ≤ p < ∞. In particular, for v ∈ BV(Ω) ∩ L2(Ω) and δ > 0 there exists ε := ε(δ) > 0 and functions
(vε)ε>0 ⊂ C∞ ∩ BV(Ω) ∩ L2(Ω) such that

‖∇vε‖L1(Ω) ≤ |Dv|(Ω) + c0δ, (3)
‖v − vε‖L2(Ω) ≤ c1δ, ‖v − vε‖L1(Ω) ≤ c2δ, (4)

‖D2vε‖L2(Ω) ≤ ε
−2
‖v‖L2(Ω), ‖D2vε‖L1(Ω) ≤ ε

−2
‖v‖L1(Ω), (5)

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017
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cf. [3]. These inequalities follow from standard mollifier techniques, see e.g. [13]. Now we are
able to show the following convergence result, which follows similar ideas as the proof of [3,
Theorem 3.1].

Theorem 2.1 Let uh ∈ arg minv∈S1(Th) Jα1,α2 (v) and u ∈ BV(Ω) ∩ L2(Ω) be a minimizer of the function
Jα1,α2 . Then we have that Jα1,α2 (uh)→ Jα1,α2 (u) as h→ 0. If additionally α2 > 0, then uh → u in L2(Ω) as
h→ 0.

Proof By the optimality of u we have Jα1,α2 (uh) − Jα1,α2 (u) ≥ 0. For δ > 0 let uε ∈ C∞(Ω) ∩ L2(Ω) as
above and Ihuε its nodal interpolant, i.e., Ihuε ∈ S1(Th). Then we deduce

Jα1,α2 (uh) − Jα1,α2 (u) ≤ Jα1,α2 (Ihuε) − Jα1,α2 (u)

= ‖∇Ihuε‖L1(Ω) + α1‖Ihuε − g‖L1(Ω) + α2‖Ihuε − g‖2L2(Ω)

− |Du|(Ω) − α1‖u − g‖L1(Ω) − α2‖u − g‖2L2(Ω).

Using (3) and ‖Ihuε − g‖2L2(Ω) − ‖u − g‖2L2(Ω) =
∫

Ω
(Ihuε − u)(Ihuε + u − 2g) we obtain

Jα1,α2 (uh) − Jα1,α2 (u) ≤ ‖∇Ihuε‖L1(Ω) − ‖∇uε‖L1(Ω) + c0δ + α1‖Ihuε − g‖L1(Ω)

− α1‖u − g‖L1(Ω) + α2

∫
Ω

(Ihuε − u)(Ihuε + u − 2g).

By the triangle-inequality and the Cauchy-Schwarz inequality we get

Jα1,α2 (uh) − Jα1,α2 (u) ≤ ‖∇(Ihuε − uε)‖L1(Ω) + c0δ + α1‖Ihuε − g − (u − g)‖L1(Ω)

+ α2‖Ihuε − u‖L2(Ω)(‖Ihuε‖L2(Ω) + ‖u‖L2(Ω) + 2‖g‖L2(Ω))
= ‖∇(Ihuε − uε)‖L1(Ω) + c0δ + α1‖Ihuε − uε + uε − u‖L1(Ω)

+ α2‖Ihuε − uε + uε − u‖L2(Ω)(‖Ihuε‖L2(Ω) + ‖u‖L2(Ω) + 2‖g‖L2(Ω))
≤ ‖∇(Ihuε − uε)‖L1(Ω) + c0δ + α1‖Ihuε − uε‖L1(Ω) + α1‖uε − u‖L1(Ω)

+ α2(‖Ihuε − uε‖L2(Ω) + ‖uε − u‖L2(Ω))(‖Ihuε‖L2(Ω) + ‖u‖L2(Ω) + 2‖g‖L2(Ω)).

The bound ‖Ihuε‖L2(Ω)+‖u‖L2(Ω)+2‖g‖L2(Ω) ≤ c̃, which holds provided that h ≤ ε, and the nodal interpolant
estimate yield

Jα1,α2 (uh) − Jα1,α2 (u) ≤ cIh‖D2uε‖L1(Ω) + c0δ + cIα1h2
‖D2uε‖L1(Ω) + α1‖uε − u‖L1(Ω)

+c̃α2(cIh2
‖D2uε‖L2(Ω) + ‖uε − u‖L2(Ω)).

Using (4), (5), and the bound ‖u‖L2(Ω) ≤ c̃ we get

Jα1,α2 (uh) − Jα1,α2 (u) ≤ C1
h
ε2 + C2δ + C3

h2

ε2 + C4δ + C5
h2

ε2 + C6δ.

Let h be sufficiently small, i.e., h ≤ min{δ, δε2
}. Then for δ → 0 we deduce that h → 0 and hence

Jα1,α2 (uh)→ Jα1,α2 (u).

If α2 > 0, then Jα1,α2 is strictly convex and it follows that

Jα1,α2 (uh) − Jα1,α2 (u) ≥ α2‖uh − u‖2L2(Ω),

cf. [19, Lemma 3.8]. Hence uh → u for h→ 0. �

By the definition of the total variation (2) an equivalent formulation of (1) reads

min
v∈BV(Ω)∩L2(Ω)

max
~p∈C∞0 (Ω,Rd),|~p|2≤1

α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) +

∫
Ω

v div ~p. (6)

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



6 M. Alkämper and A. Langer

An analog equivalence exists for finite element spaces [3]. In particular, for v ∈ S1(Th) we have
that

|Dv|(Ω) = sup
~p∈L0

N(Th)d,|~p|2≤1

∫
Ω

∇v · ~p dx (7)

leading to

inf
v∈S1(Th)

Jα1,α2 (v) = inf
v∈S1(Th)

sup
~p∈L0

N(Th)d

∫
Ω

∇v · ~p dx + α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) − IK (~p),

where

IK (~p) :=

0 if ~p ∈ K
∞ else

is the indicator function ofK := {~p ∈ L1(Ω)d : |~p|2 ≤ 1}. For v ∈ L0(Th) we obtain

|Dv|(Ω) = sup
(~βS)S∈Sh ,|

~βS |2≤1

∑
S∈Sh

|S|~βS[v]S, (8)

where [v]S ∈ R defines the jump across S ∈ Sh in normal direction. Hence in this case the discrete
problem reads as

inf
v∈L0(Th)

Jα1,α2 (v) = inf
v∈L0(Th)

sup
~p∈L0

N(Sh)

∑
S∈Sh

|S|~p|S[v]S + α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω) − IK (~p).

While this formulation is equivalent to the primal formulation, in general we cannot expect
convergence to the continuous solution, unless all the jumps are correctly represented by a
descendant triangulation. For more details we refer the reader to [3, Section 4].

The primal-dual problem does not have a unique solution in general, even if the primal problem
is strictly convex (α2 > 0). This is due to the fact, that the dual problem of (1), even for α1 = 0 and
α2 > 0, is only convex but not strictly convex, see for example [15, 18].

2.2 Primal-Dual Algorithm

In the following we discretize using finite element spaces U (e.g. S1(Th) or L0(Th)) and P
(e.g. S1

0(Th)d or L0
N(Th)d) for the primal variable u and the dual variable ~p, respectively. We

denote by 〈·, ·〉 the L2-inner product or the application of an L2-functional. Following the ideas
of Chambolle and Pock [10, Algorithm 1] we formulate our primal-dual algorithm by identifying
F∗ : P → R ∪ {+∞}, G :U → R ∪ {+∞}, and K :U → P∗ with

F∗(~p) = IK (~p), G(v) = α1‖v − g‖L1(Ω) + α2‖v − g‖2L2(Ω), and 〈Kv, ~p〉 =

∫
Ω

v div ~p,

where we assume that each element in P has a weak derivative. If this is not the case, 〈Kv, ~p〉
is to be understood using the identifications suggested by the equations (7) and (8). That is
〈Kv, ~p〉 =

∫
Ω
∇v · ~p dx and

〈Kv, ~p〉 =

∫
Ω

v div ~p =
∑
T∈Th

∫
∂T

v~p · ~n =
∑
S∈Sh

[v]S~n ·
∫

S
~p =

∑
S∈Sh

|S|~p|S[v]S,

cf. [3, Lemma 4.1], respectively.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017
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In the case that ∇v < L2(Ω) for v ∈ U or div~q < L2(Ω) for ~q ∈ Pwe use the following identities

U = L0(Th),P = L0
N(Sh) : 〈∇v, ~q〉 := −

∑
S∈Sh

|S|~p|S[v]S =: −〈v,div~q〉,

U = L0(Th),P = S1
0(Th) : 〈∇v, ~q〉 := −〈v,div~q〉, (9)

U = S1(Th),P = L0
N(Th) : 〈∇v, ~q〉 =: −〈v,div~q〉.

We assume, that the datum g ∈ L2(Ω) and the cost parameters αi are given. Then in our algorithm
we initialize u0 = ū0 ∈ U, e.g., u0 ≡ 0 or u0 = Pg, where P : L2(Ω)→U denotes the L2-projection
onto the discrete space U, and ~p0 ∈ P to be the zero function. As parameters we need the step
sizes σ, τ > 0, the coefficient β = τα1

1+2τα2
, and the overrelaxation parameter θ ∈ [0, 1].

Then our primal-dual algorithm iterates starting with k = 0 as follows:

1. Set p̄ ∈ Pwith step size σ as

〈p̄, ~q〉 = 〈~pk + σ∇ūk, ~q〉 ∀~q ∈ P. (10)

If ∇ūk ∈ P, then we can use the strong formulation, otherwise we use the identities (9). As
the algorithm is derived from formulation (6), we need to guarantee that |~pk|2 ≤ 1 for all k.
This is done by the following update

~pk+1 = (I + σ∂F∗)−1(p̄) ⇔ ~pk+1(x) =
p̄(x)

max (|p̄(x)|2, 1)
, (11)

for almost any x ∈ Ω. Note, that due to the structure of the operator (I + σ∂F∗)−1 (see [10] for
more details) ~pk+1 ∈ P ∩K .

2. Update uk using

uk+1 = (I + τ∂G)−1(uk + τdiv ~pk+1) ⇔ uk+1(x) =


z(x) − β if z(x) − β ≥ Pg(x)
z(x) + β if z(x) + β ≤ Pg(x)
Pg(x) else ,

(12)

for almost any x ∈ Ω, where z ∈ U is defined via

〈z, v〉 =
1

1 + 2τα2

(
〈uk + 2τα2g, v〉 + τ〈div ~pk+1, v〉

)
∀v ∈ U. (13)

If the div ~pk+1 < L2(Ω), then we use again the identities of (9).

3. As proposed in [10] we overrelaxate to speed up the algorithm:

ūk+1 = uk+1 + θ(uk+1 − uk) (14)

4. If the stopping criterion

‖uk+1 − uk‖L2

τ
+
‖~pk+1 − ~pk‖L2

σ
< TOL (15)

holds, we terminate the algorithm, otherwise we set k→ k + 1 and repeat.

Note that in equation (11) withP = S1
0(Th)d it is a priori not clear that ~pk+1 ∈ S

1
0(Th)d, as taking the

pointwise maximum of two piecewise linear functions results in a piecewise linear function on a
finer grid. So in this case we additionally apply the nodal interpolation operatorIh : C0(Ω)d

→ P,
which then guarantees ‖|~pk+1|2‖L∞ ≤ 1 and ~pk+1 ∈ P. A similar problem arises for U = S1(Th)

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



8 M. Alkämper and A. Langer

and equation (12), which we treat analogously. Furthermore note, that testing with the complete
test-spaceU orP (eqs. (10), (13)), respectively, is equivalent to an L2-projection onto the respective
space.

Theorem 1 of [10] guarantees convergence of this algorithm to a saddle point, if the according
discretization of problem (6) has a saddle point and additionally θ = 1 and

στB2 < 1, (16)

where B := ‖∇‖L2 is the operator norm of the gradient operator on the discrete spaceU. This norm
is bounded for discrete functions and of order O(1/hmin), where hmin := minT∈Th diam(T), which
implies that using finer meshes will always result in more steps of the primal-dual algorithm.
Even using an adaptive mesh is not beneficial to the stepsize, as B depends on the minimum
mesh-width.

3 Implementation Details

The algorithm is implemented in the Dune-project non−smooth−minization . This project is
compatible with the 2.4-release and available on the website http://www.ians.uni-stuttgart.
de/nmh/downloads. It requires the modules Dune-ACFem and all modules that are required by
it, available at gitlab.dune-project.org. The installation works the standard Dune-way. (see
Appendix A)

3.1 On DUNE-ACFEM

Dune-ACFem [14] is a simulation framework based on Dune-Fem [11], which is a discretization
framework based on Dune. Dune-Fem provides most generally speaking finite-element spaces on
generic grids and all the corresponding utilities to construct a finite-element scheme. Examples
are given in the Dune-Fem-Howto. For more information consult [11].

The add-on module Dune-ACFem provides expression templates (and also analytical functions,
that can be evaluated on the mesh) for the discrete functions of Dune-Fem and also for models sim-
ilar but more elaborate to those in the Dune-Fem-Howto. This aims at simplifying the algorithmic
formulation of elliptic and parabolic PDEs. The expression templates for discrete functions allow
for addition, multiplication with scalars, multiplication with scalar functions, scalarproducts of
the components of two functions, and unary expressions like componentwise sin, cos, sqrt, exp.

Dune-ACFem is designed to treat 2nd order elliptic PDEs of the form

−∇ · (A(x,u,∇u)∇u) + ∇ · (b(x,u,∇u) u) + c(x,u,∇u) u = f (x) in Ω,

u = gD on ΓD,

(A(x,u,∇u)∇u) · ν + α(x,u) u = gN on ΓR,

(A(x,u,∇u)∇u) · ν = gN on ΓN,

(17)

or, in weak formulation,∫
Ω

(A∇u) · ∇φ dx +

∫
Ω

(∇ · (b u) + c u)φ dx −
∫

Ω

f (x)φ dx

+

∫
ΓR

αuφ do −
∫

ΓN∪ΓR

gN φ do = 0,

〈Π,u〉 = 〈Π, gD〉.

(18)

Possible Dirichlet data is enforced by standard Lagrange test-functions Π. The multiplication
with the test-functions φ and the integral (quadrature) is provided by Dune-Fem. The other part
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Dune-ACFem for Non-smooth Minimization 9

of the integral has to be provided by the model, which is the central concept of Dune-ACFem. A
model is basically a tuple of the form

M := (σE, µE, ρI, gN, gD, wD, f , χR, χN, χD,Ψ)

with the following constituents:

Flux σE : Rd
×Rm

×Rm×d
→ Rm×d,

Source µE : Rd
×Rm

×Rm×d
→ Rm,

Robin-flux ρI : Rd
× Rm

→ Rm,
Robin-indicator χR : ∂Ω→ {0, 1},
Neumann-data gN : Rd

→ Rm,
Neumann-indicator χN : ∂Ω→ {0, 1},
Dirichlet-data gD : Rd

→ Rm,
Dirichlet-indicator χD : ∂Ω→ {0, 1},
Bulk-forces f : Rd

→ Rm,
Force-functional Ψ ∈ V∗.

Using such a model results in the following weak formulation∑
E∈T

( ∫
E

(
σE(x,U,∇U) : ∇V + µE(x,U,∇U) · V − f · V

)
+

∫
I∈E∩∂Ω

((
χR(x)ρI(x,U) − χN(x) gN(x)

)
· V

))
− 〈Ψ,V〉 = 0,

〈Π, χD U〉 = 〈Π, χD gD〉.

(19)

This is directly reflected in code, as a model is derived from an interface class that requires exactly
the implementation of the above constituents (and the linearization of Flux, Source and Robin-flux
for non-linear models). Each model is derived from a default zero-model, where all the constituents
are set to zero, so only non-zero contributions need to be implemented. Dune-ACFem allows
forming algebraic expressions from existing models. The generated model-expressions fulfill the
model-interface just as "hand-coded" ones. This allows forming of complicated models from a
set of convenient pre-built skeleton-models. For a list of predefined models consult [14]. The
algebraic expressions include linear combinations of models and multiplying with L∞-functions.

Other important concepts are the FemScheme and the EllipticOperator. The EllipticOperator
applies or assembles the discretization of equation (18). The FemScheme then solves the
given problem and chooses the necessary linear or non-linear solvers, depending on structural
information given by the model. Dune-ACFemmostly uses preconditioned iterative solvers like
CG or GMRes.

3.2 Image Read-In and Noise Simulation

To read-in images we use the CImg Library - C++ Template Image Processing Toolkit [21]. The
single header file library CImg is an open source project to provide easy handling and processing
of images. It is capable of reading-in standard image formats (e.g. .png, . tif , . jpg ) and of
adding certain types of noise. Each pixel is accessible by its coordinates utilizing the data type
image, whose constructor gets the filename containing the image location. Moreover, image
provides a method to add noise to the data with a given noise level for different noise-types. In
particular, Gaussian noise with noise level (variance) γ and mean 0 and salt-and-pepper noise S
with noise level s ∈ [0, 1], which corrupts an original image ĝ by

Sĝ(x) =


min ĝ with probability s/2
max ĝ with probability s/2
ĝ(x) with probability 1 − s

,
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10 M. Alkämper and A. Langer

are available.

We define two adapter classes within the header file src/datafunction.hh to convert either the
data type image or an algebraic expression into a Dune-Fem discrete function. They derive
from the GridFunctionAdapter that creates discrete functions from an evaluation method on
a mesh element. These functions are defined on the unit square [0, 1] × [0, 1], as we can scale
any rectangular image accordingly. The image resolution and aspect ratio relate to the level
of initial refinement and to the number of cells in each direction. So n uniform refinements
with l × k initial cells lead to an image resolution of size l2n

× k2n square pixels, where every
square is composed of two triangles and l/k corresponds to the aspect ratio. This is done in the
gridfile data/unitsquare2d.dgf which describes the unit square using the Dune DGF − Interval
[6] nomenclature.

The artificial addition of noise ( NSM_USE_NOISE=true ) is only needed for demonstration purposes
as in real-world application the image is already corrupted by noise due to certain physical
processes. We currently add two independent types of noise, where every noise implemented by
CImg can be applied. Noise type and noise level are controlled by a set of parameters defined in
the parameter file. For instance, setting nsm.noiseType1 to 0 leads to Gaussian noise and setting
it to 2 corresponds to salt-and-pepper noise. Setting any noise level parameter to 0 disables the
respective noise. For other noise types and more information consult the documentation of CImg
.

3.3 Implementation of the Primal-Dual Algorithm

The primal-dual algorithm from Section 2.2 is implemented in the file src/nsm.cc, where some of
its subroutines, which depend on the continuity of the discrete spacesU andP, are outsourced into
the file src/phc.hh. The template class ProjectionHelperClass uses partial template specialization
to correctly define the methods calculateZ() and entitywiseProjection().

The method phc.entitywiseProjection() realizes equations (10) and (11). Solving eq. (10) is
relatively easy, as all steps are provided by Dune-ACFem, e.g. for continuousU and P:

void ent i tywisePro ject ion ( const ForwardDiscreteFunctionType & uBar , AdjointDiscreteFunctionType
& p )

{
/ / the gradient model defines the weak gradient using continuous test-functions
/ / from the space of p
auto gradU = gradientModel ( uBar ) ;
auto Dbc0 = dir ichletZeroModel (p) ;
auto mass = massModel(p) ;
/ / we solve p = sigma * nabla u + p
/ / with dirichlet zero boundary
auto model = mass − sigma_ ∗ gradU − p + Dbc0 ;
/ / Testspace = AdjointDiscreteFunctionSpaceType = space of p
typedef EllipticFemScheme<AdjointDiscreteFunctionType , decltype (model)> SchemeType;
/ / p is the returned solution

SchemeType scheme(p, model) ;
scheme. solve ( ) ;

In the above case, for given ~p and ū the equation

0 = 〈p̄, φ〉 − σ〈ū,−divφ〉 − 〈~p, φ〉 ∀φ ∈ P

with dirichlet-zero boundary conditions is solved with respect to p̄. The solution is written into
the variable ~p.

Projecting ~p to be feasible (eq. (11)) is not in the features of Dune-ACFem. So we have to use the
features of Dune-Fem directly. We choose to do the projection entity-wise, i.e. we iterate over all
entities of the grid. On each entity we iterate over the degrees of freedom and if |~p|2 > 1 holds,
we restrict the corresponding value to length 1 in the same direction. If the polynomial order of
P is less or equal than 1, this implies the necessary condition ‖|~p|2‖L∞ ≤ 1. For the space S1(Th)
this implies the application of the nodal interpolant Ih.
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Dune-ACFem for Non-smooth Minimization 11

The calculation of z (eq. (13)) translates very nicely into code. We use the L2Projection of Dune-
ACFem and its ability to linearly combine discrete functions. If P is continuous, the weak form
of eq. (13) is

〈zk, ψ〉 =
1

1 + 2τα2

〈
uk + τdiv ~pk+1 + 2τα2g, ψ

〉
∀ψ ∈ U

and translates into code in the following way:
void calculateZ ( const AdjointDiscreteFunctionType &p, const ForwardDiscreteFunctionType & uOld ,

ForwardDiscreteFunctionType& z )
{

auto divP = divergence (p) ;
L2Project ion ( 1 . / ( 1 . + tau_∗lambda_2_) ∗ ( tau_ ∗ divP + uOld + tau_ ∗ lambda_2_ ∗ projG_ ) , z ) ;

}

For P = L0
N(Th)d we use the weak divergence to shift the derivative to the test-spaceU = S1(Th).

As above we use the basic Models of Dune-ACFem, in particular the massModel and the
weakDivergenceModel to implement eq. (13) as follows:

void calculateZ ( const AdjointDiscreteFunctionType &p, const ForwardDiscreteFunctionType & uOld ,
ForwardDiscreteFunctionType& z )

{
/ / get the mass model of the Forward space
auto U_Phi = massModel( projG_ . space ( ) ) ;
/ / calculate z
auto weakDiv_P = weakDivergenceModel(p) ;
auto projModel = U_Phi −1./(1.+ tau_∗lambda_2_) ∗ ( tau_ ∗ weakDiv_P + uOld + tau_ ∗ lambda_2_

∗ projG_ ) ;
typedef EllipticFemScheme<ForwardDiscreteFunctionType , decltype ( projModel )> SchemeType;
SchemeType scheme( z , projModel ) ;
scheme. solve ( ) ;

}

Note that in contrast to the implementation of the method entitywiseProjection() we construct
the massModel from a discrete space instead of a discrete function. This is explicitly allowed by
Dune-ACFem as the object simply has to provide the data type for the test-function space.

For the case of P = L0
N(Sh)d and U = L0(Th) the summand weakDiv_p is turned into a

functional. This functional is called EdgeWeakDivergenceFunctional and is contained in the
file edgeweakdivergencefunctional.hh . The main implementation is done in the coefficients()
method, that implements the application of the functional to the basis functions in Dune-Fem
notation.
In the resulting code for the method calculateZ(), (see code example above) the main difference is
that weakDivergenceModel(p) is replaced by edgeWeakDivergenceFunctional(p). Additionally
weakDiv_p in the definition of projModel has been moved outside the brackets, as functions are
not allowed to be added to functionals outside a model (see below).

auto weakDiv_P = edgeWeakDivergenceFunctional (p) ;
auto projModel = U_Phi −1./(1.+ tau_∗lambda_2_) ∗ ( uOld + tau_ ∗ lambda_2_ ∗ projG_ ) −

tau_ /(1 .+ tau_∗lambda_2_) ∗ weakDiv_p ;

3.4 Adaptive Refinement

Adaptive refinement is initiated by a positive parameter nsm.localRefine. This parameter denotes
the number of additional local refinements to be done in the initialization phase in addition to the
uniform refinements. If it is set to ≤ 0, no local refinement will be performed. The grid is locally
refined at discontinuities of the piecewise constant datum g ∈ L0(Th) in the following way: Given
an entity E and its neighbour N, if

|g|N − g|E| > ADAPTTOL (20)
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holds, then E is marked for refinement, where the value of ADAPTTOL is given by the parameter
nsm.adaptTolerance. We do not refine during the iterations of the primal-dual algorithm, but
keep the mesh static. So the refinement increases the resolution of discontinuities and hence
drastically improves the projection Pg. This is implemented in the method adaptGrid() in the
file nsm.cc. We use the grid manager Dune-ALUGrid [1], which is capable of handling the
needed conforming, parallel, adaptive, triangular grids.

4 Numerical Experiments

To reproduce the data of the experiments of this section, consult Appendix A and follow the
described steps.

4.1 Comparison of Discrete Spaces

We investigate for different discrete spacesU and P the behaviour of our algorithm with respect
to the non-smooth minimization problem (1) considering the following setups

U = S1(Th),P = S1
0(Th)d, U = L0(Th),P = S1

0(Th)d,

U = S1(Th),P = L0
N(Th)d, U = L0(Th),P = L0

N(Sh)d.

The setups usingP = L0
N(. . .)d are motivated by the equivalence of the mixed formulation and the

primal formulation for these discrete settings. For the caseU = S1(Th),P = L0
N(Th)d we even have

guaranteed convergence to the continuous formulation, see Theorem 2.1. The settingP = S1
0(Th)d

is motivated by [5], where it is shown that for U = S1(Th), P = S1
0(Th)d the discrete pre-dual of

the functional J0,α2 Γ-converges to the continuous one. However, setting U = S1(Th) does not
seem necessary for the proof there, but can be for example replaced by choosing U = L0(Th).
Therefore we also investigate the caseU = L0(Th).

For this set of experiments we choose a similar example as in [5], i.e., the observed data is 1 on
a disk of radius 0.3 and 0 elsewhere. Hence, we choose the discrete datum g to be given as a
piecewise constant approximation of the function

f (x) =

1, if |x − (0.5, 0.5)| ≤ 0.3
0, else.

Note that this datum changes under grid refinement. The cost parameters are set to α1 = 10
and α2 = 20, the stopping tolerance to 10−2, and the adaptation tolerance to 0.1. For the L0/L0

case we choose the tolerance 10−4 as we use an extension of P into Ω to calculate the part of
~p in the stopping criterion ‖uk+1−uk‖L2

τ +
‖~pk+1−~pk‖L2

σ < TOL. We do a = 3 uniform refinements and
b = 5 additional local refinements. As convergence is guaranteed, if condition (16) holds, and
since we know that in general ‖∇u‖L2 < Ch‖u‖L2 for u ∈ U, the step sizes are automatically set to
τ = σ = L ∗ 2−(a+b) with a constant L. For the L0/L0 case, numerics indicate, that it is possible to
even set τ = σ = L ∗ 2−(a+b)/2. Note that the choice of L does not only depend on the operator norm
of the gradient on the domain, but also on the number of elements in the initial grid. Here we
choose L = 0.19. The overrelaxation parameter θ is chosen to be 1.

By imposing all equations weakly the primal-dual algorithm de facto uses the L2-projection
Pg ∈ U instead of the datum g ∈ L0(Th). Figure 1 shows that in the case of U = S1(Th) by
projecting a discontinuous function onto a continuous space we introduce an additional error in
contrast to the case U = L0(Th). The over- and undershoots of the continuous projected data
do not pose a problem, because they are regularized over the course of the algorithm, as we
can see in Figure 2b. Comparing Figure 2a with 2b and Figure 2c with 2d we see that choosing
P = S1(Th)d smears out jumps, i.e., the discontinuities are less accurately approximated. This is
due to the fact, that P is continuous and its basis functions have a larger support than if it were
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Dune-ACFem for Non-smooth Minimization 13

(a) g = Pg, asU = L0(Th)

(b) Pg forU = S1(Th)

Figure 1: The Projection of the piecewise constant datum g onto the spaceU.

(a)U = S1(Th),
P = S1

0(Th)d
(b)U = S1(Th),
P = L0

N(Th)d
(c)U = L0(Th),
P = S1

0(Th)d
(d)U = L0(Th),
P = L0

N(Sh)d

Figure 2: The discrete minima u∗ of the functional J10,20

discontinuous. Additionally P = S1(Th)d is not the space for which the primal and the mixed
formulation are equivalent leading to a worse approximation of |Dv|(Ω). This explains why the
value of the functional in Figures 3 and 4 for these variants is higher than choosing P = L0

N(. . .)d.
In particular this worsens the quality of the solutions obtained withU = L0(Th),P = S1

0(Th)d, as
now multiple elements at the jump are hanging mid-air (Figure 2c), which drastically increases
the total variation.

Figure 3 depicts the evolution of the energy Jα1,α2 during the iterations for the considered space
pairings. We observe that Jα1,α2 is not monotonically decreasing but stagnates at a minimal value
after a certain number of iterations (note that the scale of the number of iterations in Figure 3 is
logarithmic). This demonstrates, that in all these settings the algorithm converges to a stationary
point of the respective discrete problem. Due to the different combinations of spaces it is clear
that the stationary points in general do not coincide and hence the minimal energy is different.
The combinationU = S1(Th), P = L0

N(Th)d yields the best result, as its final energy is the smallest
among the considered cases.

We observe that choosing U = S1(Th) results in a decreasing energy for h → 0, while for
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Figure 3: The value of the functional Jα1,α2 over the course of the algorithm.
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Figure 4: Final energy for h = 2−5, . . . , 2−11

U = L0(Th) this is not the case (cf. Figure 4). More precisely for the caseL0(Th),S1
0(Th)d the energy

seems to oscillate in a certain sense and forL0(Th),L0
N(Sh)d the energy stays almost constant. This

is due to the fact that, while the approximation of the circle gets better, the total variation does
not diminish for L0. In general approximating functions of bounded variation is not possible
with piecewise constant functions on a triangulation, since the length of discontinuities may not
diminish over refinement [3]. This is different for the caseU = S1(Th), where discontinuities of
functions, that are not representable on the triangulation, can be better approximated.

4.2 Image Denoising

Here we demonstrate the denoising capability of the algorithm. Motivated by the above experi-
ments we choose the spaces to beU = S1(Th), P = L0

N(Th)d. The considered image with values
in [0, 1] is first corrupted by Gaussian white noise with variance 0.1 and then salt-and-pepper
noise with s = 0.1 is added. The obtained image is shown in Figure 5a. In order to reconstruct
the image we choose α1 = 250, α2 = 150 in (1), and perform our primal-dual algorithm with the
tolerance set to 10−2, θ = 1 and σ = τ = 2−8. To resolve the 256 × 256 pixel-sized picture we apply
8 uniform refinements and no additional local refinement. In Figure 5b we depict the output of
our algorithm. The result is reasonably smoothed due to the total variation regularization, while
discontinuities are still preserved.
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(a) Noisy image (b) Result of the algorithm

Figure 5: A corrupted image before and after applying the algorithm

(a) Real image (b) Part of the mesh (c) Result of the algorithm

Figure 6: A real image before and after applying the algorithm

As a second example we run the algorithm on a much finer image, that has a resolution of
2576 × 1920 pixels (Figure 6a). The spaces are chosen as above, the cost parameters are α1 = α2 =
500, we run the image on an initial grid of 161 × 120 squares, each subdivided in two triangles
and initiate 2 initial global refinements and 2 local Refinements. So locations with full refinement
a triangle is half the size of a pixel. A part of the mesh is depicted in Figure 6b, where one may
observe that the discontinuities are captured by the refinement, as intended. The resulting image
(Figure 6c) behaves as expected, the noisy structure of the stone is reduced to a minimum, but we
also lose some details inside the stars, that we may have wanted to keep. This may be attributed
to the choice of the parameters α1 and α2. We note that in this example as well as in the previous
one, these parameters are chosen at will, but not optimal. For an optimal choice of parameters,
we refer the reader to [19]. Moreover it may be of interest to choose local cost parameters, as in
[9, 12, 20].

4.3 Strong Scaling

We do a strong scaling experiment on the same datum as in Section 4.1 using the spacesU = S1(Th)
andP = L0(Th)d. The computation is executed on a 32 core shared memory system. The grid man-
ager Dune-ALUGrid balances the computational load on the initial grid by partitioning it onto the
different processors. So we cannot expect the algorithm to scale if the initial mesh is to coarse. E.g.
if there are only two initial elements, only two processors can get partitions that are non-empty.
Consequently we discretize the unit square by 8× 8 elements, see data/finecube_2d.dgf. As the
grid is already fine, we do not need as many uniform refinements to reach a good resolution, so
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we do a = 3 uniform and another b = 3 local refinements. This results in a different operator norm
of the gradient on the initial grid, so we have to set the corresponding parameter nsm.constantL
to 0.02 for the stepsizes τ = σ = L ∗ 2−(a+b) to be computed correctly. The tolerance is set to 10−2

and α1 = α2 = 150 to reach a short runtime.
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Figure 7: Strong scaling of the algorithm.

Figure 7 indicates that the strong scaling at least up to 8 cores is quite good and afterwards it
stagnates, which is probably due to the small grid and not enough workload. We would have
to increase the number of initial cells to improve the scaling further. The important part about
this result is, that the parallelism is done inside Dune-ACFem and we spent almost no effort to
parallelize the code. The only line of code needed initializes MPI.

5 Summary and Outlook

We have shown for a certain discretization that the associated minimizer converges to the con-
tinuous one. The primal-dual algorithm used here is implemented very conveniently within
Dune-ACFem. The flexibility of Dune-Fem allows us to easily exchange discrete spaces and easily
set parameters. Also the algorithm is now intrinsically parallel by domain decomposition with a
decent strong scaling. Future research includes implementing a semi-smooth Newton method in
Dune-ACFem to increase convergence speed even for highly adaptive grids.
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Appendix A - Installation Instructions

The program is designed to work in a Linux-environment. It may as well work on a unix
machine. To install the program, first download the Dune modules, Dune-common, Dune-
geometry, Dune-grid, Dune-istl, Dune-localfunctions, Dune-Fem, Dune-ALUGrid and Dune-
ACFem from gitlab.dune-project.org and non−smooth−minization from http://www.ians.
uni-stuttgart.de/nmh/downloads. For the Dune- modules checkout the branch releases/2.4.
Put all the projects in a directory as direct subfolders. Use your config file config.opts to run the
command
./dune=common/bin/dunecontrol −−opts=config.opts −−module=non−smooth−minization all
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An example config file example.opts is provided in the main directory of the Dune project
non−smooth−minization .
Now Dune is installed and the executable nsm from the subdirectory src should have been
built within the cmake build directory. The scripts example1.sh to example5.sh produce
the results presented in this paper. They require a python interpreter and example3.sh and
example5.sh require MPI. The cmake build directory is assumed to be named build−cmake.
This can be adjusted by modifying the BUILDDIR variable inside the scripts. The scripts are
simple, so changes should be easy. They basically consist of changing directories, compiling the
executable nsm, executing it with the right set of parameters and parsing the output into suitable
directories. There are two types of output. Console output from std :: out is parsed into a file
output.graph in a subdirectory of src, which describes the value of the functional and the value
of all its parts with respect to both g and Pg and a file output.parameters, where the applied
parameters and other output can be looked up. Console output from std :: err is displayed on the
console. The other type of output is in the cmake build directory located within the directory
output in suitable subdirectories. These contain a set of .vtu/.vtk files (readable with Paraview ),
that contain the datum g (called "image"), the projection Pg (called "projection of g"), the solution
(called "u0") and the adjoint variable (componentwise "p0", "p1"). It may take some time to run
the scripts. To get faster results, simply edit the LOCREF or INITREF variable of the bash scripts
or lower the tolerance parameter nsm.tolerance.

Appendix B - Parameters

There are two types of parameters: run time parameters and compile time parameters.

• Run time parameters can be overloaded on the command line by
./nsm nsm.parameter:value ... .
The default values are set inside the parameter file located at data/parameter. This file
is copied into the cmake build directory at compile time. So parameters changed in the
build directory will be overwritten when recompiling. Parameters with prefix fem, or istl
belong to Dune-Fem and Dune-ISTL respectively, and are explained in their documentation.
The specific parameters of this algorithm are prefixed nsm. The extensive list of run time
parameters reads:

nsm.theta Overrelaxation parameter θ
nsm.maxIt Maximum number of iterations of the algorithm
nsm.tolerance The algorithm breaks if the tolerance is reached
nsm.outputStep Output every nth step
nsm.constantL If ! NSM_SET_STEPSIZE, τ = σ = L ∗ 2−(a+b)

nsm.tau Stepsize τ
nsm.sigma Stepsize σ
nsm.lambda_1 L1-data term cost coefficient α1
nsm.lambda_2 L2-data term cost coefficient α2
nsm.image Filename of the image to be read in
nsm.initialRefinements Number of initial uniform refinements a
nsm.localRefine Number of initial adaptive refinements b
nsm.adaptTolerance Adaptive tolerance
nsm.noiseType1 The CImg type of noise to be applied first
nsm.noiseLevel1 The CImg noise level of the first noise
nsm.noiseType2 The CImg type of noise to be applied second
nsm.noiseLevel2 The CImg noise level of the second noise

• Compile time parameters have to be declared when compiling. The location is in the file
CMakelists.txt. As they are cmake -cache variables, they can be redefined in the usual way
(see e.g. example1.sh ). They determine what kind of problem to treat and which discrete
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spaces are to be used.
NSM_SET_STEPSIZE If true, τ and σ are set manually
NSM_USE_IMAGE If true, image is used instead of geometric expression
NSM_USE_NOISE If true, noised imaged is used, requires NSM_USE_IMAGE
NSM_U_DISCONT If true,U = L0(Th), elseU = S1(Th).
NSM_P_DISCONT If false, P = S1

0(Th)d,
else P = L0

N(Th)d or L0
N(Sh)d (depending onU) .
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Abstract: In this paper we discuss the new publicly released Dune-Fem-DG module. This
module provides highly efficient implementations of the Discontinuous Galerkin (DG) method
for solving a wide range of non linear partial differential equations (PDE). The interfaces used
are highly flexible and customizable, providing for example mechanisms for using distributed
parallelization, local grid adaptivity with dynamic load balancing, and check pointing. We
discuss methods for solving stationary problems as well as a matrix-free implementation for
time dependent problems. Both parabolic and first order hyperbolic PDE are discussed in detail
including models for compressible and incompressible flows, i.e., the Navier-Stokes equations.

For the spatial discretization a wide range of DG methods are implemented, ranging from the
standard interior penalty method to methods like LDG and CDG2. Upwinding numerical fluxes
for first order terms are also available, including limiter based stabilization for convection dom-
inated PDEs. For the temporal discretization Runge-Kutta methods are used, including higher
order explicit, diagonally implicit and IMEX schemes. We discuss asynchronous communication,
shared memory parallelization, and automated code generation which combined result in a high
floating point performance of the code.

Keywords. Numerical Software, Dune, Discontinuous Galerkin Schemes, Hyperbolic problems,
Elliptic problems, Parabolic problems, Euler, Navier-Stokes, Advection-Diffusion, Stokes, Poisson

1 Introduction

In this paper we introduce the Dune-Fem-DG module which has been recently published under
the GNU General Public License version 2, or (at your option) any later version.

The Dune-Fem-DG module is based on Dune-Fem (see Dedner et al. [2010b]) and makes use of
the infrastructure implemented by Dune-Fem, e.g. DiscreteFunctionSpace, DiscreteFunction,
and LocalFunction or DofManager, AdaptationManager and CommunicationManager for seam-
less integration of parallel-adaptive Finite Element based discretization methods. A similar
approach is provided by the Dune module Dune-PDELab described in Bastian et al. [2010].
Similarities can be found for example in concepts like DiscreteFunctionSpace (Dune-Fem) and
GridFunctionSpace (Dune-PDELab). Differences, on the other hand, exist in the approach to
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create discrete function spaces for coupled or vector valued problems, callback (Dune-Fem) vs
tree based approach (Dune-PDELab) or the handling of adaptive problems. Here, Dune-Fem in-
troduces the AdaptivePersistentIndexSet, an extension of the IndexSet approach from Dune-
Grid, which has been proven to be a more efficient approach (c.f Klöfkorn [2009], Klöfkorn and
Nolte [2012]) in comparison to the approaches offered by the Dune grid interface which are used
by Dune-PDELab. The most prominent difference to Dune-PDELab is the fact, that Dune-Fem
itself does not implement any discretization schemes. This is accomplished by sub modules
such as Dune-Fem-DG or Dune-ACFem1. Dune-Fem-DG focuses exclusively on Discontinuous
Galerkin (DG) methods for various types of problems. The discretizations used in this module
are described by two main papers, Dedner and Klöfkorn [2011] where we introduced a generic
stabilization for convection dominated problems that works on generally unstructured and non-
conforming grids and Brdar et al. [2012a] where we introduced a parameter independent DG flux
discretization for diffusive operators.

Besides the two Dune related packages mentioned above DG methods have been studied in-
tensively by many other groups and many software packages exist. However, most of these
packages do not combine the following features: unstructured grids for 2, and 3 space dimen-
sions, grid adaptivity, parallel computing capabilities, and open-source licenses. Combining all
these constraints there are only a few packages available, for example, deal.II (Bangerth et al.
[2007]), feel++ (The Feel++ Consortium [2015]), or Nektar++ (Karniadakis and Sherwin [2005]).

Compared to Dune-PDELab which has strong support for incompressible problems, Dune-Fem-
DG concentrates on the implementation of matrix-free approaches mainly used for compressible
problems but also offers more variety of DG methods. A comparison between DG methods
implemented in Dune-Fem-DG and Dune-PDELab for Poisson type problems is given in Eymard
et al. [2011]. However, this comparison only compares the quality and effectiveness of the DG
methods but not the implementation itself. A fair comparison of both packages with respect to
implementation should be subject of a separate study.

Over time several state of the art techniques such as communication hiding, automated code generation,
and hybrid parallelization have been added. Consequently, the module has been used in several
applications. Most notably a comparison with the production code of the German Weather Service
COSMO has been carried out for test cases for atmospheric flow (Brdar et al. [2013], Schuster et al.
[2014]). In addition several PhD theses have been conducted (Klöfkorn [2009], Brdar [2012]) or are
currently going on (Girke [2017], Malkmus [2017]). The following research publications (journal
and conference papers) discuss or make use of Dune-Fem-DG:

• DG discretizations (Klöfkorn [2009], Dedner and Klöfkorn [2011], Brdar et al. [2012a], Brdar
et al. [2012b], Dedner and Klöfkorn [2009], Burri et al. [2006], Brdar [2012])

• Elliptic problems as part of the FVCA V and IV benchmarks on anisotropic diffusion prob-
lems (Dedner and Klöfkorn [2008], Klöfkorn [2011], Eymard et al. [2011], Dedner et al.
[2014])

• Model reduction (Dedner et al. [2013], Dedner et al. [2011a])

• Meteorological problems (Brdar et al. [2013], Schuster et al. [2014], Dedner and Klöfkorn
[2016], Klöfkorn [2012], Brdar et al. [2011b], Brdar et al. [2011a])

• Free surface shallow water flow (Dedner et al. [2011b])

• Atherosclerotic plaque simulation (Girke et al. [2014])

• Reactive flow in moving domains (Klöfkorn and Nolte [2014])

• Hyperbolic systems (Dedner et al. [2010a], Dedner and Giesselmann [2015])

1https://gitlab.dune-project.org/dune-fem/dune-acfem.git
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A strength of the Dune-Fem-DG module is the general application area, i.e. convection dominated
as well as diffusion dominated problems, for 1d, 2d, and 3d models, including parallelization and
local grid adaptivity. The model includes the implementation of several discretizations for the
second order terms such as Interior Penalty (and variants), Compact Discontinuous Galerkin 1
and 2, and Bassi-Rebay 1 and 2 as well as Local Discontinuous Galerkin. For the first order terms
different numerical flux functions can be used and limiter based stabilization is available. For the
time discretization a method of lines approach is adopted and a number of implicit, explicit, and
IMEX schemes are available. Overall the module thus offers not only a strong base for building
state of the art simulation tools but it also allows for method comparison and comparative studies.
Adaptivity, including h-p adaptivity, is included and can be used seamlessly. Recent development
has been focused on applications with moving grids and multi model applications.

So far, the Dune-Fem-DG module has not been publicly available nor a detailed software descrip-
tion has been available. This is provided, for the first time, by this paper including a revision to
allow for easy setup of coupled multi-physics problems. The paper is organized as follows. In
Section 2 we describe the DG discretizations. In Section 3 we introduce the main interface classes
to implement a mathematical model and in Section 4 we present numerical examples for all the
different types of problems covered by Dune-Fem-DG.

2 Governing Equations

In this paper we consider a general class of stationary and time dependent advection-diffusion-
reaction problems for a vector valued function U : (0,T) ×Ω→ Rr with r ∈N+ components. The
time dependent problem is a general nonlinear partial differential equation in Ω ⊂ Rd, d = 1, 2, 3
of the form

∂tU = L(U) in (0,T] ×Ω, (1)
U(0, ·) = U0(·) in Ω,

with
L(U) := −∇ ·

(
F (U) −A(U,∇U)

)
+ S(U) (2)

and suitable boundary conditions. Note that all the coefficients in the partial differential equation
are allowed to depend explicitly on the spatial variable x and on time t but to simplify the
presentation we suppress this dependency in our notation.

2.1 Spatial Discretization

We first focus on the spatial discretization. In this case our model problem is a stationary system
of partial differential equations:

L(U) = 0 in Ω. (3)

with either Dirichlet, Neumann, or Robin type boundary conditions. The spatial operator is given
by (2).

The considered discretization is based on the Discontinuous Galerkin (DG) approach and im-
plemented in Dune-Fem (Dedner et al. [2010b]) a module of the Dune framework (Bastian et al.
[2008a,b]). The discretization is derived in the following way. Given a tessellation Th of the
domain Ω with ∪K∈Th K = Ω the discrete solution Uh is sought in the piecewise polynomial space

Vh = {v ∈ L2(Ω,Rr) : v|K ∈ [Pk(K)]r, K ∈ Th} for some k ∈ N,

where on simplicial elements Pk(K) is a space containing polynomials up to degree k while on
quadrilateral or hexahedral elements Pk(K) contains mapped functions given by products of
Legendre polynomials of up to degree k in each coordinate on a reference cube. Other basis
functions could be chosen without loss of generality.
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We denote with Γi the set of all intersections between two elements of the gridTh and accordingly
with Γ the set of all intersections, also with the boundary of the domain Ω. The following discrete
form is not the most general but still covers a wide range of well established DG methods. For
all basis functionsϕ ∈ Vh we define

〈ϕ,Lh(Uh)〉 := 〈ϕ,Kh(Uh)〉 + 〈ϕ,Ih(Uh)〉 (4)

with the element integrals

〈ϕ,Kh(Uh)〉 :=
∑
K∈Th

∫
K

(
(F (Uh) −A(Uh,∇Uh)) : ∇ϕ + S(Uh) ·ϕ

)
, (5)

and the surface integrals (by introducing appropriate numerical fluxes F̂e, Âe for the convection
and diffusion terms, respectively)

〈ϕ,Ih(Uh)〉 :=
∑
e∈Γi

∫
e

(
{{A(Uh, [[Uh]]e)T : ∇ϕ}}e + {{A(Uh,∇Uh)}}e : [[ϕ]]e

)
(6)

−

∑
e∈Γ

∫
e

(
F̂e(Uh) − Âe(Uh,∇Uh)

)
: [[ϕ]]e,

where {{V}}e = 1
2 (V+ + V−) denotes the average and [[V]]e = (n+

⊗ V+ + n− ⊗ V−) the jump of
the discontinuous function V ∈ Vh over element boundaries. For matrices σ, τ ∈ Rm×n we use
standard notation σ : τ =

∑m
j=1

∑n
l=1 σ jlτ jl. Additionally, for vectors v ∈ Rm,w ∈ Rn, we define

v ⊗w ∈ Rm×n according to (v ⊗w) jl = v jwl for 1 ≤ j ≤ m, 1 ≤ l ≤ n.

The convective numerical flux F̂e can be any appropriate numerical flux known for standard finite
volume methods. Thus F̂e could be simply the local Lax-Friedrichs flux function or a more prob-
lem tailored flux (i.e. approximate Riemann solvers) known from finite volume methods (Kröner
[1997]). A wide range of diffusion fluxes Âe can be found in the literature, for a summary see
(Arnold et al. [2002]). Many of these fluxes are available within this module as well as newer
variations, e.g., the CDG2 flux which was shown to be highly efficient for the Navier-Stokes
equations (cf. Brdar et al. [2012a]).

2.2 Temporal discretization

To solve the time dependent problem (1) we use a method of lines approach in which the DG
method described above is first used to discretize the spatial operator and then a solver for
ordinary differential equations is used for the time discretization. After spatial discretization, the
discrete solution Uh(t) ∈ Vh has the form Uh(t, x) =

∑
i Ui(t)ϕi(x). We get a system of ODEs for the

coefficients of U(t) which reads

U′(t) = f (U(t)) in (0,T] (7)

with f (U(t)) = M−1
Lh(Uh(t)), M being the mass matrix which is in our case block diagonal or

even the identity, depending on the choice of basis functions. U(0) is given by the projection of
U0 onto Vh.

A range of different ODE solvers are available most based around Strong Stability Preserving Runge-
Kutta methods (SSP-RK). Explicit methods up to forth order are available as well as implicit and
semi-implicit Runge-Kutta solvers based on a Jacobian-free Newton-Krylov method (see Knoll
and Keyes [2004]). All these methods are available through the Dune-Fem framework. The results
and implementation techniques presented in this paper can be applied to explicit, implicit, or
semi-implicit methods and mostly a matrix-free implementation of the discrete operator Lh is
used. In addition, assembled operators are available.
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3 Implementation

It is well known that numerical tools for solving partial differential equations strongly depend
on the type of the equations. In order to unify all of the numerical tools and types of partial
differential equations in a modular toolbox, a common interface is needed. The aim of this section
is to give a short overview on the implementation of central classes of Dune-Fem-DG. All the
classes described below are used by the examples in section 4.

3.1 Simulator: Starting a Simulation

Simulations are usually started inside a main.cc file where the structure for each simulation looks
very similar.

The most important steps therein are

• including a header with a user defined algorithm creator, which is explained in subsection
3.3.1, and

• starting the simulation with the Simulator.

Of course there are some other steps that should be done to run a Dune-Fem-DG simulation
properly. Thus, a main.cc should at least contain the following lines2

C++ code
1 // configure macros
2 #include <config.h>
3 // include a simulator which is able to call the algorithm creator
4 #include <dune/fem-dg/misc/simulator.hh>
5 // include a user defined algorithm creator
6 #include "algorithmcreator.hh"
7
8 int main(int argc, char** argv)
9 {

10 // Initialize MPI (always do this even if you are not using MPI)
11 Dune::Fem::MPIManager::initialize(argc, argv);
12 try
13 {
14 // append parameters from command line and remove from argv list
15 Dune::Fem::Parameter::append(argc,argv);
16 // if parameter file is given append that
17 if( argc >= 2)
18 Dune::Fem::Parameter::append(argv[1]);
19 else
20 // read default parameter file
21 Dune::Fem::Parameter::append("parameter");
22
23 // select the grid type
24 typedef Dune::GridSelector::GridType GridType;
25 // define an algorithm via a algorithm creator
26 Dune::Fem::MyAlgorithmCreator<GridType> algorithmCreator;
27
28 // run simulation
29 Dune::Fem::Simulator::run(algorithmCreator);
30 }
31 catch(...)
32 {
33 std::cerr << "Generic exception!" << std::endl;
34 return 1;
35 }
36 return 0;
37 }

2By My... we denote user defined classes/structs which should be replaced by an appropriate class/struct or just a
user defined name.
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The Simulator runs the simulation for a globally defined polynomial order POLORDER. Instead
of just defining one polynomial order, it is also possible to provide a range between MIN_POLORD
and MAX_POLORD. In the case MIN_POLORD < MAX_POLORD the polynomial order can be selected
dynamically. For hp-adaptive simulations, this globally defined polynomial order is the lowest
possible order for the p-refinement.

C++ code
1 #define POLORDER = 1
2 #define MIN_POLORD = POLORDER
3 #define MAX_POLORD = POLORDER
4
5 template <int polOrd, class Problem>
6 inline void simulate(const Problem& problem)
7 {
8 // create pointer to grid
9 typedef typename Problem::GridType GridType;

10 std::unique_ptr<GridType> gridptr(problem.initializeGrid().release());
11 // create algorithm
12 typedef typename ProblemTraits::template Algorithm<polOrd> AlgorithmType;
13 std::unique_ptr<AlgorithmType> algorithm(new AlgorithmType(*gridptr));
14
15 // call compute method
16 compute(*algorithm);
17 }
18
19 template <int polOrd>
20 struct SimulatePolOrd
21 {
22 template <class Problem>
23 static void apply(const Problem& problem, const int pOrder, const bool compAnyway)
24 {
25 if(compAnyway || polOrd == pOrder)
26 simulate<polOrd> (problem);
27 }
28 };
29
30 struct Simulator
31 {
32 template <class Problem>
33 static void run(const Problem& problem)
34 {
35 // dynamic parameter , usually read through a parameter file
36 int polOrder = 1;
37
38 // run through all available polynomial order and check with dynamic polOrder
39 typedef Dune::ForLoop<SimulatePolOrd , MIN_POLORD , MAX_POLORD> ForLoopType;
40 ForLoopType::apply( problem, polOrder , bool(MIN_POLORD == MAX_POLORD) );
41 }
42 };

The Simulator only provides a static member function run() which calls a template function
simulate() for the desired polynomial degree. This is done via a static for loop and a helper class
SimulatePolOrd. Inside the simulate() function, the algorithm is created and the free compute()
function is called which is explained in the following section.

3.2 Algorithm and SubAlgorithm

An algorithm (in the Dune-Fem-DG sense) is a class derived from the interface class called
AlgorithmInterface. It contains a solve(int eocLoop) method which is called by the free
function compute(Algorithm& algorithm). The aim of the compute(Algorithm& algorithm)
function is to run the algorithm for different refinements of the grid which is needed for EOC

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



The Dune-Fem-DG module 27

(experimental order of convergence) calculations. The avoidance of EOC calculations is accom-
plished via a single execution of the EOC loop (i.e. algorithm.eocParams().steps() == 1) and
can thus be handled as a special case of a general EOC calculation loop.

C++ code
1 template <class Algorithm>
2 void compute(Algorithm& algorithm)
3 {
4 // get the grid
5 typedef typename Algorithm::GridType GridType;
6 GridType& grid = algorithm.grid();
7
8 // prepare data output
9 auto dataTup = algorithm.dataTuple();

10 typedef typename Algorithm::DataWriterCallerType::
11 template DataOutput<GridType,decltype(dataTup)>::Type DataOutputType;
12 DataOutputType dataOutput(grid, dataTup);
13
14 // eoc loop
15 for(int eocloop = 0; eocloop < algorithm.eocParams().steps(); ++eocloop)
16 {
17 // call algorithm
18 algorithm.solve(eocloop);
19
20 // write solution to disc
21 dataOutput.writeData(eocloop);
22
23 // refine grid for next eoc step
24 if(algorithm.eocParams().steps() > 1)
25 GlobalRefine::apply(grid,Dune::DGFGridInfo<GridType>::refineStepsForHalf());
26 }
27 }

Obviously, the requirements for an algorithm are small, which allows for solving a wide range of
PDEs.

Until now, nothing is said about the kind of solution of an algorithm. The solution could be nearly
arbitrary; Dune-Fem-DG provides two3 different kinds of algorithms:

• EvolutionAlgorithm for solving instationary PDEs in a time loop (method of lines),

• SteadyStateAlgorithm for solving stationary PDEs.

Although both algorithm classes are very different, it is possible to find a more detailed, common
structure, which is visualized in Fig. 1. Each algorithm calls the same five methods:

1. initialize(loop), run all the initializing steps which has to be executed once.

2. preSolve(loop), run all the steps preparing the solve() step (for instationary algorithms:
for each time loop).

3. solve(loop), run a solver.

4. postSolve(loop), run all the steps finalizing the solve() step (for instationary algorithms:
for each time loop).

5. finalize(loop), run all the finalizing steps which has to be executed once.

The idea is – since the methods are the same – that these five methods are implemented in an
external class. We will call this external class a sub-algorithm which is given by the interface
SubAlgorihmInterface. Again, there are several classes deriving from this interface class:

3More complex algorithms needed for simulation of multi physics will be presented in an upcoming paper.
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Figure 1: The two central algorithm classes describing a instationary and a stationary PDE.
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• SubEvolutionAlgorithm describing ingredients for an instationary PDE,

• SubSteadyStateAlgorithm describing a stationary PDE.

Furthermore, there are more specialized sub-algorithms for different kinds of PDEs:

• SubEllipticAlgorithm,

• SubStokesAlgorithm,

• SubAdvectionAlgorithm and

• SubAdvectionDiffusionAlgorithm.

Notice that with this scheme, it is also possible to plug a stationary sub-algorithm into a insta-
tionary algorithm.

In this paper we will focus on algorithms that only take one sub-algorithm. In an upcoming paper
we will explain how algorithms taking several sub-algorithms could be implemented and used
to solve multi physics problems.

In a nutshell: A sub-algorithm provides all the ingredients (i.e. the callback functions) needed by
an algorithm. The algorithm decides how to use these ingredients (i.e. where and how to call the
callback functions).

At first glance, the callback approach with the algorithm scheme presented in Fig. 1 may give
the feeling that a simple problem is getting unnecessarily complicated. Our design decision
always has to be seen in the background of multi physics problems where problems (and their
implementations) can be very heterogeneous and thus an interface as small as possible is needed.
Also keep in mind, that it is still possible to write specialized algorithms through the use of virtual
inheritance4.

Usually, callbacks suffer several disadvantages which can be overcome in a certain way:

4Furthermore, it is also possible to write an user defined algorithm which is not depending on sub-algorithms (and
thus on callbacks) and incorporate all information from the sub-algorithms directly. It is clear that this would change
the SubAlgorithmCreator described in section 3.3.1. Especially, for complex multi physic problems a generic algorithm
cannot just be a simple composition of sub-algorithms: A coupling has to be implemented by the user.
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• Isolation of data: Sub-algorithms only share less data which is mainly provided by the
algorithm during the call of the callback function (time provider etc.) or through a global
container class holding global data. There are two options for the case that sub-algorithms
share much data: The simplest solution is to incorporate both sub-algorithms into one sub-
algorithm. The second solution is to derive a user defined algorithm and provide more
information, e.g. during the callback call.

• Black box design: Callbacks may be more complicated for the user because they may appear
as a black box, where callback functions are defined somewhere else in the code. Thus, a
clear documentation and a predefined location for the definition of callbacks are required.
Most of the callbacks stick to a very similar patterns which reduces the complexity.

• Extendibility: The presented approach above is only a possible example. All important
methods are virtual and can be overloaded.

• Increased work overhead: Although the two central algorithms may appear a little bit over
simplified, they give a certain structure to the code.

3.2.1 Caller In order to incorporate further functionality such as adaptivity, solver monitoring,
data I/O or limiter in each algorithm cycle Dune-Fem-DG adds a caller concept. A common
interface is provided by the CallerInterface class:

C++ code
1 struct CallerInterface
2 {
3 template<class... A> void initializeStart(A&&...) {}
4 template<class... A> void initializeEnd(A&&...) {}
5
6 template<class... A> void preSolveStart(A&&...) {}
7 template<class... A> void preSolveEnd(A&&...) {}
8
9 template<class... A> void solveStart(A&&...) {}

10 template<class... A> void solveEnd(A&&...) {}
11
12 template<class... A> void postSolveStart(A&&...) {}
13 template<class... A> void postSolveEnd(A&&...) {}
14
15 template<class... A> void finalizeStart(A&&...) {}
16 template<class... A> void finalizeEnd(A&&...) {}
17 };

Figure 2 shows how Callerwork.

In Dune-Fem-DG a predefined set of callers is implemented.

• AdaptCaller, it takes care of the adaptation procedure.

• CheckPointCaller, which takes care of backup/restore.

• DataWriterCaller, a caller which takes care of data output into different formats.

• DiagnosticsCaller, it collects diverse timing information, e.g. for load balancing and
adaptation time.

• PostProcessingCaller, a caller which can be used to apply a limiter to the new solution.

• SolverMonitorCaller, this caller gathers information from the solvers.
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Figure 2: Callers can be added at predefined locations inside the algorithm.
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One basic and important assumption is the independency and self-containedness of each caller:
Each caller should be optional, i.e. should be replaceable by a caller doing nothing without
breaking the (general) validity of the whole algorithm.

At the moment, the selection of which callers to use in each ...Start() and ...End() call is
defined by the algorithm class itself and cannot be changed without reimplementation of the
algorithm. This is illustrated in Fig. 2 for the EvolutionAlgorithm. The EvolutionAlgorithm
class uses a predefined set of callers which are defined in a traits classEvolutionAlgorithmTraits.
Nevertheless, there is the possibility to exchange the caller implementation by using the more
general EvolutionAlgorithmBase class.

Thus, instead of defining the EvolutionAlgorithm

C++ code
1 EvolutionAlgorithm<pOrd,UncoupledSubAlgorithms ,MySubAlgorithmCreator>

we use

C++ code
1 EvolutionAlgorithmBase<MyEvolTraits<pOrd,MySubAlgorithmCreator>,UncoupledSubAlgorithms>

Here, pOrd is the polynomial degree of the algorithm, UncoupledSubAlgorithms is a place holder
indicating that we are using simple, uncoupled sub-algorithm and the MySubAlgorithmCreator
class will be described in subsection 3.3.1.

The MyEvolTraits class is a user defined traits class, which could look like the following:

C++ code
1 template<int pOrder,class Traits>
2 struct MyEvolTraits
3 {
4 // define grid type
5 typedef typename Traits::GridType GridType;
6
7 // define time provider
8 typedef GridTimeProvider<GridType> TimeProviderType;
9
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10 // typedef of a sub-algorithm (hold in a tuple)
11 typedef std::tuple<typename std::add_pointer<Traits::template Algorithm<pOrder> > >
12 SubAlgorithmTupleType;
13
14 // define callers: Either use a user defined implementation here or the
15 // predefined ones (empty template arguments ’...Caller<>’ means ’no caller’)
16 typedef AdaptCaller<SubAlgorithmTupleType> AdaptCallerType;
17 typedef CheckPointCaller<SubAlgorithmTupleType> CheckPointCallerType;
18 typedef SolverMonitorCaller<SubAlgorithmTupleType> SolverMonitorCallerType;
19 typedef DataWriterCaller<SubAlgorithmTupleType> DataWriterCallerType;
20 typedef DiagnosticsCaller<SubAlgorithmTupleType> DiagnosticsCallerType;
21 typedef PostProcessingCaller<SubAlgorithmTupleType> PostProcessingCallerType;
22
23 // extract tuple type of discrete functions that should be written to disk
24 typedef typename DataWriterCallerType::IOTupleType IOTupleType;
25 };

Changing one of the caller definitions affects the behaviour of the algorithm.

Everything said about benefits and disadvantages of callbacks in the last section is also valid for
the Caller classes. The main difference is that dynamic polymorphism is not used here (which is
not caused by efficiency reasons):

1. The Caller classes should be as general as possible, i.e. even the arguments of the member
functions are not prescribed by the interface class. Thus, we make use of the C++11 feature
of variadic template member functions which cannot be virtual without specialization.

2. It is enough to write only one Caller class doing nothing for the ’deactivation’ of a caller.

The usage of the AdaptCaller, DataWriterCaller and CheckPointCallerwill be described more
detailed later on.

3.3 AlgorithmCreator

As shown in the last subsection, the particular behaviour of an algorithm is defined via a sub-
algorithm which is plugged into the algorithm class.

This combination of algorithm and sub-algorithm is set up inside the AlgorithmCreator class.
An additional task of the AlgorithmCreator class is to define all the types of a sub-algorithm.

The rough structure of an algorithm creator could be the following.

C++ code
1 template<class GridImp>
2 struct MyAlgorithmCreator
3 {
4 // define a sub problem
5 struct MySubAlgorithmCreator{ /*==== SEE SUBSECTION ’SubAlgorithmCreator’ ====*/ };
6
7 // define an algorithm: SteadyStateAlgorithm or EvolutionAlgorithm
8 template<int polOrd>
9 using Algorithm = MyAlgorithm<pOrd,UncoupledSubAlgorithms ,MySubAlgorithmCreator>;

10
11 // type of the grid
12 typedef GridImp GridType;
13
14 // give each algorithm a unique name
15 static inline std::string moduleName()
16 {
17 return "myAlgorithm";
18 }
19
20 // create a grid and return a pointer to the grid
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21 static inline GridPtr<GridType> initializeGrid()
22 {
23 return Fem::DefaultGridInitializer<GridType>::initialize();
24 }
25 }

The struct MySubAlgorithmCreator is a struct that contains several type definitions which in
particular contains the definition of a sub-algorithm by defining a type alias Algorithm. The
concrete structure of this struct is shown in the next subsection 3.3.1.

Furthermore, each algorithm creator contains a method to return a unique name and a method
to create a grid (which returns the pointer to the newly created grid).

The classes SteadyStateAlgorithm and EvolutionAlgorithm (described in section 3.2) should
fulfil all requirements to implement simple algorithms.

3.3.1 SubAlgorithmCreator The definition of a sub-algorithm is more comprehensive since
Dune-Fem-DG allows the exchange of a lot of different parts of the sub-algorithm.

C++ code
1 struct MySubAlgorithmCreator
2 {
3 /*===== SEE SUBSECTION ’AlgorithmConfigurator’ =====*/
4 typedef MyAlgorithmConfiguratorType AC;
5
6 // define a grid type
7 typedef typename AC::GridType GridType;
8 // define a host grid part type (needed for moving grids)
9 typedef typename AC::GridParts HostGridPartType;

10 // define a grid part type
11 typedef HostGridPartType GridPartType;
12
13 /*===== SEE SUBSECTION ’Problem’ =====*/
14 typedef MyProblemInterfaceType ProblemInterfaceType;
15
16 // extract analytical function space from problem interface
17 typedef typename ProblemInterfaceType::FunctionSpaceType FunctionSpaceType;
18
19 // analytical problem descriptions
20 struct AnalyticalTraits
21 {
22 // define a problem type
23 typedef ProblemInterfaceType ProblemType;
24 // define a initial data type (usually contained in the problem type)
25 typedef ProblemInterfaceType InitialDataType;
26 /*===== SEE SUBSECTION ’Model’ =====*/
27 typedef MyModelType ModelType;
28
29 // define your error calculation here
30 template<class Solution ,class Model,class ExactFunction ,class TimeProvider>
31 static void addEOCErrors(TimeProvider& tp, Solution& u,
32 Model& model, ExactFunction& f)
33 {}
34 };
35
36 // name the sub-algorithm in a unique name
37 static inline std::string moduleName()
38 {
39 return "mySubAlgorithm";
40 }
41
42 // return a problem which is derived from ProblemInterfaceType
43 static ProblemInterfaceType* problem()
44 {
45 /*===== SEE SUBSECTION ’Problem’ =====*/
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46 return MyProblemType();
47 }
48
49 template<int pOrd>
50 struct DiscreteTraits
51 {
52 // define type of a discrete function space
53 typedef typename AC::template DiscreteFunctionSpaces<GridPartType ,pOrd,
54 FunctionSpaceType>
55 DFSpaceType;
56 public:
57 // type of discrete function
58 typedef typename AC::template DiscreteFunctions<DFSpaceType>
59 DiscreteFunctionType;
60
61 // tuple of discrete functions for data I/O
62 typedef std::tuple<DiscreteFunctionType*> IOTupleType;
63
64 // struct containing typedefs for the operators
65 struct Operator{ /*===== SEE SUBSECTION ’Operator’ =====*/ };
66
67 // struct containing typedefs for a solver for the operator
68 struct Solver{ /*===== SEE SUBSECTION ’Solver’ =====*/ };
69
70 // these classes are used by callers
71 // empty template arguments means: ’do nothing’
72 typedef AdaptIndicator<> AdaptIndicatorType;
73 typedef SubSolverMonitor<> SolverMonitorType;
74 typedef SubDiagnostics<> DiagnosticsType;
75 typedef ExactSolutionOutput<> AdditionalOutputType;
76 };
77
78 /*===== SEE SUBSECTION ’Algorithm and SubAlgorithm’ =====*/
79 template< int polOrd >
80 using Algorithm = MySubAlgorithm<GridType,SubMyAlgorithmCreator ,pOrd>;
81
82 };

Inside the SubAlgorithmCreatorwe have used several nested structs. The usage of nested structs
has got two different aims:

1. grouping of type definition. This is used for AnalyticalTraits and DiscreteTraits, where
we want to distinct between analytical and discrete description.

2. Allow a variable number of type definitions inside a struct for more flexibility which is done
within the structs Operator and Solver.

For a SubEvolutionAlgorithm and a SubSteadyStateAlgorithm at least

C++ code
1 struct Operator
2 {
3 typedef MyOperator type;
4 };

and

C++ code
1 struct Solver
2 {
3 typedef MySolver type;
4 };
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are required. For more complex operators, solvers and sub-algorithms it is possible to provide
more type definitions inside these structs. Further details on the operator and solver structure
will be given in the sections 3.3.5 and 3.3.6.

3.3.2 AlgorithmConfigurator A particular strength of Dune-Fem-DG is the possibility to test
different numerical schemes with different parameters. We have chosen different strategies to
change these parameters to allow as much flexibility as possible:

• Static parameter selection: This could be either done with preprocessor defines in the
CMakeFile.txt or the exchange of classes and type definitions in the AlgorithmCreator.
While the first approach is the more global one, the second is more local, because it would
also allow the usage of different classes in different sub-algorithms. Nevertheless, both
alternatives have in common that they would need a recompilation of the source after
changing one of the parameters.

• Dynamic parameter selection: This is usually done inside a parameter file which is called
parameter.in and points to another parameter file called parameter_cmake. The first file
only contains some CMake related variables. Changing one of these variables therein requires
(for out-of-source builds) a reconfiguration of the module because the parameter.in file
is copied to the build directory and has to be updated again. In order to avoid this, the
parameter_cmake file is used for all non CMake related parameters. The usage of parameter
files will be explained in subsection 3.5.1.

The task of an algorithm configurator is to hide as much template magic as possible from the user.
The usage of an algorithm configurator in the AlgorithmCreator is not mandatory because it
is still possible to use plain type definitions to set up the algorithm. It is even possible to have
several algorithm configurators at the same time.

In the current implementation, the AlgorithmConfigurator takes nine template arguments:

• GridType, type of the grid all sub-algorithms have in common.

• Galerkin::Enum, an enum which defines the type of the Galerkin scheme,

– cg: Continuous Galerkin and

– dg: Discontinuous Galerkin.

• Adaptivity::Enum, an enum describing the adaptivity of the scheme,

– no: no adaptation,

– yes: adaptation possible.

• DiscreteFunctionSpace::Enum, an enum describing the discrete function space,

– lagrange: discrete function space with Lagrange basis functions,

– legendre: discrete function space with Legendre basis functions,

– hierarchic_legendre: discrete function space with hierarchic Legendre basis func-
tions,

– orthonormal: discrete function space with orthornormal monomial basis functions.

• Solver::Enum, an enum describing the solver backend used for solving linear systems,

– fem: use Dune-Fem solver,

– femoem: use matrix based version of Dune-Fem solvers with BLAS,

– istl: use Dune-Istl solver (Blatt and Bastian [2007]),
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– umfpack: use UMFPACK solver (Davis [2004]),

– petsc: use PETSc solver (Balay et al. [2015, 1997]),

– eigen: use Eigen solver (Guennebaud et al. [2010]).

• AdvectionLimiter::Enum, an enum describing the post processing (i.e. limiting) of the
advection term,

– unlimited: no limiting,

– limited: limit the advection term.

• Matrix::Enum, an enum describing whether the system is assembled or not,5

– matrixfree: use a matrix free operator,

– assembled: use a assembled matrix describing the operator.

• AdvectionFlux::Enum, an enum describing numerical fluxes of the advective term,

– none: no advection flux (no advection term),

– upwind: Upwind flux,

– llf: local Lax-Friedrichs flux,

– general: dynamic numerical flux selection (standard) via parameter file,

– euler_llf: local Lax-Friedrichs flux for Euler (“wellbalanced scheme”),

– euler_hll: HLL flux specialized for Euler,

– euler_hllc: HLLC flux specialized for Euler,

– euler_general: dynamic numerical flux selection (for Euler) via parameter file.

• DiffusionFlux::Enum, an enum describing numerical fluxes of the diffusion term,

– none: no diffusion (advection only) flux,

– cdg2: CDG 2 (Compact Discontinuous Galerkin 2) flux,

– cdg: CDG (Compact Discontinuous Galerkin) flux,

– br2: BR2 (Bassi-Rebay 2) flux,

– ip: IP (Interior Penalty) flux,

– nipg: NIPG (Non-symmetric Interior Penalty) flux,

– bo: BO (Baumann-Oden) flux,

– primal: all of the above numerical fluxes selected via parameter file,

– br1: BR1 (Bassi-Rebay 1) flux (local formulation only),

– ldg: LDG (Local Discontinuous Galerkin) flux (local formulation only),

– local: both, BR1 and LDG, via parameter file selection.

The functionality of the AlgorithmConfiguratormay be expanded in future releases.

For the enum values general (or euler_general) and primal (or local) the advective and
diffusive flux, respectively, has to be chosen inside the parameter file. For the diffusive flux, there
are also some additional possibilities to adjust penalty terms and liftings of the flux.

5Usually, only one of the operators (assembled/matrix free) is implemented. This option can be seen as place holder
for later projects.
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Code
1 ## choose a diffusion flux: CDG2, CDG, BR2, IP, NIPG, BO
2 dgdiffusionflux.method: CDG2
3 ## scaling with theory parameters
4 dgdiffusionflux.theoryparameters: 1
5 ## penalty factor
6 dgdiffusionflux.penalty: 0.
7 ## scaling of the liftfactor
8 dgdiffusionflux.liftfactor: 1.0
9 ## type of lifting: id_id, id_A and A_A

10 dgdiffusionflux.lifting: id_id

The advective flux can be selected with the following parameter.

Code
1 ## choose an advective flux: NONE, UPWIND, LLF
2 ## for Euler equations choose: EULER-LLF, EULER-HLL, EULER-HLLC, EULER-LLF2
3 dgadvectionflux: UPWIND

3.3.3 Model In Dune-Fem-DG the analytical terms of problem (1) are implemented within
a model. This model has to be implemented for each numerical example mentioned in 4 (user-
defined, see 3).

We provide a common interface class DefaultModel which is able to capture all data which is
needed by the examples presented in section 4.6

Each information needed to evaluate an analytical term at a given quadrature point is provided
by a LocalEvaluationContext. The methods needed to form a DefaultModel are outlined in the
following.

• For efficiency reasons a method indicating whether a flux term, e.g. eitherF (U) orA(U,∇U)
is present. Otherwise the surface integration part can be skipped entirely.

C++ code
1 // indicates whether an advective or diffusive term is present
2 bool hasFlux() const;

• For the advective flux F (U) two methods need to be implemented.

C++ code
1 // evaluate advective flux F(U)
2 void advection(const LocalEvaluationContext& context,
3 const RangeType& u,
4 FluxRangeType& flux) const;
5
6 // evaluate advective boundary flux F(U) and return wave speed
7 double boundaryFlux(const LocalEvaluationContext& context,
8 const RangeType& u,
9 FluxRangeType& flux) const;

• For the termA(U,∇U) the diffusive flux implementation requires the follwing methods.

C++ code
1 // evaluate diffusive flux
2 void diffusion(const LocalEvaluationContext& context,
3 const RangeType& u,
4 const JacobianRangeType& jac,
5 FluxRangeType& flux) const;

6For more complex equations it is also possible to expand this default model.
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6
7 // evaluate diffusive boundary flux and return wave speed
8 double diffusionBoundaryFlux(const LocalEvaluationContext& context,
9 const RangeType& u,

10 const JacobianRangeType& jac,
11 FluxRangeType& flux) const;

• The source term S(U) is split into a stiff and a non-stiff part. The following methods are
required.

C++ code
1 // true if a (non-) stiff source exists
2 bool hasStiffSource() {}
3 bool hasNonStiffSource() {}
4
5 // evaluate stiff source term and return wave speed
6 double stiffSource(const LocalEvaluationContext& context,
7 const RangeType& u,
8 const JacobianRangeType& jac,
9 RangeType& s) const;

10
11 // evaluate non stiff source and return wave speed
12 double nonStiffSource(const LocalEvaluationContext& context,
13 const RangeType& u,
14 RangeType& s) const;

• Dirichlet boundary conditions are treated using the following methods.
Note that if hasBoundaryValue() returns false, meaning Neumann type boundary condi-
tions, the corresponding boundary flux function is used.

C++ code
1 // return true if boundary values are provided for this quadrature point
2 bool hasBoundaryValue(const Intersection& intersection ,
3 const double time,
4 const FaceDomainType& x) const;
5
6 // if boundary values are provided compute them
7 void boundaryValue(const Intersection& intersection ,
8 const double time,
9 const FaceDomainType& x,

10 const RangeType& u,
11 RangeType& value) const;

• For time dependent problems the time needs to be known to compute the analytical terms.
The following three methods are added to the model to deal with the time stages and time
step estimations.

C++ code
1 // set current stage time
2 void setTime(const double time) {}
3
4 // evaluate the maximal wave speed of the advective term
5 void maxSpeed(const LocalEvaluationContext& context,
6 const DomainType& normal,
7 const RangeType& u,
8 double& advectionSpeed ,
9 double& totalSpeed) const;

10
11
12 // provide a time step estimation for the the diffusive term
13 double diffusionTimeStep(const Intersection& intersection ,
14 const double elementVolume ,
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15 const double circumEsitimate ,
16 const double time,
17 const FaceDomainType& x,
18 const RangeType& u) const;

For some numerical flux implementations like LDG or IP additional methods are required.

C++ code
1 // computes velocity in the given evaluation context
2 DomainType velocity(const LocalEvaluationContext& context) const;
3
4 // returns the maximum eigen value of A(U)
5 void eigenValues(const LocalEvaluationContext& context,
6 const RangeType& u,
7 RangeType& maxValue) const;
8
9 // evaluate the Jacobian of U (only used by local formulation)

10 void jacobian(const LocalEvaluationContext& context,
11 const RangeType& u,
12 JacobianRangeType& a) const;
13
14 // return penalty factor for diffusive fluxes
15 double penaltyFactor(double time,
16 const DomainType& x,
17 const EntityType& entity,
18 const RangeType& u) const;

For some mathematical models one might want a retardation term, for example, a factor multiplied
to the mass term. In that case the following two methods need to be overloaded. The default
implementation assumes a trivial mass term.

C++ code
1 // return true if mass term is non-trivial
2 bool hasMass() const;
3
4 // return mass term
5 inline void mass(const LocalEvaluationContext& context,
6 const RangeType& u,
7 MassRangeType& m ) const;

3.3.4 Problem In the last subsection 3.3.3 we have explained how analytical data of a PDE
can be described by a model. Although a model would be enough to describe PDEs and data,
Dune-Fem-DG introduces another layer: The usage of an additional problem class allows to create
different test cases in an easy way. This problem class encapsulates data from the model, i.e. the
model is collecting information from the problem class.

The type of a problem interface (or derived class) is known by the model class (defined inside the
SubAlgorithmCreator). This is where the static problem()method of the SubAlgorithmCreator
comes into play: Inside the sub-algorithm SubAlgorithmInterface a problem is created via the
problem()method from the SubAlgorithmCreator.

C++ code
1 Problem* problem = SubAlgorithmCreator::problem();
2 Model model(*problem);

Basically, this allows to implement a number of methods in the static polymorph model using
dynamic polymorph problem classes derived from a common pure virtual interface class. Fig. 3
visualizes the idea. Note that the problem is a template parameter for the model to also allow static
polymorphism here, if necessary.
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Figure 3: The problem() method in the SubAlgorithmCreator chooses one of the problems which
are derived from a problem interface.

In Dune-Fem-DG there are two basic problem interface classes

• EvolutionProblemInterface, a problem interface for instationary PDEs,

• ProblemInterface, a problem interface for stationary PDEs.

Since a model class is user-defined, it depends on the model implementation which data from
the problem class is used. Nevertheless, there are commonalities between all PDEs presented in
section 4 which can be described by a common problem class.

In the following, a short overview of the most important methods of the class ProblemInterface,
which describes the most important factors of a (stationary) reactive advection-diffusion equation,
are given. Non matching methods (e.g. a diffusion term for Euler equations) can – of course – be
implemented in the problem class, but will be neglected by the model class.

C++ code
1 // getter for the velocity
2 virtual void velocity(const DomainType& x, DomainType& v) const;
3 // advection factor
4 virtual double constantAdvection() const;
5 // the diffusion matrix
6 virtual void K(const DomainType& x, DiffusionMatrixType& m) const;
7 // returns true if diffusion coefficient is constant
8 virtual bool constantK() const;
9 // mass factor gamma

10 virtual double gamma() const;
11 // the right hand side
12 virtual void f(const DomainType& x, RangeType& ret) const;

Boundary data is set by the following methods:

C++ code
1 // return whether boundary is Dirichlet (true) or Neumann (false)
2 virtual bool dirichletBoundary(const int bndId, const DomainType& x) const;
3 // the Neumann boundary data function
4 virtual void psi(const DomainType& x, JacobianRangeType& dn) const;
5 // the Dirichlet boundary data function
6 virtual void g(const DomainType& x, RangeType& ret) const;

For EOC calculation the exact solution has to be known.

C++ code
1 // evaluate the exact solution
2 void evaluate(const DomainType& x, RangeType& ret) const;
3 // the gradient of the exact solution
4 virtual void gradient(const DomainType& x, JacobianRangeType& grad) const;
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Finally, some methods are implemented to give additional information, e.g.

C++ code
1 // latex output for eoc output
2 virtual std::string description() const;

Notice that the argument list of the methods is much shorter and simpler for the problems than
for the models. For the EvolutionProblemInterface similar methods are defined.

3.3.5 Operator Operators in Dune-Fem-DG describe the discrete operator Lh from equation
(4). In Dune-Fem-DG operators are derived from Fem::SpaceOperatorInterface. This is a
Dune-Fem-DG with a pure virtual operator() implementing an operator between two discrete
spaces. This module provides four operators:

• DGLimitedAdvectionOperator,

• DGDiffusionOperator,

• DGAdvectionDiffusionOperator,

• DGLimitedAdvectionDiffusionOperator.

The operators are currently based on the pass concept presented in (Dedner et al. [2010b]). We
do not want to go into more details of the pass concept since the three operators provide the
functionality needed for the tests described in this paper. Further examples where passes have
been used for handling moving domains can be found in Klöfkorn and Nolte [2014] .

The operators mentioned so far are combined with matrix free solvers. To solve linear versions
of (3) Dune-Fem-DG also provides classes for assembling matrices.

There are currently two assemblers in Dune-Fem-DG: DGPrimalMatrixAssembly for the assembly
of operators of the form (2) and a class StokesAssembler, which assembles the Stokes problem.
Assembled operators follow the interfaces for linear operators from Dune-Fem and the available
solver interfaces can be used.

In an upcoming paper we will present more operators which are not based on the pass concept.

3.3.6 Solver Solvers in the Dune-Fem concept are inverse operators.

For the solution of the linear algebra system, different solvers are available. The solvers using the
Dune-Istlmodule and the PETSc framework can be modified inside the parameter file.

Code
1 ########## DUNE-ISTL ###############
2 ## dune-Istl solvers
3 istl.preconditioning.method: amg-ilu-0
4 ## number of precondition iterations
5 istl.preconditioning.iterations: 1
6 ## number of relaxation steps
7 istl.preconditioning.relaxation: 1
8
9 ########## PETSc ####################

10 ## PETSc solver: cg, bicg, bicgstab, gmres
11 petsc.kspsolver.method: cg
12 ## PETSc preconditioning: asm, sor, jacobi, hypre, ml, ilu-n, lu, icc, mumps, superlu
13 petsc.preconditioning.method: none
14 ## number of precondition iterations
15 petsc.preconditioning.iterations: 5
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For instationary problems the RungeKuttaSolver class is used which bundles the Dune-Fem
classes ExplicitRungeKuttaSolver (explicit RK schemes), ImplicitRungeKuttaSolver (implicit
RK schemes) and SemiImplicitRungeKuttaSolver (implicit/explicit RK schemes). The scheme
(and other related parameters) can be selected in the parameter file (via EX, IM, IMEX, respec-
tively).

Code
1 ## type of ode solver: EX, IM, IMEX
2 fem.ode.odesolver: EX
3 ## set order of ode solver
4 fem.ode.order: 2
5 ## set verbose mode of ode output: none, cfl, full
6 fem.ode.verbose: none
7 ## initial estimation of cfl number
8 fem.ode.cflStart: 1.
9 ## factor for cfl number on increase (decrease is 0.5)

10 fem.ode.cflincrease: 1.25
11 ## number of minimal iterations that the linear solver should do
12 ## if the number of iterations done is smaller, then the cfl number is increased
13 fem.ode.miniterations: 95
14 ## number of maximal iterations that the linear solver should do
15 ## if the number of iterations is larger, then the cfl number is decreased
16 fem.ode.maxiterations: 105
17 ## maximum cfl number
18 fem.ode.cflMax: 5

Inside an implicit Runge-Kutta step the solution of a nonlinear equation might be necessary. This
is done using the Newton scheme implemented in Dune-Fem (NewtonInverseOperator). The
following parameters in the parameter file may influence the Newton solver:

Code
1 ## print debug output for Newton solver, 0 = no
2 fem.solver.newton.verbose: 0
3 ## set maximum number of linear iterations in each Newton step
4 fem.solver.newton.maxlineariterations: 1000
5 ## set solver tolerance of Newton solver
6 fem.solver.newton.tolerance: 1e-10

3.3.7 Linkage between Sub-Algorithms, Solvers and Operators Sub-algorithms, solvers
and operators are closely linked because the solution of many PDEs requires specialized solvers
and thus also a specialized set of (discrete) operators. In the following, we want to give some
examples on this topic.

The class SubAdvectionDiffusionAlgorithm describes a governing equation (1) and uses a
Runge-Kutta solver for the solution of the equation. In order to apply an explicit, implicit or
semi-implicit Runge-Kutta solver, the splitting of the operator Lh = Limpl,h + Lexpl,h into an im-
plicit operator Limpl,h and an explicit operator Lexpl,h has to be defined. Furthermore, we want
to be able to exchange the linear solver backend. For the Solver and Operator struct in the
algorithm creator the following type definitions are mandatory.

C++ code
1 struct Operator
2 {
3 // defines the full operator
4 typedef typename AC::template Operators<MyOpTraits ,OperatorSplit::Enum::full>
5 type;
6 // defines the explicit operator
7 typedef typename AC::template Operators<MyOpTraits ,OperatorSplit::Enum::expl>
8 ExplicitType;
9 // defines the implicit operator

10 typedef typename AC::template Operators<MyOpTraits ,OperatorSplit::Enum::impl>
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11 ImplicitType;
12 };
13 struct Solver
14 {
15 // defines the linear solver
16 typedef typename AC::template LinearSolvers<DFSpaceType> LinearSolverType;
17 // defines the ode solver
18 typedef DuneODE::OdeSolverInterface<DiscreteFunctionType> type;
19 };

The SubAdvectionAlgorithm models a governing equation (1) with A = 0. Everything said for
the SubAdvectionDiffusionAlgorithm is also true for the class SubAdvectionAlgorithm, except
that we suppose Lh = Lexpl,h. Thus, it is sufficient to provide only the full operator Lh.

The class SubPoissonAlgorithmmodels a stationary Poisson equation. The operator Lh is linear
and can be written as Lh(U) := A(u) − S, where A is a matrix and S a right hand side. Here, we
distinguish between the linear operator A and the assembler which is able to set up the matrix
and right hand side entries. For the Solver and Operator struct in the algorithm creator the
following type definitions are mandatory

C++ code
1 struct Operator
2 {
3 // defines the assembler
4 typedef typename AC::template Operators<MyOpTraits> AssemblerType;
5 // defines a linear operator
6 typedef typename AssemblerType::LinearOperatorType type;
7 };
8 struct Solver
9 {

10 // defines a linear solver
11 typedef typename AC::template LinearSolvers< DFSpaceType > type;
12 };

The class SubStokesAlgorithm is similar to the SubPoissonAlgorithm, but uses an UzawaSolver
and internally holds the type of an elliptic algorithm, i.e. the SubEllipticAlgorithm class.

Table 1 gives an overview on all Dune-Fem-DG sub-algorithms and their required type definitions.

Sub-Algorithm Temporal Solver Spatial Solver Operator
SubEvolutionAlgorithm ::type – –
SubAdvectionAlgorithm ::type† ::LinearSolverType ::type

SubAdvectionDiffusionAlgorithm ::type† ::LinearSolverType ::type
::ImplicitType
::ExplicitType

SubSteadyStateAlgorithm – ::type ::type

SubEllipticAlgorithm – ::type ::type
::AssemblerType

SubStokesAlgorithm – ::type ::type
::AssemblerType

Table 1: This table lists some of the relations between sub-algorithm, solver and operators for
the current implementation: Types starting with :: are defined inside the structs Operator and
Solver of the algorithm creator, respectively. The type definitions marked with † are only the
base classes: The method doCreateSolver() returns a shared pointer to RungeKuttaSolver and
thus uses dynamic polymorphism.
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3.4 Adaptivity

Adaptation is realized using the caller class AdaptationCaller. The AdaptationCaller collects
the AdaptIndicator from the sub-algorithm and manages the adaptation process.

The main purpose of an adapt indicator is to estimate the local error and to mark the elements
which should be refined or coarsened.

C++ code
1 void estimateMark(const bool initialAdapt = false) {}

The AdaptIndicator supports different refinement strategies, e.g. a shock indicator (see Dedner
and Klöfkorn [2011]) or a gradient based indicator.

The adaptation method (i.e. the marking strategy) can be chosen in the parameter file. A lot of
other parameters can help to adjust the adaptation method:

Code
1 ## marking strategy
2 ## shockind = shock indicator ,
3 ## apost = a posteriori based indicator ,
4 ## grad = gradient based indicator
5 fem.adaptation.markingStrategy: apost
6 ## choose an adaptation method: none | generic | callback
7 fem.adaptation.method: none
8 ## specify refinement tolerance
9 fem.adaptation.refineTolerance: 0.5

10 ## percent of refinement tol used for coarsening
11 fem.adaptation.coarsenPercent: 0.05
12 ## coarsest level that should be present
13 fem.adaptation.coarsestLevel: 0
14 ## finest level that should be present
15 fem.adaptation.finestLevel: 8
16 ## adaptation call after ’adaptcount ’ many time step,
17 ## 0 disables adaptation
18 fem.adaptation.adaptcount: 1

3.5 Data Input/Output and Checkpointing

In Dune-Fem-DG data input and output is used for two purposes: reading simulation parameters
and writing simulation data to disk for post-processing and checkpointing.

3.5.1 Input Simulation parameters are read by using the Parameter class from Dune-Fem.
This allows an easy but very flexible parameter input from a parameter file or the command
line. The Parameter class uses a singleton concept to ease the use of parameter reading, i.e. no
specific object has to be created and dragged around. Defining a parameter that should be set by
a parameter file looks like this:

C++ code
1 const double defaultValue = 1.0;
2 // read value from parameter file or command line and use default value if not found
3 double value = Dune::Fem::Parameter::getValue<double>("value", defaultValue);

The parameter value can either be a fixed value, read from another parameter file, the output of
a bash command, derived by an other parameter value or the combination of all of them.
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Code
1 ## value (default = 1)
2 value: 0.5
3
4 ## set full path of all parameter files
5 fem.prefix.in: full/path/to/all/paramfiles
6 ## read additional parameters from another parameter file
7 paramfile: relative/path/to/a/paramfile
8
9 ## NOTE: Set to 1 for parameter substitution (see next lines)

10 fem.resolvevariables: 1
11
12 ## use return value of running <command> as parameter value
13 commandValue: $[ <command> ]
14
15 ## use parameter value of a different parameter
16 derivedValue: $(value)
17
18 ## combined parameter , call <command> with ’$(value) + 1’ as argument
19 combinedValue: $[ <command> $(value) + 1 ]

If the parameter should be overloaded on the command line we write value:0.5, i.e. no white-
space between the keyword and the value. In Dune-Fem-DG first the command line is parsed
for parameters and then the provided parameter file is parsed. Parameter values are set with the
value obtained by the first found matching keyword.

3.5.2 Output Simulation data are written to disk using the DataWriter class from Dune-
Fem. A DataWriterCaller caller class is used to integrate the data writer functionality into the
algorithms. Dune-Fem’s data writer classes are controlled with the following parameters.

Code
1 ## gives file prefix for each data file written to disk
2 fem.prefix: "path/for/data-ouput"
3 ## this adds a file prefix for each written data file
4 fem.io.datafileprefix: "file-prefix"
5 ## defines the type of output format, possible formats:
6 ## binary, vtk-cell, vtk-vertex, gnuplot, sub-vtk-cell
7 fem.io.outputformat: vtk-cell
8 ## this gives the number of ’virtual’ refinements for ’sub-vtk-cell’
9 fem.io.subsamplinglevel: 0

10
11 ## write data every ‘saveStep’ time period, <=0 deactivates
12 fem.io.savestep: 0.00001
13 ## write data every saveCount time steps, <=0 deactivates
14 fem.io.savecount: 42

The vtk output can be visualized using a vtk-reader like ParaView (Ahrens et al. [2005]). An
extra feature of Dune-Fem-DG’s data output functionality is the possibility to write additional
data to disk. This can be either a projection of the exact solution or a derived quantity. The
data output caller class collects additional output from a sub-algorithm. AdditionalOutput is
specified within the discrete traits section of the sub-algorithm creator, see section 3.3.1 for further
details.

3.5.3 CheckPointing In the last subsection 3.5 we have explained how numerical solutions
are written to disk. A further important aspect of data I/O is checkpointing, which is described
in the following. Dune-Fem-DG provides a checkpointing functionality from Dune-Fem which
is done in the class CheckPointer. This class provides a checkpointing functionality for writing
and reading data to and from disk enabling a program to resume from a previously saved state.
All objects registered to this class are saved when a checkpoint is written. On restart, the data is
restored consistently.
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In Dune-Fem-DG we use the CheckPointCaller caller class to incorporate the checkpointing
feature into the algorithms. A small helper class GridCheckPointCaller, which is not a real
caller, has to be used to construct the grid in the initializeGrid() method of the algorithm
creator.

Furthermore, it is important to mention that many grid manager do not support backup and
restore routines of the Dune-Grid interface, yet. That is why Dune-ALUGrid should be the first
choice for checkpointing.

Checkpointing is controlled inside the parameter file. The following parameters are read:

Code
1 ## if the following variable is specified , the simulation
2 ## is started from the last checkpoint , otherwise it is started from the beginning
3 fem.io.checkpointrestartfile: "path/to/checkpoint/"
4 ## write checkpoint every ’checkpointstep ’ time step
5 fem.io.checkpointstep: 42
6 ## write ’checkpointmax ’ number of different checkpoints (ring buffer)
7 ## existing checkpoints are overridden , if maximum number of checkpoints is reached
8 fem.io.checkpointmax: 1

3.6 Parallelization

The parallelization techniques in Dune (Bastian et al. [2008a,b]) and Dune-Fem (Dedner et al.
[2010b]) are based on domain decomposition using MPI [2009] for data exchange between multiple
processes. The domain decomposition is usually achieved by using graph partitioning tools like
ParMETIS (Schloegel et al. [2001]) and depends on the selected grid implementation. In Dune,
for example, ALUGrid (Alkämper et al. [2016]), or SPGrid (Klöfkorn and Nolte [2012]) can be used
for parallel computation. More parallel grid implementations are available in the Dune-Grid
module.

During the evaluation of the discrete operator Lh in (4) numerical fluxes at cell boundaries have
to be evaluated. i.e. when computing Ih in (6). This means that for one element the information
about the solution Uh on directly neighboring cells is needed. If the neighboring cell is a ghost
cell, communication has to be used to obtain data of the solution Uh on this cell. In fact, for
the DG method it would be sufficient to only exchange values of the discrete function Uh at the
process boundaries since for the evaluation of Ih neighboring information is only needed at the
cell interfaces and not on the neighboring cell itself. Theoretically, this allows to completely avoid
ghost cells. However, the corresponding communication interfaces for exchanging data on an
intersection e are still missing in Dune. Therefore, we have to rely on the ghost cell approach for
the evaluation of numerical fluxes at process boundaries.

Using the Dunegrid interface communication, a natural way to exchange data for the evaluation of
the discrete spatial operator would be an interior-ghost communication just before the evaluation
of the discrete spatial operator. This guarantees that all necessary data for the evaluation of the
numerical fluxes are present. We call this synchronous communication in the sense that every process
has to wait until all communications have been finished before starting with the computation of
Lh.

Dune-Fem-DG also supports asynchronous communication and shared memory parallelization. For
both features the shared memory parallelization has to be enabled, even if only one thread is used
for computation. This is done by setting the cmake variables USE_OPENMP=ON or USE_PTHREADS=ON.

The basic idea of asynchronous communication is to hide network latency behind the evaluation
of the element integrals since these integrals can be computed without information from other
partitions. To achieve this, we use the splitting of the discrete operator into element and surface
integrals, i.e. Lh(Uh) = Kh(Uh) + Ih(Uh), from equation (4). Since for the computation of Kh
(given in equation (5)) on each cell K no neighboring information is needed and thus no data
exchange between different processes is necessary. The improved computation of Lh is done in
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the following steps: (i) send interior data required by other processes, (ii) computeKh(Uh) given
in (5), (iii) wait until all data is received, (iv) compute Ih(Uh) given in (6), and (v) finally compute
Lh(Uh) as given in (4) which is only a vector operation. Further details are given in (Klöfkorn
[2012]) including a strong scaling study for the presented DG solvers.

For shared memory or hybrid parallelization we simply split the set of elements for computation of
Lh into |G|/Nthreads chunks (±1) and avoid race conditions by two sided computing of numerical
fluxes at thread domain boundaries (see Klöfkorn [2012]).

The number of threads to be used and communication type is set in the parameter files:

Code
1 ## compute on 4 threads
2 fem.parallel.numberofthreads: 4
3 ## write speedup diagnostics file (0 = no, 1 = yes)
4 fem.parallel.diagnostics: 1
5 ## if true non-blocking communication is enabled
6 femdg.nonblockingcomm: true

3.7 Code generation

A huge amount of time in numerical schemes is spent during the evaluation of the DG basis
functions in quadrature points. Although values of the scalar DG basis functions are cached
in Dune-Fem for each quadrature point, multiplication with values e.g. degrees-of-freedom is
needed in order to evaluate analytical terms mentioned in section 3.3.3. Those evaluations can be
seen as dense matrix-matrix multiplication. For a-priori known sizes of theses matrices modern
CPU structures such as AVX or SSE can be used efficiently to increase code performance. For
known combinations of basis function sets and quadratures at compile time automatic code
generation is employed to help the compiler optimizing the matrix-matrix multiplication and thus
the evaluation of discrete functions. In Dune-Fem-DG this is done in two steps:

First, the program is analyzed to obtain which combinations of basis functions and quadrature
rules are used. This is achieved by creating a special target, indicated by the compiler definition
BASEFUNCTIONSET_CODEGEN_GENERATE. This compiler switch enables the code analyzer in the
Simulator. The code analyzer is usually started with the following parameters:

Code
1 fem.eoc.steps:1
2 femdg.stepper.maximaltimesteps:1
3 fem.io.outputformat:none

This will run the ordinary (non optimized) simulation for only one time step. During this run
a call of axpy(), evaluateAll() and jacobianAll() methods from the basis function will lead
to the creation of a new plain C++ header file inside a new folder called autogeneratedcode.
These header files contain classes which partially specializes the corresponding template structs
EvaluateJacobians, EvaluateRanges, AxpyRanges and AxpyJacobians. In the end, the file
autogeneratedcode.hh is generated which includes all header files from the autogeneratedcode
folder.

Second, optimized code for these combinations is generated. The optimized target is built us-
ing the compiler definition USE_BASEFUNCTIONSET_CODEGEN. This replaces the evaluation of the
default basis functions.

A CMake macro takes care of this steps. Applied to a given target my_target the following
additional CMake-targets are created:

• my_target_codegenerator is a code analyzer that tracks each combination of basis function
and quadrature.
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• my_target_generate executes the analyzer and generates the source code.

• my_target_optimized is the final target which includes automatic generated code.

In order to enable code generation in new executables, the CMakemacro

Code
1 add_code_generate_targets(my_target)

has to be used in the CMakeList.txt which will create the custom target my_target_generate
and the two executables my_target_codegenerator and my_target_optimized.

In summary, the following three command line arguments are needed to generate and run the
optimized code.

Bash code
1 my_target_generate
2 my_target_optimized
3 ./mytarget_optimized

3.7.1 Floating point operations per second Floating point operations per second (FLOPS)
during a program run can be counted with tools like likwid (see Treibig et al. [2010]) or the library
PAPI (see Terpstra et al. [2009] and Weaver and Dongarra [2010]) which is available through Dune-
Fem. likwid can be used without program modification and for PAPIwe provide the parameter

Code
1 femdg.flopcounter: true

to enable FLOPs counting with PAPI. Both tools, however, depend on hardware counters for
floating point operations. Newer CPUs like the Intel Haswell series do not provide these counters
for floating point operations to the extend needed.

Because of that, Dune-Fem provides an overloaded version of the standard double that is called
Dune::Fem::Double. To enable FLOPs counting in Dune-Fem-DG the preprocessor variable
COUNT_FLOPS has to be set and the GRIDTYPE should be set to SPGRID_COUNT_FLOPS from the Dune-
SPGrid package available at https://gitlab.dune-project.org/extensions/dune-spgrid.
This grid implementation allows to change the coordinate type. In Section 4.1 we provide some
performance evaluation. Using this optimized automatically generated code, rates close to 30%
of the performance of the Intel Linpack benchmark can be achieved (see Section 4.1). Note,
that floating point measures computed using Dune::Fem::Double present a lower bound since
standard functions like std::pow or std::sin are not accounted for.

4 Numerical examples

In the following we show different types of time dependent and steady state advection-diffusion
problems, which were successfully solved with Dune-Fem-DG. In appendix C we will show how
the reader can reproduce the numerical results presented in the following. All convergence
studies presented in the following are carried out in a unit cube domain Ω := [0, 1]d with a grid
spacing of 4 cells in each direction and a refinement bisecting the grid width for each step. The
DGF grid files are unitcube2.dgf and unitcube3.dgf.
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Test case v µ(U)

(TC0): Heat equation user defined µ(U) = ε

(TC1): C∞ problem v = (1, ..., 1)T µ(U) = ε

(TC2): Quasi-Heat equation v = 0 µ(U) = |U|ε
(TC3): Pulse problem v(x) = (−4x2, 4x1, 0, ...)

T µ(U) = ε

Table 2: This table lists the test settings for the advection-diffusion example 4.1. They can be
chosen via run time parameter problem in the parameter file.

grid width ‖U −Uh‖L2 EOC ‖U −Uh‖L2 EOC

0.25 (TC0) 0.00526937 — (TC1) 0.0158056 —
0.125 0.000932952 2.50 0.00154145 3.36
0.0625 0.000121377 2.94 0.000219992 2.81
0.03125 1.54114e − 05 2.95 2.99987e − 05 2.87
0.25 (TC2) 1.97242e − 05 — (TC3) 0.0307972 —
0.125 3.57044e − 06 2.47 0.00954669 1.69
0.0625 4.95925e − 07 2.85 0.00132529 2.85
0.03125 6.39905e − 08 2.95 0.000153224 3.11

Table 3: This table lists the errors for the general advection diffusion reaction problem. The user
defined data are chosen as ε = 0.001 and end time T = 1. For each test scenario (TC0 - TC3) we
observe an experimental order of convergence of about 3.

4.1 Advection-Diffusion equation

In this example we consider a general advection-diffusion problem as described in equation (1).
The vector of conservative variables is U = (u)T. F (U),A(U,∇U) and S(U) are given as follows:

F (U) =


v1u
...

vdu

 , A(U,∇U) = µ(U)


∂1u
...
∂du

 , S(U) = f , (8)

where µ(U), v and f are defined within each test case.

The following four test cases are provided to cover a wide range of possible applications. In Table
2 we present different choices of v and µ(U). ε is a user defined constant. User defined means that
the corresponding parameter is chosen within the parameter file. In each test case the boundary
conditions and the source function f are defined in correspondence to a given exact solution.

In Table 3 we present the results of our numerical experiments. The error between a given exact
solution U and the numerical solution Uh is computed in the L2-norm. In each test scenario the
ansatz space was chosen to have order 2.

To demonstrate the performance of the implementation we count the number of floating point
operations during the entire program run. We run 100 timesteps for test case 3 (TC3) using the
LegendreDiscontinuousGalerkinSpace for polynomial orders 2 and 4 for different dimensions
of the range space, e.g. 1, 3, and 5. For both spatial dimensions we run the experiments on 4 096
elements and 4 threads. The number of floating point operations is computed in a separate run
using Dune::Fem::Double as field type which overloads all double operations and counts each
operation in addition. The number of floating point is then divided by the total runtime used to
compute the 100 timesteps including setup time.
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To compare the performance of the DG implementation we compute a peak number of floating
point operations with the Intel Linpack Benchmark at version 11.3.3.011. On average this bench-
mark yields ≈ 50 GFLOPs on the Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz. In Figure 4 we
present different floating point measurements for TC3. We can see that for 2d and a low order
and low dimensional range space the code generation (marked with opt. in the graphs) does
not lead to an improved performance. However, for 3d and vector valued problems (r = 3, 5)
we observe a significant performance improvement. The best performance, 14.71 GFLOPs, is
observed in 3d for k = 4 and r = 5 using the auto generated code. This result corresponds to about
30% of the reported peak performance. Note that this setting is equivalent to the consideration
of the compressible Navier-Stokes equations in 3d where similar performance results have been
reported earlier in Klöfkorn [2012].
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Figure 4: 2d results (left) and 3d results (right) for test case 3 (TC3) using different polynomial
orders and different dimensions of the range space.

4.2 Euler equation

In this example we consider the Euler equations of gas dynamics which have the form

∂tU + ∇ · F (U) = 0 in (0,T] × (Ω ⊂ Rd) (9)

with suitable initial and boundary conditions which corresponds to (1) if we chooseA(U,∇U) = 0
and S(U) = 0.

The vector of conservative variables is U = (ρ, ρv, ρE)T. ρ is the density, ρE is the total energy
density, and v = (v1, ..., vd)T is the velocity field. F (U) = (F1(U), ...,Fd(U)) which for j = 1, ..., d
has the form:

F j(U) =


ρv j

ρv1v j + δ1 jp
...

ρvdv j + δdjp
(E + p)v j


(10)

The system is closed by the equation of state for an ideal gas where the pressure is given by

p(U) = (γ − 1)
[
E −

ρ

2
|v|2

]
,
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where γ is the ratio of specific heat. For an ideal gas the speed of sound cs and Mach number M are
given by the formulae

cs(ρ, p) =

√
γ

p
ρ
, M =

v
cs
, (11)

where v is the speed of the considered fluid, i.e. the gas.

For the atmospherics applications a slightly different system is implemented using the potential
temperature as a conservative variable instead of the total energy. However, these examples
described in Brdar et al. [2013], Schuster et al. [2014], Dedner and Klöfkorn [2016], Klöfkorn
[2012], Brdar et al. [2011b], and Brdar et al. [2011a] are contained in a separate module.

For higher order Discontinuous Galerkin approximations we apply a shock detector combined
with a slope limiter for stabilization of the scheme. This stabilization scheme is described in detail
in Klöfkorn [2009], Dedner and Klöfkorn [2011] and acts in an element by element fashion. If a
shock situation is detected the polynomial degree of the numerical solution is reduced to at most
linear and a limiter function to reduce the slope, if necessary, is applied. Note, that in addition
to the DG solution reconstructions can be computed improving the resolution of the scheme in
shock regions (Klöfkorn [2009], Dedner and Klöfkorn [2011]). When choosing a constant ansatz
space the scheme yields a second order finite volume scheme. The implementation is available
in Dune-Fem-DG and further details on the limiting procedure can be found in Klöfkorn [2009],
Dedner and Klöfkorn [2011].

For a finer tuning of the limiting process the following parameters can be used:

Code
1 ## 0 = only dg solution | 1 = only reconstruction | 2 = both
2 femdg.limiter.admissiblefunctions: 1
3 ## tolerance for shock indicator
4 ## (for cells with values below the solution will limited)
5 femdg.limiter.tolerance: 1
6 ## threshold for avoiding over-excessive limitation
7 femdg.limiter.limiteps: 1e-8
8 ## add indicator to outputvariables
9 femdg.limiter.indicatoroutput: true

In Fig. 5 we present the results (taken from Klöfkorn [2009], Dedner and Klöfkorn [2011]) for
the 3d Forward Facing Step example. A third order DG scheme with stabilization and local grid
adaptivity is used. The scheme works very well in parallel environments. A detailed convergence
study can be found in Klöfkorn [2009], Dedner and Klöfkorn [2011].

4.3 Compressible Navier-Stokes equation

In addition to the Euler problem, presented in the last section, we show the application of Dune-
Fem-DG to the compressible Navier-Stokes equation. Let U, F (U), S(U), and p be as in section
4.2. The diffusion termA(U,∇U) for the compressible Navier-Stokes equation is given as follows
for j = 1, ..., d:

(
A(U,∇U)

)
j
=



0
τ j1
...
τ jd∑d

l=1 τ jlvl + λ∂ jT


. (12)

with
τ jl = 2ηD jl(U) −

2
3
ηδ jl∇ · v and D jl(U) =

1
2

(∂lv j + ∂ jvl) (13)

with D(U) the deformation tensor, the temperature T, the dynamic shear viscosity η, and the
thermal conductivity λ.
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Figure 5: Density distribution obtained with the stabilized DG scheme, adapted grid and parti-
tioning of the grid at time t = 2 for test the adaptive Forward Facing Step 3d (see Dedner and
Klöfkorn [2011] for details). The calculation used ALUCubeGrid and 512 processors. Quadratic
basis functions (k=2) have been used. The initial grid contains 185 856 hexahedrons and the final
grid contains about 4.5 million hexahedrons.

As a test case we choose a setting with given exact solution. The solution U and the source term
S(U) are taken from [Gassner, 2009, Appendix F]. Dirichlet boundary conditions are applied.
Further applications in atmospheric flow (Brdar et al. [2013], Schuster et al. [2014]) and reactive
flow (Klöfkorn and Nolte [2014]) have been considered.
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2d 3d
grid width ‖U −Uh‖L2 EOC ‖U −Uh‖L2 EOC

0.25 0.00201777 — 0.00217464 —
0.125 0.000389584 2.37 0.00040635 2.42
0.0625 6.32243e − 05 2.62 6.8199e − 05 2.58
0.03125 6.74915e − 06 3.23

Table 4: This table lists the errors for the compressible Navier Stokes poblem. The end time is
chosen to be T = 0.01. We observe an experimental order of convergence of about 2.5 for the 2d
and 3d test.

grid width ‖U −Uh‖L2 EOC ‖U −Uh‖DG EOC

0.25 0.000106058 — 0.00574261 —
0.125 1.45255e − 05 2.87 0.00142307 2.01
0.0625 1.8948e − 06 2.94 0.000354109 2.01
0.03125 2.41794e − 07 2.97 8.83146e − 05 2.00

Table 5: In this table the errors for test case 1, defined in Dedner and Klöfkorn [2008], for the
Poisson problem are presented. The first column shows the maximal grid width. In the second
and third column we list the L2-error between U and Uh and its experimental order of convergence.
The last two columns list the DG error and its EOC.

4.4 Poisson equation

In the previous sections time dependent problems were discussed. This sections will show the
application of Dune-Fem-DG to a stationary problem: the Poisson equation. Let U = (u)T be the
vector of variables. The Poisson equation is given as follows:

−∇ ·

(
A(U,∇U)

)
= S(U) in Ω (14)

with suitable boundary conditions. A(U,∇U) is given as follows:

A(U,∇U) = K


∂1u
...
∂du

 . (15)

with K ∈ Rd×d the diffusion matrix. The source term is S(U) = f , with f a given function. Many
test cases for (an-)isotropic diffusion problems can be found in the literature. In Table 5 we present
results for test case 1 taken from Klöfkorn [2011]. We show the error reduction for the L2- and
DG-error. Further results can be found in Eymard et al. [2011] and Klöfkorn [2011].

In Fig. 6 we present the solution of the Fichera corner problem computed on a 3d L-shape grid.
The adaptive algorithm and error estimator used to compute the solution as well as the DG-norm
are described in Dedner et al. [2014].

4.5 Stokes equation

The vector of conservative variables is U = (v, p)T, where p is the pressure and v = (v1, ..., vd)T the
velocity field. The Stokes equation is given as follows:

∇ ·

(
F (U) −A(U,∇U)

)
= S(U) in Ω (16)
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Figure 6: Left, the computed solution uh at iteration 11 of the adaptive algorithm. Right, the
corresponding refined hexahedral grid with non-affine geometry mapping.

grid width ‖v − vh‖L2 EOC ‖v − vh‖DG EOC ‖p − ph‖L2 EOC

0.25 0.0158905 — 0.82312 — 0.129294 —
0.125 0.00217847 2.87 0.208366 1.98 0.0265494 2.28
0.0625 0.000282386 2.94 0.0521036 1.99 0.00451457 2.56
0.03125 3.61808e − 05 2.96 0.0130128 2.00 0.000829281 2.44

Table 6: This table lists the errors for the first Stokes test case. In the first column we list the
maximal grid width, the second and third column show the L2-error of the velocity and its
Experimental Order of Convergence (EOC). The forth and fifth column lists the DG-error of the
velocity and its EOC. In the last two columns we present the L2-error and its EOC of the pressure.

with suitable boundary conditions. F (U) = (Fi(U)) andA(U,∇U) = ((A(U,∇U))i) for i = 1, ..., d
are given as follows:

Fi(U) =


δ1ip
...
δdip
vi

 ,
(
A(U,∇U)

)
i
= µ


∂iv1
...

∂ivd

 , (17)

with µ being the kinematic viscosity. The source term is S(U) = ( f1, ..., fd, 0)T, with given functions
f1, ..., fd. The first test case is chosen to verify the approximation quality for d = 2. An exact
solution is given, namely

U(x, y) = sin(2π(x + y) (1,−1)T , p(x, y) = sin(2π(x − y)),

for which the boundary conditions, kinematic viscosity and right hand side function are com-
puted. In Table 6 we present the errors between the exact solution U and the discrete solution
Uh, which is computed in a Discontinuous Galerkin Taylor-Hood space of order 2. The error is
measured in the L2-norm for the velocity and pressure component. Additionally, the DG-error
for the velocity component is computed. The velocity errors behave as expected. For the pressure
we see a super convergence effect.

As a second test case we have taken the driven cavity problem. On the domain Ω = [0, 1]2 we set
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Figure 7: This figure show the numerical solution to the driven cavity test problem. Left:
pressure contour lines. Right: stream traces. A huge vortex within the cavity and the two smaller
recirculation areas in the lower bottom part can be identified. The simulation was carried out on
a structured mesh with about 102400 elements. A Taylor-Hood P2

2 − P1 ansatz space is used.

S(U) = 0 and Dirichlet boundary conditions:

v(x) =

(2, 0) if x ∈ [0, 1] × [1]
0 else

In Fig. 7 we present the numerical results for µ = 1.0.

5 Summary

We have shown that the newly released Dune-Fem-DG module is able to solve a wide range
of problems using Discontinuous Galerkin methods. A lot of scientific papers have used the
Dune-Fem-DG module in the past and our goal is to enlarge the class of problems which can be
solved.

One of the next steps for Dune-Fem-DG is the simulation of PDEs stemming from multi physics
problems. Two examples of multi physics we are currently interested in are the fluid-structure in-
teraction problem and the simulation of atherosclerotic plaque formation (a chronic inflammation
of the blood vessel wall which may lead to a heart attack, see Girke et al. [2014]).

Fig. 8 and 9 show a draft on how the implementation could be realized within the Dune-Fem-DG
framework. The boxes with the brightest blue describe the algorithm concept from section 3.2
realizing the main time loop. The dark blue colored boxes represent the sub-algorithm concept
where each problem is solved in a monolithic fashion. One of the simplest couplings is the
consecutive call of all sub-algorithms within the algorithm. Once the user has specified which
solution of each sub-algorithm are associated, the class EvolutionAlgorithm automatically calls
all sub-algorithms consecutively. This also includes the call of all callers mentioned in section
3.2.1.

Although it is possible to write more generic coupling classes (e.g. a simple fixed-point iteration) it
may become cumbersome at some point. The usual way to build more complex couplings would
be to derive from the EvolutionAlgorithm and to write a user-defined algorithm, especially by
overloading the solve() method. In Fig. 8 and 9 this is indicated by the medium blue colored
boxes.
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Figure 8: Atherosclerotic Plaque. A detailed simulation of atherosclerotic plaque can be roughly
divided into three main parts – blood flow (A), inflammation (B) and deformation (of the vessel
wall due to plaque) (C) – and contains the solution of different PDEs, defined on different domains
and different time scales. The main factor for atherosclerosis is thought to be the penetration of
Low Density Proteins (LDL) from the blood vessel into to vessel wall. This penetration is mainly
influenced by the wall shear stress of the blood onto the vessel wall. Thus, a Navier-Stokes
equation has to be solved in the blood vessel and a Darcy equation in the vessel wall. This is
coupled to an advection-diffusion equation for the LDL via a membrane equation. During each
heart beat the local blood flow changes which makes a very small time step size necessary (A).
On the other hand, the inflammation of the vessel wall is modeled using a reactive advection-
diffusion equation for different species involved in this inflammation (B). This inflammation leads
to a volume increase of the vessel wall (C) but only large time steps are sufficient as atherosclerotic
plaque growth over years and decades.

Figure 9: Fluid-Structure Interaction. Different approaches have been developed in the recent
years to solve the fluid-structure interaction problem: While one approach is the monolithic
one where the whole problem is solved at once, another idea is to use segregated solvers. For
each time step a fixed point iteration is started: first solving the Navier-Stokes equation in the
fluid domain, then projecting the force onto the boundary of the solid domain, then solving the
elasticity equations on the solid domain and finally computing the resulting deformation. This is
done until a threshold is reached.
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The implementation of these two applications is ongoing work and may result in small interface
changes for future releases. One should also mention that a major benefit of this modular
implementation is the exchangeability of each sub module. This would allow to consecutively
improve mathematical models. One assumption for the simulation of atherosclerotic plaque (see
Fig. 8) is that only deformation of the vessel wall occurs due to plaque growth (on a long time
scale). This assumption neglects the deformation of the vessel wall due to each heart beat.

Using the work of the fluid-structure interaction problem could help to easily improve the current
simulation of atherosclerotic plaque.
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A License

The Dune-Fem-DG module is available under the GNU General Public License version 2, or (at
your option), any later version.

B Installation notes

The Dune-Fem-DG module is available under
https://gitlab.dune-project.org/dune-fem/dune-fem-dg. The version used in this paper
can be downloaded with the command

Bash code
1 git clone --branch releases/2.4 \
2 https://gitlab.dune-project.org/dune-fem/dune-fem-dg.git

After downloading the Dune-Fem-DG module run

Bash code
1 ./dune-fem-dg/scripts/build-dune-fem-dg.sh

from the command line which will

• download all depending Dunemodules,

• run dunecontrol (build all Dunemodules),

• run the CMake test build system and produce all tests.

By default the CMake test build system will only print whether a test has passed or failed. To see
the whole output on the command line, it is possible to use the verbose output of ctest directly.

Bash code
1 cd dune-fem-dg/scripts/dune-fem-dg/
2 ctest -V

Another approach is to directly build and modify the examples which can be found in the directory
dune-fem-dg/scripts/dune-fem-dg/dune/fem-dg/examples/.

The CMakeLists.txt and parameter files are located in the corresponding test folder.
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C Case Studies

In this section we show how Dune-Fem-DG can be used to reproduce the results presented in
section 4. We assume that Dune-Fem-DG is build and configured as explained in the previous
section. All paths used in the following description are relative to the CMake build directory
dune-fem-dg. For each numerical example Dune-Fem-DG writes numerical solutions into the
test/data sub directory located in the examples directory. Additional information such as grid
width, errors, EOC, number of iterations/timesteps or run-time are printed onto screen. Unless
otherwise specified each example is build for grid dimension d = 2, polynomial order k = 2 and
ALUGrid< cube > as the default grid manager. To change either the grid dimension, grid manager
or the polynomial order the corresponding CMake definition

Code
1 set( GRIDTYPE YASPGRID )
2 set( GRIDDIM 2 )
3 set( POLORDER 2 )

has to be set to the desired value in the source directory file CMakeLists.txt. A reconfiguration
and recompilation of the Dune-Fem-DG module is necessary to apply the changes.

• Advection-Diffusion example:
In section 4.1 four test cases have been presented. The simulation for a test case is done by
calling:

Bash code
1 cd dune/fem-dg/examples/advdiff/test
2 ./advdiff "problem:<problem>"

with <problem> being one of the following parameters: heat (TC0), sin (TC1), quasi (TC2)
or pulse (TC3). Default is test case (TC2).

• Compressible Euler example:
In section 4.2 several test cases have been presented. The simulation for a test case is done
by calling:

Bash code
1 cd dune/fem-dg/examples/euler/test
2 ./euler "problem:<problem>"

with <problem> being one of the following parameters: sod, riemann, ffs, smooth1d, or
schockbubble. The default is test case sod.

• Compressible Navier-Stokes example:
In section 4.3 one test case was presented. The simulation for a test case is done by calling:

Bash code
1 cd dune/fem-dg/examples/navierstokess/test
2 ./navierstokes

• Poisson example:
For the Poisson example the results presented in 4.4 can be reproduced calling in a terminal:

Bash code
1 cd dune/fem-dg/examples/poisson/test
2 ./poisson

Further problems are available for the Poisson problem which can be chosen via parameter
problem, see poisson example parameter file for further test cases.
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• Stokes example:
The results for the two test cases presented in 4.5 for the Stokes example can be reproduced
by calling

Bash code
1 cd dune/fem-dg/examples/stokes/test
2 ./stokes "problem:<problem-number>"

with<problem-number>0 for test scenario 1, which is the default value, or<problem-number>
1 for the driven cavity problem. The contour lines for the pressure and the vorticity are
generated using ParaView in a post-processing step, which has to be done manually.
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Abstract: A complete finite element (FEM) and boundary element (BEM) computational toolbox
is presented, based on the Dune and Bem++ software packages respectively, for the efficient
independent solution on parallel/multi-threaded multi-core computers of separate finite and
boundary element systems. Each system has very different memory resource requirements, but
can be coupled together within a common computer program for solving multi-physics PDE
problems for computational sciences and engineering applications.

Examples of both direct (to a fixed-point) and indirect FEM-BEM iterative coupling, and their
performance results with increasing core/thread count, drawn from electromagnetic scattering
and fluid mechanics are presented as illustration of the wide scope of applications for this package.

1 Introduction

Finite element methods (FEM) and boundary element methods (BEM) have been around for many
years, and due to the fundamental difference in their structures have typically been used for very
different types of problem.

For unbounded computational problems, the classic example being an electromagnetic/acoustic
wave scattering off an impenetrable obstacle, where a solution is required within a region of
space (or even time) of unlimited extent, a finite element discretization of this whole region is
impractical.

By requiring just the disretization of the boundaries of computational domains, however, (and
hence the name) the boundary element method would avoid such a problem because the boundary
of such an infinite region is just the finite surface of the scattering obstacle itself – the “other”
boundary to the infinite region can be neglected provided suitable assumptions can be made
about the solution at infinity Wrobel [2002].

This capability for supporting a solution in an unmeshed region, however, gives the BEM one
of its principle drawbacks, namely that the solutions being “interpolated” in such regions are
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assumed to be linear, and this limits its application to a relatively small class of problems where
linear (or linearized) solutions are acceptable.

Finite elements, on the other hand, make no such assumptions on a solution, and thus give
great flexibility for the simulation of all kinds of non-linear behaviour, but all, of course within a
computational region of limited extent.

It should also be noted, that due to the implicitly localized nature of finite element interactions
(giving sparse system matrices), parallelization for multi-core processing is relatively easy, with
each core just computing the solution for a different physical region of the computational domain.

Because of the “dense” connections between the local values of the unknown solution at different
locations in BEM discretizations, however, parallelization of BEM is much more challenging, and
usually depends on an overall reduction in the amount of communication between these local
values during the solution process through the use of “fast” techniques which can require a huge
coding effort to implement.

Now, it is the complimentory, but very different, nature of the finite and boundary element meth-
ods which has led to the interest in their coupling together to tackle “mixed” problems Johnson
and Nedelec [1980], Stephan [2004], Costabel [1987], Mund and Stephan [1997], with specific
applications in electromagnetics Meddahi and Selgas [2003], including the wave scattering sug-
gested above Hiptmair [2003], and fluids/elasticity Brink and Stephan [2001], Gatica and Heuer
[2000], Meddahi and Sayas [2000], further references may be found in Radcliffe [2011, 2012].

These coupling schemes have typically involved the combining together of the discretizations
afforded by the two methods to form one big system matrix to be inverted, however, the disparate
but complementary nature of BEM and FEM means that the structure of this single system matrix
can be very non-uniform, making its numerical inversion problematic.

Because the FEM only considers spacially local interations between the discretized values of
the solution variables, the system matrices it creates are sparse, and the memory required for
the solution of such problems may be distributed analogously to the spacial distribution of the
variables themselves in what, following the definitions of Heroux et al. [2011], may be termed a
“Mode 1” for the programming of modern multi-node computers with more than one core per
node.

The BEM, however, at least in its traditional form, involves dense system matrices arising from
the need for all values of the discretized unknown to know about all other values in the boundary
integrals upon which the method is based.

It is for this reason that there are sparse and dense regions within the system matrix when FEM
and BEM discretizations are combined at the (more fundamental) system matrix level.

The alternative to such a coupling of the system matrices, is to somehow couple the solutions their
separate inversions would generate instead. This allows different optimized preconditioners and
solvers to be used for the FEM and BEM parts separately.

These coupling methods may be referred to as “iterative”, and as will be seen in the next section,
involve repeated solution of the separate FEM and BEM problems within each iteration to provide
a successive updating, from some initial guess, of the solution and/or its derivative, over the
common boundary between the FEM and BEM regions until the updates change nothing and the
solution is converged Lin et al. [1996].

Though not used here, these updates can be further defined through the use of relaxation parame-
ters which specify, within a particular iteration, how the solution (or derivative) from one scheme
should be used to set the Dirichlet and/or Neumann boundary conditions for the other at the next
iteration. By allowing a “mix” of Dirichlet/Neumann data from the two coupled problems to be
used as the boundary conditions for either at the next iteration, the convergence of the coupling
scheme may be altered significantly.
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For the examples presented here, though, such mixes are not used, and the data for setting the
boundary condition of one problem will come exclusively from the solution of the other problem
it is to be coupled to.

Now, while the sparse FEM systems work best on distributed memories, the dense BEM systems
work best in shared memory environments, where multiple processes can access all the variable
data that they will need over the entire discretized domain to perform their integrals. This
involves a “Mode 2” style of programming Heroux et al. [2011], where the parallelization is
achieved through the use of multi-threading on a single node with multiple cores.

Extreme-scale computing hardware is typically either specialized towards shared memory de-
signs, with up to 64 cores (beyond which memory clashes become prohibitative), or distributed
memory 1000+ cores, with the popular software libraries OpenMP and MPI being often used for
the management of each type of memory respectively.

Thus one can say that any dense BEM implementation is well suited for a multithreading en-
vironment, for execution on a shared memory machine (as is the case for Bem++), while FEM
applications are best written using MPI for distributed memory machines (as is the case with
the Dune software packages). Thus a program that were to combine both FEM and BEM solves,
would ideally have a hybrid or “bi-modal” memory architecture.

The memory architecture requirements of modern fast, data sparse BEM methods like the H–
matrices available in Bem++ (or other related “fast multipole” type methods) can, however, be
significantly different, but will be considered for present purposes as closer to those of their dense
forebears, than those of FEM.

As with numerical schemes themselves, the majority of literature on computational data structures
has been connected with either the shared or the distributed memory architectures appropriate
to the numerical scheme itself, rather than on hybrids. A good discussion on the data-structures
and techniques needed to introduce ahared threading libraries into MPI models may be found
in Heroux et al. [2011], which also has a few useful references therein.

Recently, approaches for combining the distributed and shared memory paradigms have been
investigated – mostly aiming at extending an existing distributed memory model to benefit from
the memory hierarchy and hardware structure of modern computer architectures. For example
the distribution of the spatial grid for a finite element computation is carried out in two steps,
first a coarser distribution over the nodes of the machine using MPI for data communication and
in a second step subdividing these coarse patches into smaller chunks distributed over the cores
of each node using a shared memory model, see Gaston et al. [2015], Ibanez et al. [2016], Olson
et al. [2007] and references therein.

This parallelization strategy is also available in some Dunemodules, for example for matrix free
methods in Klöfkorn [2012]. This approach can be thought of as a hierarchic hybrid parallelization
(or “hierarchic bimodal” to follow the “mode” terminology of Heroux et al. [2011]). It is restricted
to single packages and does not require any global access to the whole set of degrees of freedom.
This is an important difference to the challenges discussed in the following, where the Bem++
library requires the whole grid to be available in a shared memory address space, while the Dune
library and the linear solver packages used for solving the FEM problem rely on MPI for data
exchange and are not even necessarily thread safe. We are not aware of any openly available
publications in the area of computational PDEs employing a non-hierarchic hybrid parallelization
approach to the use of distributed/shared memory concepts within the same program, and would
hope that the present work might be among the first to openly address this issue.

This paper will present the internal structure and design decisions taken for a software toolbox
that intertwines the asynchronous evaluation (across a parallel/multithreaded environment) of
fem and bem constituent numerical kernels/solvers with disparate but complementary computing
resource requirements for the development of efficient integration algorithms for the simulation
of coupled partial differential equations arising in multiphysics applications ranging from elec-
tromagnetic wave scattering to electrically charged droplet deformations where the underlying
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processes have disparate computing resource requirements that can be exploited effectively in
this way.

In particular, we show the construction and management of special shared memory spaces, on
a single node, that allow the running of a multi-threaded bem solver within an MPI application
using all the cores of the node in which the shared memory sits. The management essentially
involves granting ownership of different regions of the shared memory to different processes, or
“ranks”, to avoid access clashes if two different ranks try to write to the same memory address at
the same time. Multiple reading from the same address does not pose the same problems.

Finally, this paper is intended as an introduction and guide to the associated software for use in
new hybrid FEM/BEM application developments. While limited investigation and discussion of
computational efficiencies is provided, this is from a very experimental “try it and see” approach
comprehensible to the largest possible audience, and no formal symbolic analysis of the coupling
methods used is presented. However, the reader is directed to Sayas [2009, 2013] and the references
therein for a formal analysis of coupling methods similar (or identical) to those used here.

2 Coupling Methods

Consider an equation for an unknown u, valid inside an interior domain, Ω ⊂ R3, satisfying

A u = f − Bv (1)

arising from the discretization of a partial differential equation by the finite element method.
Similarly, let the function v be a discrete solution defined on the boundary, Γ ≡ ∂Ω ⊂ R3,
satisfying

D v = g − Cu (2)

arising again from a discretized partial differential equation using either finite or boundary
elements (or both if this surface solution may itself be decomposed into two distinct surface
solutions). Any BEM solution would of course be equivalent to solving the corresponding
volume problem in the exterior Ω∞ ≡ R3

\Ω.

The full coupled problem can be written as a (block) matrix vector problem, where A,D arise from
a discretized weak formulation of partial differential equations defining a function in the domain
Ω and on Γ, respectively. The terms B,C provide coupling between the problem in the domain
and on the boundary. The term B provides, for example, Neumann information using the surface
solution as flux and C might take Dirichlet or Neumann traces from the domain solution to force
the surface problem. Note that the terms A,B,D,C could refer to non-linear operators although
we will mostly be focusing on linear operators in the following.

The combined bulk-surface problem thus results in the matrix system(
A B
C D

) (
u
v

)
=

(
f
g

)
(3)

For the coupling problems discussed here, it is possible to combine the system matrices from
both to form a large matrix as shown above. In the case of FEM and BEM coupling this larger
matrix will have both sparse and dense regions corresponding to the two different methods used
in its construction. Consequently it is crucial for an efficient solution of the coupled system to
not treat it as a single matrix, but to make use of its block structure. Furthermore, the methods
discussed here allow us to treat the solvers for the different parts of the system as “black boxes”,
allowing us to use optimal solvers for both the surface and the bulk part of the problem. Thus we
can use the efficient methods available in Dune for solving FEM problems (including multigrid
and direct solvers) and the optimal methods for the BEM problems available in Bem++ (including

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



FEM-BEM Coupling for Multiphysics Problems in Parallel Computations. 67

multipole and H-matrix methods). An efficient solution method is based, for example, on a
block-preconditioned GMRes iterative solver Feischl et al. [2015]. We discuss a similar approach
below. First we describe the idea based on a simple iterative updating of each scheme’s solution
allowing convergence to a fixed point solution.

Assume in the following that the matrices on the diagonal result from a bounded, positive bilinear
form so that A and D are invertible, and system (3) may be preconditioned by the block diagonal
matrix

P =

(
A−1 0

0 D−1

)
(4)

to give the equivalent system(
A−1 0

0 D−1

) (
A B
C D

) (
u
v

)
=

(
A−1 0

0 D−1

) (
f
g

)
(5)

which may be simplified to (
I A−1B

D−1C I

) (
u
v

)
=

(
A−1 f
D−1g

)
(6)

Now, one of the simplest iterative schemes one can devise for solving A x = b is that of Richardson
with a relaxation parameter of unity

xk+1 = xk
− A xk + b (7)

Applying this to (6) with x = (u, v)T gives

(
uk+1

vk+1

)
=

(
uk

vk

)
−

(
I A−1B

D−1C I

) (
uk

vk

)
+

(
A−1 f
D−1g

)
(8)

=

(
uk
− uk

− A−1Bvk

vk
−D−1Cuk

− vk

)
+

(
A−1 f
D−1g

)
(9)

=

 A−1
(

f − Bvk
)

D−1
(
g − Cuk

)  (10)

and our first, block Jacobi style iterative coupling solver, to be initiated from an initial guess u0, v0

and computed for integer k > 0:

vk+1 = D−1(g − Cuk) , uk+1 = A−1( f − Bvk) (11)

A very simple variant of this gives a second, block Gauss-Seidel style method to solve the coupled
problem:

vk+1 = D−1(g − Cuk) , uk+1 = A−1( f − Bvk+1) (12)

It should be noted that very simple Richardson iterative solvers like these were considered in the
early days of domain decompositon methods and may have considerable limitations regarding
their efficiencies and even convergence, which could be critical or slow for some scenarios Toselli
and Widlund [2005].
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The preconditioner P in equation (4) used in the two simple iterative schemes can be modified
by using suitable preconditioners instead of the exact inverse matrices. So for example A−1 can
be replaced by an algebraic multigrid preconditioner as available in Dune-Istl. If a Krylov type
method is used to invert A then it is possible to fine-tune stopping criteria in each step of the
Richardson iteration to improve efficiency of each step, but at the cost of perhaps a slight increase
in the number of iterations. This type of efficiency tuning has not been investigated here but
could be added to the package.

The final approach discussed here is more involved, but more robust, and often leads to a reduction
in the number of iterations required. It makes use of a GMRes method and a reformulation of
problem (3) eliminating either v or u: First the second row of (3) gives

v = D−1g −D−1Cu (13)

which may be substituted into the first row of (3) to give

Au + BD−1g − BD−1Cu = f (14)

Multiplying through by A−1 we have

u − A−1BD−1Cu = A−1 f − A−1BD−1g (15)

Thus solving the coupled system

M u = b (16)

where

M = I − A−1BD−1C (17)

b = A−1
(

f − BD−1g
)

(18)

is then completely equivalent to solving system (3). The problem can now be solved using a
Krylov iterative solver, for example GMRes. These methods only require computing the matrix
vector product M u.

Of course, it would also have been possible to perform the eliminations the other way around
to obtain a combined system M v = b; solving for the surface variable v instead, with possibly
different memory requirements. A third option would be to apply the Krylov method directly
to the full block system 6. The framework presented here is flexible enough to allow for an easy
implementation of these alternative coupling methods.

Note that the first two coupling methods are included primarily as a simple demonstration on
how to implement coupling schemes within the current framework. These methods are well
known not to be very robust and efficient but are included to show the appropriate code structure
and, due to their simplicity, are intended as a starting point for user developments of coupling
schemes/solvers more suited to their particular problems.

Indeed, the use of an appropriate coupling scheme can be crucial to the success of the FEM–
BEM coupling as a whole, thus, for the scattering wave case seen in section 6.2, for example, it
is suggested the reader try the Jacobi and Gauss-Seidel methods (which do not converge at all
without additional relaxation), before restoring the original GMRes coupling scheme more suited
to the problem. In the simpler FEM-FEM coupling example found in section 6.1, on the other
hand, these two methods will converge within a reasonable number of iterations.
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3 Software Dependencies

The software, version 2.3, to be presented here for the use, and possibly coupling, of FEM and
BEM within the same parallel program is based on the Dune 2.3 and Bem++ software packages,
which we now examine in a little more detail.

Dune stands for the “Distributed and Unified Numerics Environment”, and is a modular toolbox
for solving partial differential equations (PDEs) with grid-based methods Dune [2012]. It supports
the easy implementation of methods like finite elements (FE), and finite volumes (FV).

DUNE is free software licensed under the GPL (version 2) with a runtime exception, thus it is
possible to use Dune even in proprietary software.

The underlying idea of Dune is to create slim interfaces allowing an efficient use of legacy and/or
new libraries. Modern C++ programming techniques enable very different implementations of
the same concept (e.g: grids, solvers, ...) using a common interface at a very low overhead. Thus
Dune ensures efficiency in scientific computations and supports high-performance computing
applications Dune [2012].

Dune applications are designed and written to use pre-existing packages, or “modules”, which
can be bolted together to provide whatever functionality the developer will need in their own
program (also written as a module). This allows easy sharing of computer code with a “black-box”
mentality that anyone using a module should not need to know how it actually works.

Essential to most Dune programs are the five core modules, Dune-Common, Dune-Geometry,
Dune-Grid and Dune-Istl, which provide the basic housekeeping required of any program
handling meshes.

Based on these core modules, the Dune-Fem module provides all the basis function definitions,
matrix assembly and problem definition routines required for the creation of a complete finite
element program. If an appropriate discretization module, or “grid-manager”, is also used (see
next) then parallel assembly and solution of the resulting problems is easily possible for the novice
user, with minimal knowledge. The parallelization is based on calls to routines drawn from the
Message Passing Interface (MPI) libraries, with a good computational scaling dune-fem howto
[2015].

To enable the efficient parallelization of the FEM part of the coupled FEM-BEM solver, the grid
manager chosen is Dune-ALUGrid Alkaemper et al. [2016], which allows the construction and
partitioning across multiple processors of any three-dimensional volume and surface meshes the
user might specify for the separate FEM and BEM sub-problems. Importantly, it also allows a user
defined specification of the partitioning, so that optimal division of the given meshes is possible,
with the same partitioning being used for both volume and surface meshes where required to
facilitate data exchange.

The last of the Dune modules required may be thought of as almost literally sticking the whole
thing together. With FEM and BEM solutions required on both volume and surface meshes in
the various examples that will be presented, it is important to have a means of communicating
solution data from one computational domain to another in order that it may be used to update
the respective solutions there. The Dune-Grid-Glue module Bastian et al. [2010], provides just
the simple yet effective means required for transferring various numerical values between the
grids (even partitioned and non-matching grids).

Outside of the Dune environment, and to provide the necessary boundary element routines the
Bem++ library is used; an open-source Galerkin boundary element library that handles Laplace,
Helmholtz and Maxwell problems on bounded and unbounded domains in three space dimen-
sions Smigaj et al. [2015]. Owing to build compatibility issues, at present the installation script,
see appendix §B, downloads a certain git hash of Bem++ which resolves to the 3.0.3 tag. When the
Bem++ compatible with Dune 2.4 becomes available, this restriction is intended to be lifted, with
a 2.4 release of the Dune-Fem-Bem-Toolbox.
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The package BEM++ is itself built extensively using routines drawn from the EigenC++ template
library for linear algebra with matrices, vectors, numerical solvers and related algorithms Guen-
nebaud et al. [2010]. Eigen is a template library defined in the headers and doesn’t have any
dependencies other than the C++ standard library. Parallelization in Bem++ is achieved using
multi-threading based on Intel’s Threading Building Block TBB [2014]. For the grid data structure
Bem++ relies on the Dune core modules, so data exchange between the two packages is achievable
without any reorganization of data and thus is highly efficient.

4 Implementing the Coupled Problem

The implementation discussed in this paper is based on the approach adopted in the “howto”
module of Dune-Fem dune-fem howto [2015]: both the bulk and the surface problems use a Model
class describing the functions required for the underlying partial differential equations. This is
passed to a Scheme class which sets up the required types for the discrete spaces, creates the glue
objects that will be needed for any coupling and selects the solvers to be used in addition to also
holding the actual solution.

The creation of the glue objects is done automatically by the scheme constructors, with every
second scheme defined (within the main.cc program file) creating a glue object between its mesh
and that of the previously declared scheme. Thus, at least for the present software release, minor
attention needs to be paid to the order in which the schemes are declared.

In its original form within Dune-Fem-Howto, the Scheme class implements two methods prepare
and solve, which setup the right hand side vector and assembles and solves the system, respec-
tively.

For the Dune-Fem-Bem-Toolboxmodule the original scheme class used in the Dune-Fem-Howto
examples is extended by the additional method couple which processes the data communication
between two schemes – one "bulk" scheme for the inside region, and one "surface" scheme for the
surface of that region.

Thus, in our module we provide two such scheme classes, one for FEM discretized elliptic
problems defined either on a surface mesh or on a volume mesh, and a second for exterior BEM
problems defined on a surface grid only. In the case of the BEM problem the Model only provides
the static information about which integral operators to use for the BEM problem. Additional
parameters, for example wave numbers, can be set through run time parameters as described
below.

For FEM problems systems of non-linear equations of the form∫
ω

D(x,u(x,∇ωu(x)) · ∇ωϕ(x) + m(x,u(x),∇ωu(x))ϕ(x) =

∫
ω

f (x)ϕ(x)

can be defined through the Model class. Here ω = Ω or ω = Γ is the volume or the surface
with ∇Ω = ∇ and ∇Γ denoting the surface gradient. Although non-linear elliptic problems can
be described by the model class and handled by the schemes we will mainly focus on linear
problems in the following.

In this version of the module only a linear coupling between the two schemes is considered. This
is to be extended in future releases. The surface solution is assumed to be coupled to the volume
problem using Dirichlet or Neumann conditions taking the form

∇u · n + αΩu = αΓv .

Here αΩ and αΓ are functions defined on the coupling surface.

Note that for a surface FEM problem v are the values of the quantities defined on the surface
while for a BEM problem v will actually be an approximation of the normal derivative of the far
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field solution. Since the αΩu contribution of the coupling will be part of the matrix A, the actual
coupling matrix is

< Bv, ϕ >:=
∫

Γ

αΓvϕ (19)

The main part of the bulk problem is of the form

< Au, ϕ >:=
∫

Ω

D(x,u,∇u) · ∇ϕ + m(x,u,∇u)ϕ +

∫
Γ

αΩuϕ (20)

and described by a single Model class consisting of four methods:

C++ code
1 template< class Entity, class Point >
2 void source ( const Entity &entity, const Point &hatx,
3 const RangeType &value, const JacobianRangeType &gradient ,
4 RangeType &flux ) const
5 template< class Entity, class Point >
6 void linSource ( const RangeType& uBar,
7 const Entity &entity, const Point &hatx,
8 const RangeType &value, const JacobianRangeType &gradient ,
9 RangeType &flux ) const

10 template< class Entity, class Point >
11 void diffusiveFlux ( const Entity &entity, const Point &hatx,
12 const RangeType &value, const JacobianRangeType &gradient ,
13 JacobianRangeType &flux ) const
14 template< class Entity, class Point >
15 void linDiffusiveFlux ( const RangeType& uBar, const JacobianRangeType& gradientBar ,
16 const Entity &entity, const Point &hatx,
17 const RangeType &value, const JacobianRangeType &gradient ,
18 JacobianRangeType &flux ) const

The methods provide the implementation of m(x,u,∇u),D(x,u,∇u) and their linearization around
ū on an entity and local coordinate x̂. Addition methods on the Model describe boundary condi-
tions and a forcing term.

These Model classes are used for the implementation of both bulk (ω = Ω) and for surface (ω = Γ)
finite element methods. The lower diagonal block D representing the main part of the boundary
pde is of the same form as A given above and the coupling occurs through the forcing term:∫

Γ

D(x, v(x,∇Γv(x)) · ∇Γϕ(x) + m(x, v(x),∇Γv(x))ϕ(x) =

∫
Γ

(
β0u + β1∇u · n

)
With suitable function β0, β1 defined on the coupling surface. Therefore,

< Cu, ϕ >:=
∫

Γ

(
β0u + β1∇u · n

)
ϕ (21)

However, user defined parameters αΩ, αΓ, β0, β1 are intended for future releases, and all the
examples presented below will effectively have them set to one where they are present.

For describing problems to be discetized by the boundary element method a similar model class
needs to be implemented. We provide a model for a far field Laplace and Helmholtz problem.
For example, to solve a complex valued Helmholtz equation of the form

4u + ωu = uinc in R3
\Ω

u = g on ∂Ω

the model class has the following form:
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C++ code
1 // FS: The complex function space, GP: the grid part used
2 template <class FS, class GP>
3 struct HelmholtzModel
4 {
5 HelmholtzModel(double omega) ;
6 struct IncidentData {
7 void evaluate( const DomainType& x, RangeType& res ) const;
8 };
9 struct DirichletData {

10 void evaluate( const DomainType& x, RangeType& res ) const;
11 };
12 };

The two sub-structures are used to implement the Dirichlet data g and the incident wave uinc in
global coordinates.

A model class together with a grid is used to initilize a Scheme class which sets up the required
types for the discrete spaces and solvers and in addition also holds the solution. The Scheme
classes provide two methods prepare and solve, which sets up the right hand side vector and
assembles and solves the system, respectively. In this module two such scheme classes are
implemented: FemScheme for solving non-linear fem problems using the classes provided in the
Dune-Femmodule, and the BemScheme providing the bindings to Bem++.

C++ code
1 template < class Model, SolverType solver=istl >
2 struct FemScheme {
3 FemScheme(const typename Model::GridPartType &gridpart, const Model& model);
4 void prepare();
5 void solve();
6 };

In addition the scheme class provides methods for accessing the discrete function spaces and the
discrete function storing the computed solution. The SolverType template argument can be used
to specify the solver backend to be used. While in Dune-Fem the bindings for a number of solver
packages are available (Dune-Istl, PETSc, UMFPACK, Eigen) we use Dune-Istl for all our finite
element computations. The BemScheme class has a very similar structure but without the option
of choosing a solver backend since we use the H-matrix implementations available in the Bem++
package.

Both our coupled problems given by (1) and (2) consist each of three terms: A u, f and B v and
D v, g, and C u, respectively. The first two terms of each problem are covered by the prepare and
solve methods on the scheme classes. To describe the full problem the coupling terms B v,C u
need to be implemented. To this end, the scheme classes are extended by one additional method:

C++ code
1 template <class OtherDiscreteFunctionType>
2 void couple(const OtherDiscreteFunctionType &otherSolution);

where the template parameter is the solution of the other problem. As already mentioned above,
coupling is achieved using the Dune-Grid-Glue module. In this version of the module only a
linear coupling between the two schemes is considered. This is to be extended in future releases.

The actual coupling mechanism is itself implemented in a Scheme class, taking the bulk and the
surface scheme classes and then itself providing a prepare and solve method.

As described above this module provides three such implementations:
GaussSeidelCouplingScheme implementing equation (12), JacobiCouplingScheme for (11) and
finally GMResCouplingScheme for equation (16), which may all be found in the folder
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dune-fem-bem-toolbox/dune/fem_bem_toolbox/coupling_schemes

Of course such coupling necessitates a number of different grid and function space types associ-
ated with the communication of data, and the setting-up of the glue objects, especially with the
moving grids of the third case study described below. For convenience, all these types are grouped
together with the original type declarations of the schemes themselves within a traits.hh file
inside the source code folder source for each example application.

5 Parallel Coupling Approach

Underpinning all of the coupling approaches is the use of the dune-grid-glue module to create
“glue” objects between the bulk and surface meshes allowing communication of solution values
held on each.

For parallel runs, the MPI based solvers in Dune exploit a (possibly user defined) partitioning of
full volume or surface grids into different pieces, each of which is attributed to a different process,
such that the matrix assembly and solution is performed independently on each process.

Now Dune-Grid-Gluewill create distinct “glue objects” between each of these individual pieces.
With one piece of the volume grid, and one piece of the surface grid on a particular rank, one
glue object will be created (on the same rank) that essentially creates and holds a surface grid
corresponding to the intersection of the bulk and surface grids it is gluing together – and which
thus normally coincides with the surface mesh itself.

The glue object then provides an “iterator” that iterates over the “glue elements” of this glue
intersection grid which each have pointers to the bulk and surface elements of the bulk and
surface grids it joins.

All that is thus required to exchange information from the bulk problem to the surface one (or
vice-versa), is thus to iterate through these glue elements, for each one evaluating (at the Lagrange
or quadrature points) the bulk solution that needs to be communicated within the glue element
(coincident with a face of its own bulk element), and using the glue element to then assign this
information to the surface solution at the corresponding Lagrange point within the corresponding
surface element or assemble the desired integral terms. In this version of the module the coupling
matrices B,C are not assembled but the coupling is computed on the fly. For the current problems
where inverting A,D is the dominant cost the required iterations over the partitioned surface grid
is an acceptable overhead.

The Bem++ library, in both serial and parallel execution modes, always works with full, unpar-
titioned (surface) grids. The parallelization being achieved through use of the multi-threaded
assembly and solver routines both with or without the use of H-matrices to further speed-up
assembly Smigaj et al. [2015]. Clearly the first challenge is thus to allow the communication of
the solution variables held on the “full” surface grid (for the Bem++ operations), to and from the
grid parts held on each process performing the Dune calculations. As storage backend for the
degrees of freedom (“dofs”) the vector classes from the Eigen package already used extensively
by Bem++ are used.

These Eigen vector structures give the option of being setup using a chunk of specified raw
memory so that special shared memory blocks accessed via a special “shared” dof vector class
EigenVector may be used for reading and writing through the vector interface of Eigen and thus
enabling a seamless exchange of data between the Dune-Fem and the Bem++ solvers and between
different processes, but to Bem++ they look just like a regular vector of unknowns over the whole
of the surface grid.

This wrapper class is called Dune::Fem::EigenVector and implements the vector interface used
in Dune-Fem to store the degrees of freedom for discrete functions to be stored both over a full
grid and a partitioned grid. This class combines the vector classes of Eigen together with a block
of raw memory to store the vector elements.
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The module Dune-Fem is flexible with respect to the storage structure of the degrees of freedom.
So through simple adapter classes, Dune-Fem makes it possible to use a wide range of solver
backends for storing dof vectors for discrete functions and it is straight-forward to use the vectors
of Eigen. Thus since Eigen can make use of the shared memory blocks, accessing those through
the Dune-Fem interface is seamlessly possible.

Of course, to Bem++ these dof vectors look like a regular vector of unknowns over the whole of
the surface grid it has been given previously, but because they are built on shared memory, each
of the Dune MPI ranks may access parts of the vector to fill in/evaluate each on the partitioned
mesh.

Furthermore, because the Eigen vector classes provide an option for the user to provide raw
memory to use as storage space, by allowing the first rank of a parallel execution to arrive at the
particular point to create a special piece of shared memory, whose address it then communicates
to all the other ranks, all ranks may then pass this address to the constructor of a new eigenvector
storage array which they each create, but the addresses of whose elements will then be the same
for all ranks.

By letting all ranks read from, and “non-clashing” (see below) ranks write to these shared elements,
communication of values is possible.

This is the principle means for collecting and distributing data required for the Bem++ routines,
which are all run from a single process (which creates multiple threads). Typically the Dirichlet
data required as the right hand side of the bem problem would be accumulated into a shared
vector by the various ranks, the Neumann data returned by the bem solve (initiated on the rank
zero process) would similarly be put into a shared vector, from which each rank could then extract
the values relevant to it.

The construction of the shared memory block is done in the class SharedMemory. Rank zero tries to
construct a block with a randomly generated name usingboost::interprocess::mapped_region.
If this is successful, the name is communicated to all other processes and they all use the same
block of memory to store the degrees of freedom. The class has the following constructor

C++ code
1 EigenVector ( unsigned int size = 0, const bool shared = false );

where the last argument can be used to determine if a block of shared memory is to be used. The
following code snippet shows how to setup both a distributed and a shared discrete function for
a given DiscreteFunctionSpaceType, e.g., a Lagrange space:

C++ code
1 typedef Dune::Fem::EigenVector<double> DofVectorType;
2 typedef Dune::Fem::VectorDiscreteFunction< DiscreteFunctionSpaceType , DofVectorType

> > DiscreteFunctionType;
3 DiscreteFunctionSpaceType distributedSpace( distributedGridPart );
4 DiscreteFunctionSpaceType fullSpace( fullGridPart );
5 DiscreteFunctionType rankLocalDiscreteFunction("rank_local", distributedSpace );
6 DiscreteFunctionType sharedDiscreteFunction("shared", true, fullSpace );

Of course, appropriate synchronization of the filling/extracting data tasks is needed. While
reading from a particular piece of memory does not usually pose any problems with multiple
processes trying to access the same memory address, writing to such an address does. The
synchronization of these tasks is performed by allowing each rank to run over its own specially
created glue object between its particular gridpart, and the full grid (on which the bem operations
are performed), putting-down or picking-up values at the positions given by the glue object in
accordance with a special “dofrank” array which grants (or not) the permission to write to any
particular memory address.
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Each rank builds up its own “dofrank” array, defined over the full grid, where the integer values
at each dof (corresponding to a particular grid point of the full grid) are just the rank number of
the highest rank whose individual gridpart has a coincident grid point there.

Thus in summary to minimize communication and synchronization costs the degrees of freedom
of gΓ are stored in a block of shared memory using Boost’s interprocess package. Note that gΓ

is a continuous Lagrange function so that some of the degrees of freedom are shared between
processes. To avoid race conditions, a degree of freedom in the shared memory block is only
written to by one process (the one with the lowest rank). The solution of the Bem++ solver is also
directly written to a block of shared memory. After the Neumann data (piecewise constant) is
computed, the second glue object is used again to move the data from the full surface grid onto
the distributed surface grid. Note that each step described above is almost completely parallel.
The assembly routines and the solvers from the Bem++ library are only called from one process
which then sets up its own multiple threads to carry out the computations in parallel.

A particular element (corresponding to a particular dof) in a shared memory eigenvector may
then only be modified by a process whose rank is equal to that held in the dofrank array at the
same point. It is thus just the highest ranking process at any particular gridpoint who is allowed
to fill in dof values at the corresponding point.

For the finite-element problems we use a distributed grid parallelization strategy based on MPI.
The required communication for both the assembly and the solvers are directly available through
the Dune-Fem module and no changes are required to the FemScheme class to use it for parallel
runs. Although the Dune-Grid-Glue will work for an arbitrary partitioning of both the surface
and the bulk grid, in this version we make the following assumption: for each process p, the
part Ωp of the bulk grid on processor p and the part Γp of the surface grid satisfy Γp = ∂Ωp.
As a consequence of this restriction on the partitioning, surface and bulk entities that are glued
together always reside on the same process so that no additional communication is required.

This module provides two load balancing handlers for the partition method of Dune-ALUGrid
to enforce this type of matching partitioning. The first SimpleLoadBalanceHandle class uses
a simple coordinate bisection approach to partition both the bulk and the surface grid. While
this approach leads to a reasonably good partition of the surface the bulk partitioning suffers
from bad connectivity at the origin. To improve the bulk partitioning this module also provides
ZoltanLoadBalanceHandle. The partitioning generated by this class is identical to the simple
partitioning described previously but combines this with Zoltan’s graph partitioner Boman et al.
[2012] around the origin to reduce the number of shared vertices there. In summary, coupled
surface and bulk finite-element simulations can be in parallel with little change to the serial code.

As befits the nature of boundary element formulations the Bem++ library, however, provides
only shared (and not distributed) memory parallelization and to assemble the boundary integral
operators requires an unpartitioned mesh for parallel assembly. For the matrix inversion, Bem++
uses the OpenMP multi-threaded solvers of the Eigen package and with the additional option
of using internal H-matrix based solvers. Again the dof vectors for the right hand side and the
solution of the boundary element problem need to be accessible from all threads. Combining the
distributed grid approach used in the Dune packages with the solvers in Bem++ requiring the full
unpartitioned grid is challenging. To achieve this an additional scheme (SharedBemScheme) is
available in this module. On each process this scheme is constructed using both the full surface
grid Γ and a distributed grid Γ =

⋃
p Γp. Discrete functions gΓ, λΓ defined on the full grid are setup

to be used with the solvers in the Bem++ library. To setup the right hand side for the boundary
element problem on the full grid the term ΠΓu in the couple method needs to be computed. Note
that u will be distributed and so a process p will only ”see” the part of u computed on the partition
Ωp.

First we use the glue objects setup between the partitioned bulk grid and the partitioned surface
grid (used also in the fem-fem coupling example below) to transfer the bulk data onto Γp.
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A second glue object defined between the part of the surface Γp onto the full surface Γ is now used
to transfer the Dirichlet data on Γp to the discrete function gΓ defined on Γ.

This two-stage process allows any surface problems requiring only finite elements to have the per-
formance benefits of distributed grid parallelization, while allowing any BEM (surface) problems
to work on undistributed grids.

6 Case Studies

Presented here are three example applications to illustrate the use of the new fem-bem toolbox,
the source code for which may be found in the folders within

dune-fem-bem-toolbox/case_studies

as will be indicated. All experiments were carried out on an Intel Xeon(R) E5-2650v2, 2.6GHz
CPU node with 8 physical cores. For completeness, and to further later discussions into parallel
performance of the coupling methods, which will make reference to "efficiencies" as measured by
the percentage “efficiency”

E = 100 ×
time to solve on one core
core count × solve time

(22)

two additional folders are included within the case studies as example FEM only and BEM only
applications.

The first solves a simple real valued Dirichlet bounded Poisson problem inside a unit cube, whilst
the second solves for the Helmholtz equation, (which will be introduced in the second case study)
outside a unit sphere.

These two reference problems are briefly discussed here, but only in terms of their parallel
performance efficiencies shown in Figure 1, Figure 2 and Figure 5(left), respectively. The source
code for them may be found within folders

dune-fem-bem-toolbox/case_studies/fem_test

and

dune-fem-bem-toolbox/case_studies/bem_test

respectively, with the same general structure, build and running instructions as the three studies
which will be investigated in detail below.

The BEM only test results were performed on the surface mesh sphere-h-0.05.msh of 11459 ele-
ments found in thebem_testdata folder, while the FEM only test results used theunitcube-3d.dgf
in the fem_test data folder with chosen element diameters of 1/52 the (unit) edge length.
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Figure 1: Percentage efficiencies, E, see equation (22) of operator assembly (left) and assem-
bly+solve (right) times in seconds, “s”, for solution of a BEM only Helmholtz problem using just
Bem++ without H-matrices for different processor/thread counts, “p”.
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First we note, however, that the assembly of the operators within Bem++ may be performed with
or without the use of so-called “H-matrices”. If they are not used, then an LU decomposition of
the system matrix may be performed in the assembly step, leaving a simple back-substitution for
the solve to do. This allows assembly and solve times as indicated in Figure 1 to be obtained with
the test problem. Thus the solve step would appear to be instantaneous relative to the assemble
step.

If, however, H-matrices are turned on, then a direct LU decomposition is not possible, and the
solve step will involve a Krylov iterative solver and necessarily more work, and thus we obtain
the solve times (and efficiencies) as appearing in Figure 2. Clearly the assembly times are much
reduced with the H-matrices, but this is offset slightly by the more expensive solves.

This leads us to the conclusion that if repeated solution using the same basic BEM operators
is going to be required, for instance in the repeated evaluations of a solution within a fixed-
point iterative coupling scheme (as will be seen in the second case study), then it is perhaps
best not to use the H-matrices in Bem++, because one LU decomposition, performed just once
within the assembly stage, will allow very short times for many repeated solve steps within the
iterative coupling scheme. In future, alternative more efficient parallelizations of the H-matrix
assembly and solve steps Kriemann [2013], not yet implemented in Bem++, might change this
advice however.

Now, if the BEM operators instead need to be reassembled often, as will be seen in the third case
study, with no more solve steps than assembly steps, then H-matrices might be advantageous
because of their speed up of the assembly process leading to generally significantly smaller overall
combined assemble and solve times, compare Figure 1(right) with Figure 2(right).
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Figure 2: Percentage efficiencies, E, see equation (22) of operator assembly (left) and assem-
bly+solve (right) times in seconds, “s”, for solution of a BEM only Helmholtz problem using just
Bem++ with H-matrices for different processor/thread counts, “p”.

It should also be noted that the Bem++ H-matrix assembly of the BEM operators is very efficient
with increasing parallelization, and near optimal, as can be seen in Figure 2(left). However, as
soon as the solve stage to numerically invert these operators is taken into these timings as well,
the parallel performance drops off significantly, see Figure 2(right).

The first case study will show a simple FEM-FEM iterative coupling on a toy problem, using
the Gauss-Seidel approach, to illustrate performance with core count of a purely finite element
problem for comparison.

The second and third examples will demonstrate real world problems with, respectively, the
iterative GMRes scheme for the direct coupling of FEM and BEM in an electromagnetic scattering
example, and an indirect FEM-BEM coupling for a fluid example, which may not be so easily cast
into the form of equations (12), (11) or (16), but illustrates the future possibilities for many other
types of FEM-BEM coupling.

For additional clarity, the key governing equations and boundary conditions in the following have
been labelled with “FEM” or “BEM” to indicate the discretization scheme used for the former, and
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“Dir”, “Neu”, “Rob” and “Rad” for the Dirichlet, Neumann, Robin and Radiation type boundary
conditions of the latter.

Instructions on running the examples are included after each problem description, but of course,
this should not be attempted until after a successfull installation of the software, for which the
reader is referred to appendix B.

6.1 Bulk-Surface Fem-Fem Coupling Example

The source code for the first case study may be found within the following folder:

dune-fem-bem-toolbox/case_studies/coupled_sphere

Notes on how to run this example will be presented after the following problem description.

Here a volume (or “bulk”) solution, u ∈ Ω, is coupled to a surface solution on Ω’s surface,
v ∈ Γ ≡ ∂Ω. Both solutions being represented by piecewise linear and globally continuous finite
element basis functions.

The coupling, through the boundary conditions, and governing equations are Ranner and Elliott
[2013]:

FEM : − ∆ u + u = f in Ω (23a)

Rob : u − v +
∂u
∂n

= 0 on Γ (23b)

FEM : − ∆Γ v + v +
∂u
∂n

= g on Γ (23c)

The forcings f and g must, of course, be compatible, and may be found from any choice of analytic
solutions for u and v. In the following, we chose the exponential solutions:

u(x, y, z) = exp
[
−x (x − 1) − y

(
y − 1

)]
v(x, y, z) =

[
1 + x (1 − 2 x) + y

(
1 − 2 y

)]
×exp

[
−x (x − 1) − y

(
y − 1

)]
(24)

which may easily be seen to satisfy the governing equations and boundary conditions.

The weak formulation of (23c) suggests an iterative coupling of the form
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Figure 3: Percentage efficiencies, E, see equation (22) and solve times in seconds, “s”, for solution
of the coupled sphere example with element diameter (“cellsize”) 0.019, giving 1924626 elements,
see § 6.1, using just Dune modules (left) and for solution of the charged droplet example (right)
on the “maxi” meshes of 18239 elements, see § 6.3 later, using both Dune and Bem++, for different
processor/thread counts, “p”.
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∫
Ω

(
∇u · ∇η + uη

)
+

∫
Γ

uη︸                           ︷︷                           ︸
A u

=

∫
Ω

fη︸︷︷︸
f

−

∫
Γ

−vη︸ ︷︷ ︸
B v∫

Γ

(∇Γv · ∇Γξ + v ξ) +

∫
Γ

vξ︸                             ︷︷                             ︸
D v

=

∫
Γ

gξ︸︷︷︸
g

−

∫
Γ

−uξ︸  ︷︷  ︸
C u

which clearly shows the matrix form of equation (3) where η ∈ VΩ and ζ ∈ VΓ are first order
Lagrange finite element in the bulk and on the surface, respectively. We choose to use the Gauss-
Seidel coupling scheme of (12), but the user could equally well try one of the other coupling
schemes.

Table 1: Convergence rates for bulk-surface example.

Refinement Iteration Error Time Convergence
Level Count (secs) Order

0 20 4.09689 2 -
1 19 0.702664 2 2.54362
2 18 0.229774 6 1.61262
3 18 0.0729218 32 1.65579
4 18 0.0205689 229 1.82588
5 18 0.00548633 1952 1.90656
6 18 0.00144776 19900 1.92201

Because of the availability of an analytic solution to this problem, shown in equations (24), it is
possible to calculate standard L2 error norms for the solution, which can then be tested for the
optimal second order convergence with grid refinement expected of linear solution interpolations.

In Table 1 can be seen the convergence orders of a series of six such grid refinements, together with
indications of the iteration counts and solve times it took to achieve them on a single processor.

Clearly the convergence orders are about where one would hope to see them for a single FEM
problem using linear elements, indicating that nothing has been “lost” in the suggested coupling
scheme adopted for two such problems.

Having now shown that the coupling of two schemes had no adverse impact on the error conver-
gence rates with mesh refinement, we now check that coupling has no serious impact on parallel
(multi-core) performance either, as measured by the efficiency defined in equation (22).

In Figure 3 (left) can be seen the percentage efficiencies, E, and solve times in seconds, for the
solution on a single Intel Xeon node using 1, 2, 4, 6 or 12 cores of the bulk-surface coupled sphere
problem with a chosen finite element diameter, or “cellSize” (see below) of 0.019.

Running the example: Within the example’s source folder type make main at the command
prompt. This will build the executable. To run the code in serial type ./main; for parallel use type
mpiexec -np N main where “N” is the number of processors/threads you would like to use. The
volume mesh used for the example is specified within the parameter file within the data folder
on the line beginning with fem.io.macroGridFile_3d:.

The surface mesh is generated automatically from the volume mesh when running main, however,
due to issues within the grid management software on which the present module depends,
this automatic surface generation is not possible in parallel. For parallel operation the user is
recommended to run first in serial with surface.use:false on the command line (overiding that
in the parameter file), thus ./main surface.use:false, to generate the surface mesh, and then
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ensure surface.use: true within the parameter file. This will then use the previously created
surface grid with user specified location set by fem.io.macroGrydFile_2d: surface.dgf.

For convenience, the software is distributed with relatively small volume and surface meshes pre-
prepared. For higher grid resolutions the user should adapt the “cellSize” within the sphere.gmsh
file in the data folder, and then use the gmsh software Geuzaine and Remacle [2009] installed into
the misc directory to generate a mesh file “sphere.msh”, using the command

../../../misc/gmsh-2.8.4-Linux/bin/gmsh sphere.gmsh -3 -v 0 -format msh -o sphere.msh

typed from within the data folder.

To view the grid based “vtu” output that will have been placed inside the output folder after
program execution, the paraview software Ayachit and Utkarsh [2015] is required to be installed.

Finally, the efficiency tests may be run by typing ./eff.bot at the command prompt. For these
tests the user need only adapt the “cellSize” mentioned above for checking the efficiencies on
different meshes, the mesh file generation and surface grid creation are done automatically by
the script.

Figure 4: Real component of electromagnetic wave scattering solution to equation (25) with k = 12
on the surface of the box corresponding to Ω (see text) with finite element diameters 1/16 edge
length, and projected onto a surrounding plane by the exterior representation formulae together
with multi-core grid partitioning examples.

6.2 Direct Coupling: Scattering Electro-Magnetic Wave Example

The source code for the second case study may be found within the following folder:

dune-fem-bem-toolbox/case_studies/scattering_wave

Notes on how to run this example will be presented after the following problem description.

The classic Fem-Bem coupling example of an incident wave hitting a target, with a Fem scheme
defined for the Helmholtz equation of the “total” solution – equal to the “incident” plus “scattered”
solutions – with possibly spacially varying coefficients, over the finite “interior” domain of the
target – a cube Ω = [−0.5, 0.5]3 in our case, and corresponding to the central box in Figure 4 –
coupled to a Bem scheme on ∂Ω supporting a scattered solution to the same equation, but with
constant coefficients, in the “exterior” where the incident wave originates.
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Figure 5: Percentage efficiencies, E, see equation (22), (and solve times in seconds, “s”) for the
solution of a simple Poisson example system (left) and system (25) in Ω with finite element
diameters 1/8 edge length and k = 6 (right) for different core counts, “n”, and interpolation
polynomial orders, “p”.

Now while the Bem solution is always represented by piecewise linear globally continuous basis
functions (those supported by Bem++ at present), because of the system of coupling adopted, the
interior solution may use linear, quadratic and even cubic basis functions.

The values of this exterior (total) solution on an arbitrary plane around the box (discretized with
linear finite elements of diameter 1/16 the side length) are also shown in Figure 4, and were
computed via the appropriate exterior representation formula for the scattered field (which will
be seen to be the starting point for the BEM formulations next) plus the incident field.

We require that the total solution, and its normal derivative, are continuous across the interior/ex-
terior boundary ∂Ω, and that the total (exterior) solution tends to a plane wave towards infinity
at a rate inversely proportional to the distance, giving the governing equations and boundary
conditions as

FEM : ∆ u + n (x) k2u = 0 in Ω (25a)

BEM : ∆ v + k2v = 0 in R3
\Ω (25b)

Dir : u − v = 0 in Γ (25c)

Neu :
∂u
∂n
−
∂v
∂n

= 0 in Γ (25d)

Rad :
∣∣∣∣∣∂v
∂r
− i k v(x)

∣∣∣∣∣ = O
(
|x|−1

)
as r ≡ |x| → ∞ (25e)

where u and v are the interior and exterior solutions, k the exterior wave-number, and n (x)
provides a spacially varying coefficient for the interior
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n (x) =
1 − 0.5 exp

(
−||x||2∞

)
1 − 0.5 exp (−0.25)

(26)

Clearly this coefficient is 1 on the boundary and decreases towards the centre of the cube, repre-
senting an object which is denser towards its centre.

Let the incident wave be given by

uinc = eikx·d (27)

where d gives the direction of wave travel.

In the exterior, v can be written as v = vinc + vsca where vinc
≡ uinc is the incident wave and vsca is

the scattered wave it generates from the target.

Following the classic boundary element derivations, see Colton and Kress [1983], for the dis-
cretization of equation (25b) in the exterior region Ω∞ = R3

\Ω, we start with Green’s Exterior
Representation Formula – which is only valid for scattered fields and is used for the plotting on
the plane mentioned above – for this exterior region

usca(x) = −V̂ψ + K̂φ ∀x ∈ Ω∞ (28)

in terms of single, V̂, and double, K̂, layer potential operators defined in the appropriate Hilbert
spaces

V̂ : H−1/2 (Γ)→ H1 (Ω∞) K̂ : H1/2 (Γ)→ H1 (Ω∞)

and acting on total Dirichlet, φ, and Neumann, ψ, data located on the surface of the exterior
region Γ.

Now “bringing down” the unknown, usca = usca(x), on to the surface, Γ, and then adding the
incident field in order to identify it with the total Dirichlet data there, introduces a jump to the
double layer operator, and equation (28) becomes

Vψ︸︷︷︸
D v

= uinc︸︷︷︸
g

−

(1
2

I − K
)
φ︸      ︷︷      ︸

C u

∀x ∈ Γ (29)

where the operators have taken on the true BEM forms

V : H−1/2 (Γ)→ H1/2 (Γ) K : H1/2 (Γ)→ H1/2 (Γ)

Note thatφ is the Dirichlet data defined on the boundary grid which due to the coupling conditions
is the trace of the solution u from the bulk solution. Since Bem++ only accepts piecewise linear
Dirichlet functions computing C u involves the projection of the trace of the bulk solution onto the
space of piecewise linear functions on the surface grid. Having established the BEM formulation,
the FEM derivations start with the weak form of equation (25a)∫

Ω

∇u · ∇η − k2
∫

Ω

n2u η︸                         ︷︷                         ︸
A u

= 0︸︷︷︸
f

+

∫
∂Ω
ψη︸    ︷︷    ︸

B v

(30)

where ψ = ∂u
∂n is identical to the Neumann data of the BEM formulation.

With the corresponding matrices A, B, C and D of equation (3) for this problem as indicated, where
the Dirichlet data φ is identical to the solution u of the first problem on the boundary Γ, and the
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Neumann data ψ is chosen as the solution v of the second problem, the coupling scheme (16) of
section 2 with a GMRes Krylov iterative solver may then be used to find a solution to the complete
problem.

For parallel processing in the numerical implementation of the scattering problem, the cube mesh
is subdivided into block shaped pieces, as demonstrated to the left of Figure 4, with assembly and
solution of the system matrix corresponding to each piece performed by the FEM scheme with
one piece per rank using MPI communications to keep the calculations in sync.

The mesh of the surface of the cube, however, is not subdivided, but passed to the bem scheme
whole. The use of multiple threads within the BEM solver is performed via the TBB libraries.

Glue objects are created, one per rank, to transport Dirichlet and Neumann data between the
whole surface grid used by the BEM scheme, to the portion of that surface coincident with the
surface of the volume grid piece located on the particular thread.

As might be expected from the nature of the spacially varying coefficient for the interior seen
in equation (26), the image seen in Figure 4 shows the diffraction of the incident wave as it
passes through the cubic block of material with the spacially varying density, calculated after 74
iterations of the coupling scheme. This generates the classic "spokes" of increased and decreased
wave amplitudes radiating away from the diffracting object itself. More discussion of such
phenomena may be found in Heald and Marion [2012].

As with the previous example, an efficiency test is also provided for the present scattering wave
example, the results of which are shown in Figure 5 (right) for the calculation on 1, 2, 4 or 8 cores
of the full system (25) but now with finite element interpolation polynomials of orders 1 (yellow),
2 (pink) and 3 (green) for the interior.

To keep computation times practical for easy reproduction by the end-user when trying the cubic
interpolations, the finite element diameters used in the efficiency tests here are double those used
for Figure 4, with the wavenumber k halved to keep the solutions meaningful on this coarser
discretization – it is generally recommended to have at least 5-6 (linear) elements per wavelength
in numerical computations.

As indicated above, because for this example a fixed-point iterative coupling scheme is used,
the H-matrix option of Bem++ was turned off, because the solve steps need to be repeated many
times during the convergence process, but they only require one assembly performed right at
the beginning. However, it can be seen that the parallel performance is just slightly worse than
with the previous example, where only FEM calculations were involved, or similarly with the
FEM only test (simple real valued Poisson example on a unit cube), whose results, with element
diameters of 1/52 edge length, are placed in Figure 5 (left) for direct comparison.

It is also worth noting the slight but significant improvement in efficiencies with the higher order
interpolation polynomials. This is attributed to increases in the overall problem size, and thus
lower communication costs between the cores, relative to their overall workloads.

Running the example: Within the example’s source folder type make main at the command
prompt. This will build the executable. Adapt the parameter file in the data folder to the
settings required – the user may even turn the H-matrices on if curious as to their effect by
setting bempp.hmatrix:true – the parameters prefixed with "helmholtz" will control the incident
field to be used (via "helmholtz.omega" for the wave number and "helmholtz.amplitude" for the
amplitude) and the characteristics of the box density via the "helmholtz.boxwave" parameter. If
the latter is set to zero, then the result shown in Figure 4 for the density of equation (26) will
be obtained, while alternative values n greater than zero will give the box a constant relative
density of n relative to the surrounding medium. To run the code in serial type ./main; for
parallel execution use mpiexec -np N main where “N” is the number of threads you would like
to use. Note that the Bem++ part usually just uses however many processors it can find, which
is fine for most situations, however, to specify the parallelization completely, the Bem++ thread
count environment variable should be set with export BEMPP_NUM_THREADS=N, as is done in the
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eff.bot script for efficiency testing. The volume mesh used for the example is specified within
the parameter file within the data folder on the line beginning with fem.io.macroGridFile_3d:.
The surface mesh is generated automatically from the volume mesh, however, due to issues
within the grid management software on which the present module depends, this automatic
surface generation is not possible in parallel. For parallel operation the user is recommended to
run first in serial to generate the surface mesh, with surface.use: false within the parameter
file, or on the command line as ./main surface.use:false, and then reset surface.use: true
afterwards for all subsequent operations which will then use the previously created surface grid
with user specified location set by fem.io.macroGrydFile_2d: surface.dgf.

To alter the refinement of the mesh, the grid file unitcube-3d.dgf in the data folder may be
adapted, and a new surface mesh will then be required by following the above mentioned steps.
For convenience the code is distributed with the surface mesh matching the 16x16x16 subdivision
in unitcube-3d.dgf, which is that used for Figure 4. The grid refinement chosen should bear in
mind the wavenumber, k, of solution to be calculated – high wavenumbers computed on overly
coarse grids can lead to unexpected results, or even non-convergence of the solver.

The type of grid based “vtu” output may be chosen by the user through the external_grid.level
parameter; −10 will give no output, −1 will return the vtu output just for the solution within the
box, while 0 will give both the solution within the box domain and the exterior projection onto the
surface plane as seen in Figure 4. Note that vtu output will have been placed inside the output
folder, and the paraview software is required to be installed in order to view it.

Finally, the efficiency tests may be run by typing ./eff.bot at the command prompt.

Figure 6: Non-dimensional surface charge concentration on the deformed droplet at various times
of extension (top row) and relaxation (bottom row). The mesh and grid partitioning, into 12, used
for the actual calculations are as indicated in the first and last images respectively. Note the point
of maximum deformation – and the formation of a conical tip Radcliffe [2013] – in the top right
image.

6.3 Indirect Coupling: Charged Droplet Example

The source code for the third, and final, case study may be found within the following folder:

dune-fem-bem-toolbox/case_studies/charged_droplet

Notes on how to run this example will be presented after the following problem description.
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This is a more advanced example application and shows use of the toolbox outside of the direct
FEM-BEM coupling methods of (12), (11) or (16), with the FEM and BEM schemes now computing
very different quantites and the coupling between the two being less direct or immediate than in
the previous examples.

As with the previous case, however, a BEM solution at one iteration provides Neumann data
directly for use as a boundary condition to the next iteration of the FEM scheme. However, the
return influence of the FEM on the BEM, while still using Dirichlet data as previously, is slightly
more sophisticated.

Instead of the Dirichlet data on the boundary from a FEM solve simply being given directly to the
BEM scheme, in this example it is used instead to move the actual boundary Γ on which the BEM
integral kernels themselves are calculated. The BEM calculation itself on this new boundary then
just uses a constant value in place of the Dirichlet data it might otherwise have received directly
from the FEM.

Because the boundary Γ is constantly moving, this iterative strategy does not converge to a fixed
point as previously, but provides a simple yet effective means to solve a real world moving
boundary problem of great interest.

Furthermore, this motion of the boundary on which the BEM integrals are calculated necessitates
a reassembly of the BEM operators every timestep too. For this reason the H-matrix option of
Bem++ mentioned above is used to significantly reduce the operator assembly times.

The exact details of the problem may be found in Radcliffe [2013], but essentially a bulk, incom-
pressible, Navier-Stokes volume FEM scheme is used to determine the vector fluid velocities, u,
of an initially spherical (with radius r) droplet interior, Ω ⊂ R3, driven by the normal, n, directed
surface tractions on its boundary Γ arising from both a scalar electric surface charge distribution
(proportional to the normal derivative of a Laplacian solution v, calculated by a surface BEM
scheme) and from classical surface tension.

The strength of this surface tension at any time and position is found by means of a second FEM
scheme, but this time just for the surface Γ, solving the classical “mean curvature flow” problem
which gives the vector solution, w, corresponding to the new positions each point of Γ would
take if displaced in the local normal direction by a distance proportional to (twice) the local mean
curvature.

Given that the required surface tension strength is directly proportional to local mean curvature,
and acts in the normal direction, the mean curvature flow solution w can thus be used immediately
in the calculations.

Indeed, it is remarked here that the orientation of the displacements in the FEM calculated vector
w after each time increment is actually what is used to establish the normal direction n in a
robust manner in the computations themselves. With a simple first order semi implicit time
discretization of the Navier-Stokes equations – and in contrast to Radcliffe [2013], using linear
piecewise continuous basis functions with a simple pressure stabilization – the problem may be
cast into the form of the previous examples by a multiplication through by the timestep τ.

With initial conditions of u ≡ 0 and w = x(Γ), the initial (discretized) position of Γ, the governing
equations for the scalar v, and the vector u & w, valued unknowns (with a minus “-” superscript
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indicating values at a previous timestep) are then

FEM : − κ∆ u + ρu = L
(
u−

)
in Ω (31a)

FEM : ∇ · u = 0 in Ω (31b)
FEM : − τ∆Γ w + w = w− on Γ (31c)

Rob :
∂u
∂n
− a w + b

∣∣∣∣ ∂v
∂n

∣∣∣∣2 = − a w− on Γ (31d)

BEM : ∆ v = 0 in R3
\Ω (31e)

BEM : v = Const. = 1 on Γ (31f)

where we have scalar, κ & a, and vector, b, valued coefficients involving the density, ρ, surface
tension, γ, dynamic viscosity, µ, total surface charge Q, and the electrical permitivity of free space,
ε0, respectively

κ = τµθ a =
γ

τ
b =

Q2

r3ε0q2 n

Here q =
∫

Γ
∂nv ds just allows us to remove the influence of the otherwise arbitrary constant = 1

in (31f) and θ ∈ [0, 1] determines how implicitly the Laplace term is to be treated – the associated
source code has θ = 0.5 at present – and the linear operator L is given by

L (u) = ρu +
(
τµ − κ

)
∆ u − τ ρ (u · ∇) u − τ∇ p (32)

with a pressure, p, arising as the Lagrange multiplier for the incompressibility condition, equa-
tion (31b), in the usual manner.

Non-dimensionalization on a unit radius drop, r ≡ 1, via the viscocity and charge by setting
µ ≡ 1, indicates that there are just two independent parameter groupings, Oh = µ/

√
ρ rγ and

χ = Q2/
(
64π2ε0γ r3

)
allowing ρ ≡ γ ≡ Oh−1, see Radcliffe [2013], and thus

κ = τθ a =
1

τOh
b =

64π2χ

Oh q2 n

It is interesting to note that here we only have one formal boundary condition, equation (31d),
that involving the normal derivative of the (interior) solution u that allows the BEM to influence
the FEM.

As indicated above, the return influence of the FEM on the BEM is still via the undifferentiated
solution, however it is just that this solution (now the interior fluid velocity) instead advects the
very boundary on which the BEM integrals are located.

Following the BEM discretization, see equation (29), of the Helmholtz equation (25b) for the
previous example, the BEM form of the much simpler Laplace equation (31e), which has a
solution in the form of a potential, is similar, but lacks the double layer operator or incident field
and uses constant Dirichlet data φ = Const.

Vψ︸︷︷︸
D v

= 0︸︷︷︸
g

− (−I)φ︸︷︷︸
C u

∀x ∈ Γ (33)

Thus we simply invert the single layer potential operator, V, onto constant Dirichlet data, φ ≡ v,
to obtain the Neumann data, ψ, that is needed to determine the surface charge – all the variation
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in this Neumann data comes from the shape of the boundary Γ on which the V was calculated,
rather than from the Dirichlet data it acts upon.

For the non-dimensionalization above to work, the constant Const. should ideally be such that
the integral over Γ of v is equal to one. However, owing to the linear nature of equation (33), in
practice it is preferable to simply use unit constant Dirichlet data, φ ≡ Const. = 1, as in (31f), and
just divide the resulting v ≡ ψ distribution by whatever the integral over Γ of v turns out to be, or
the q mentioned above.

Given the great similarities between equations (31a) and (31c) with equation (25a), it follows that
their FEM forms are almost identical∫

Ω

κ∇u · ∇η −
∫

Ω

ρu η︸                        ︷︷                        ︸
A u

=

∫
Ω

L
(
u−

)
η︸       ︷︷       ︸

f

−

∫
Γ

a
(
w − w−

)
η +

∫
Γ

b v2η︸                              ︷︷                              ︸
B v

(34)

which is accompanied by the FEM form of the incompresibility condition (31b)∫
Ω

∇ · u p = 0 (35)

in the volume, and on the surface there is∫
Γ

k∇w · ∇η −
∫

Γ

w η = w− (36)

for the FEM discretization of equation (31c).

The possible matrices A, B, C and D of equation (3) have been indicated for completeness but, as
described above, the iterations in this example do not lead to a fixed point solution, but rather a
sequence of solutions that may be seen in Figure 6, computed using a relatively small mesh of
1400 elements (see “Running the example” below).

Note that to follow the changes in geometry, the computational mesh used for the calculations
was required to move between iterations. Now while the calculations for v and w are dependent
only on the instantaneous shape of Γ at any particular iteration, the solution u involves a “history”
bound-up in the operator L on the solution at the previous iteration u−. To accomodate the fact
that this u− is defined on a (slightly) different mesh, an ALE technique was adopted with a
Laplacian mesh smoothing algorithm to set the interior mesh points once the Γ position had been
updated, see Radcliffe [2016] for the details. Within the code this necessitated a further simple
FEM scheme for the Laplacian operator to calculate these interior mesh node positions.

In Figure 6 can be seen a series of snapshots showing the evolution of the Γ boundary over time. In
the top row of images electric charge, v, accumulates at the top and bottom of the droplet, causing
it to deform from the sphere towards the rightmost image, where the parameter χ is reduced from
1 to 0.7 to correspond to an expulsion of charge in a liquid jet – images from experiments may
be seen in Giglio et al. [2008] – which incurrs a little fluid loss Radcliffe [2016]. This reduction in
overall charge loading allows surface tension, ∝ w, to regain dominance and restore the droplet
shape back to a sphere again in the lower set of images. More discussion on this very interesting
behaviour may be found in Radcliffe [2013, 2016].
As with the previous examples, efficiency testing has also been performed here, with the results
shown in Figure 3 (right), where they compare very favourably with those of the first case study
which didn’t involve Bem++ at all, Figure 3 (left). Note that, to give the parallelization “more
to work on” a more refined “maxi” mesh of 18239 elements was used, but, to keep the overall
running time of the efficiency tests reasonable, a very short end time (0.01) was adopted.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



88 Andreas Dedner and Alastair J. Radcliffe

Thus we may conclude that the parallelization of both the assembly (using H-matrix methods)
of the BEM operators, and their solution via Krylov methods drawn from the Eigen library has
gone quite well, with no significant impact on parallel performance.

Running the example: Within the example’s source folder type make main at the command
prompt. This will build the executable. To run the code in serial type ./main; for parallel use
mpiexec -np N main where “N” is the number of threads you would like to use. Note that the
Bem++part usually just uses however many processors it can find, which is fine for most situations,
however, to specify the parallelization completely, the Bem++ thread count environment variable
should be set with export BEMPP_NUM_THREADS=N, as is done in the eff.bot script for efficiency
testing. Along with various parameters controlling the dynamics of the droplet and explained
in comments above each one, the volume mesh used for the example is specified within the
parameter file within the data folder on the line beginning with fem.io.macroGridFile_3d:.
The user may create their own volume meshes with varying element diameter (“cellSize”), say,
by adapting the sphere.gmsh mesh command file and then using the mesh generation software
gmsh Geuzaine and Remacle [2009] installed into the misc directory to execute these commands
and generate a mesh file “sphere.msh”, using the command

../../../misc/gmsh-2.8.4-Linux/bin/gmsh sphere.gmsh -3 -v 0 -format msh -o sphere.msh

typed from within the data folder.

The surface mesh is generated automatically from the volume mesh when running the main pro-
gram, however, due to issues within the grid management software on which the present module
depends, this automatic surface generation is not possible in parallel. For parallel operation
the user is recommended to run first in serial with surface.use: false within the parameter
file, or on the command line as ./main surface.use:false, to generate the surface mesh, and
then return surface.use: true for the parallel runs. This will then use the previously created
surface grid with user specified location set by fem.io.macroGrydFile_2d: surface.dgf.

To view the grid based “vtu” output that will have been placed inside the output folder, the
paraview software is required to be installed. To adapt to different speed/memory/result re-
quirements, different amounts of output are possible, specified by vtu.output: n, where “n”
indicates the level required. n=0 gives no output; n=1 just the surface charge and n>10 all output.

For convenience the code is distributed with two sets of volume and surface meshes: a "mini"
set involving 1400 elements for reproducing the results shown in Figure 6 in a moderate amount
of time with a droplet.timestep: 0.01, and a more refined "maxi" set using 18239 elements
that may be used for the efficiency tests which may be run by typing ./eff.bot at the command
prompt; with a recommended droplet.timestep: 0.0023. The latter command will run the
simple bash script within the file eff.bot. For the efficiency testing it is suggested the user adapt
the droplet.endtime: within the parameter file to something of their preference less than 3
or so – a value of just 0.01 was used for Figure 3 (right). At present values of 15 or above will
allow reproduction of the full deformation pathway with the "mini" meshes as shown in Figure 6
– provided the appropriate vtu output is chosen – but might be a bit time consuming for the lower
processor counts in efficiency testing, where it is additionally noted that such vtu output should
be turned off for optimal performance.

7 Conclusions

A program structure has been presented that allows the combined use, within the same compu-
tation, of two computational discretization schemes, FEM and BEM, with very different compu-
tational architecture requirements for optimal performance.

Based on local interactions between the values of the discretized variables at the mesh points, the
finite element method is well suited to distributed memory machines, while the global interactions
between such discretized values of the boundary element method are best accomodated on shared
memory architectures.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



FEM-BEM Coupling for Multiphysics Problems in Parallel Computations. 89

By the asyncronous evaluation of one scheme, and then the other, with communication steps
between, it is possible to have optimal environments for each scheme on a machine with just
shared memory.

A computational toolbox for the development of such programs has been presented, with three-
dimensional examples of the electromagnetic scattering off a box, and the deformation of a charged
droplet used to give an indication of the performance improvements with processor thread count.

In this first version of the module some restrictions still apply most notably on the partitioning
of the bulk and surface grid. This restriction will be removed in a further release of the module.
The use of the Dune-Grid-Glue module also allows us to use non matching surface and bulk
grids. We have not made use of this feature in the test cases presented here but we have first
results for the wave scattering problem with finer bulk grids which look promising. Finally fully
non-linear coupling is not yet possible and will be addressed in the next release of this module.
This will also allow us to perform on larger scale distributed memory machines for the bulk
problem. Since Bem++ requires an undistributed grid, the surface would still be located on a
single node and distributed between threads based on the approach described above. The bulk
domain could be distributed differently and make use of multiple cores. This will require some
additional investigation with respect to optimal load balancing of the coupled problem.

Finally this module still uses the 2.3 release of the Dune modules. This is due to the fact that
Bem++ is still based on this release. As soon as Bem++ has been moved to use the newer 2.4 Dune
release, then a 2.4 release of this module should follow shortly afterwards.

A Structure of this module

• dune/fem_bem_toolbox:

– fem_objects: schemes and model classes for fem problems,

– bem_objects: schemes and model classes for bem problems.

– coupling_schemes: coupling schemes.

– data_communication: main class for gluing of surface/bulk meshes and communica-
tion of data between the grids.

– load_balancers: special load balancers for matching surface/bulk grid partitioning.

– shared_memory_vectors: wrapper class for dof vectors using (shared) raw memory
blocks.

– fluid_models: schemes and model classes for current and future fluid problems.

In addition the dune folder contains some fixes to other core modules which will not be
required once this module have been made compatible with the 2.4 release.

• misc: internal Dune configuration management files

• src: internal Dune configuration management files

• doc: documentation for the module

• misc: collection of useful bash scripts for installation of the module and downloading of
dependent software/libraries – see installation notes below).

– mega.build: bash script using autotools for building entire module and download-
ing+configuring all dependent software

– mega.make: bash script using CMake for building entire module and download-
ing+configuring all dependent software (for 2.4 release)

• case_studies: source code for all five case studies.
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– fem_test: pure fem problem.

– bem_test: pure bem problem.

– coupled_sphere: coupled bulk fem-surface fem test case.

– scattering_wave: coupled bulk fem-surface bem wave scattering problem.

– charged_droplet: coupled bulk fem / surface fem + surface bem charged droplet
example.

Each case study folder contains three subfolders:

– source: the main.cc file required to run the simulation.

– data: grid files and a file parameter containing run time parameters for this example.

– output: folder where the simulation output is stored.

B Installation notes

This module is licenced under GPL Version 2. Warning: All the software described in this work
has been downloaded, built, run and tested on Linux machines; use on other systems has not
been tried, however, if built without Bem++– see below – the Dune-Fem-Bem-Toolbox should have
the same platform requirements as all other Dunemodules.

To obtain the Dune-Fem-Bem-Toolbox module, the user should clone the releases/2.3 branch
from the Dune user website by typing the following at the command prompt in their chosen
installation directory:

git clone -b releases/2.3 \
https://gitlab.dune-project.org/andreas.dedner/dune-fem-bem-toolbox.git

Once this is done, to aid the user in the installation of all the remaining software and the compi-
lation and general set-up of all the source code and examples presented, a bash shell script called
mega.build is included in the "misc" miscellaneous folder. This script also allows setting-up of
the module in a reduced state without the Bem++ library, and thus just using Dunemodules. The
scattered wave, charged droplet and, of course, bem comparison examples requiring calculation
of bem integrals will then be unavailable, however, the FEM comparison and coupled sphere
examples will still work, and the droplet example may still be run, although in an uncharged state,
to give simple oscillations for example.

Before running the script, the user should adapt the CC and CXX statements at the head of the
file to the latest C and C++ compilers available on their system respectively. Additionally, for
build efficiency, should a PYTHON or CYTHON distribution already be available, then typing export
PYTHONPATH=/path/to/my/cython will avoid the Bem++ installation process from downloading
its own version.

Once the C/C++ compilers have been set, to load all the dependencies and build everything for
the toolbox module simply type:

./mega.build bem

at the comand prompt from within the misc directory.

This build script will install and configure some of the (“non-core”) dependant Dunemodules at
the same folder hierachy level as the Dune-Fem-Bem-Toolboxmodule itself, so if the user already
has Dunemodules around, it is suggested to checkout the Dune-Fem-Bem-Toolbox into an empty
installation folder when using this build script.

The Bem++ software, and any dependencies it builds itself, will be installed within the mod folder
at the top level within the Dune-Fem-Bem-Toolbox. The user may also notice that gmsh soft-
ware Geuzaine and Remacle [2009] useful for mesh generation (see the running the examples
notes above), is also installed by this script, but within the misc folder at the same top level.
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Note that Bem++ installs most of its dependencies if required (including the Dune “core” modules
requiring the release version 2.3). The dependency on Cython can be problematic and might
require the user to install that package (version greater or equal to 0.21). separately which on most
systems is possible using pip install �-user cython. Furthermore, Bem++ is incompatible
with certain versions of Eigen. Bem++’s build system will download a compatible version if Eigen
is not found on the system. A pre installed Eigen can thus lead to problems also with the include
paths used while building this module.

There may also be problems installing the TBB package on some systems, and if this occurs, it is
recommended to preinstall this software too, probably from a tarball downloaded from the TBB
website https://www.threadingbuildingblocks.org.

Bem++ will install Boost version 1.57 if no version is found on the system during the build process.

To load all the dependencies and build everything without Bem++ simply type

./mega.build nobem

at the comand prompt within the misc directory. Note: nobem is also the default setting should
no explicit choice be made.

To reload and build just the Dune dependencies (for dune updates, say) without rebuilding the
Bem++ library type

./mega.build bembutnobembuild

at the comand prompt within the misc directory.

C Known Issues

Inevitably, as with any new software release, there will be a few issues affecting the structure
and performance of the software that remain to be sorted out. These are principally related to
issues within the supporting software upon which the present module is built, and over which the
authors have little, or no, influence. Thus certain accomodations have been made in the present
2.3 release to adapt to these issues.

Issue : No projection of ALUGrid surfaces in refinements in parallel

Effect : Convergence testing of coupled sphere example may only be done in serial.

Issue : Memory leaks (either local or within Bem++) with destruction of BEM objects for charged
drop example when using Bem++. Note this does not effect the program execution, but
merely the internal clean-up on completion.

Effect : Significant internal system output on program completion.
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Abstract: The dune-functions Dune module introduces a new programmer interface for
discrete and non-discrete functions. Unlike the previous interfaces considered in the existing
Dune modules, it is based on overloading operator(), and returning values by-value. This
makes user code much more readable, and allows the incorporation of newer C++ features such
as lambda expressions. Run-time polymorphism is implemented not by inheritance, but by type
erasure, generalizing the ideas of the std::function class from the C++11 standard library. We
describe the new interface, show its possibilities, and measure the performance impact of type
erasure and return-by-value.

1 Introduction

Ever since its early days, Dune [2, 1] has had a programmer interface for functions. This interface
was based on the class Function, which basically looked like

C++ code
1 template <class Domain, class Range>
2 class Function
3 {
4 public:
5 void evaluate(const Domain& x, Range& y) const;
6 };

and is located in the file dune/common/function.hh. This class was to serve as a model for duck
typing, i.e., any object with its interface would be called a function. A main feature was that the
result of a function evaluation was not returned as a return value. Rather, it was returned using
a by-reference argument of the evaluate method. The motivation for this design decision was
run-time efficiency. It was believed that returning objects by value would, in practice, lead to too
many unnecessary temporary objects and copying operations.
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Unfortunately, the old interface lead to user code that was difficult to read in practice. For
example, to evaluate the n-th Chebycheff polynomial T(x) = cos(n arccos(x)) using user methods
my_cos and my_arccoswould take several lines of code:

C++ code
1 double tmp1,result;
2 my_arccos.evaluate(x,tmp1);
3 my_cos.evaluate(n*tmp1, result);

Additionally, C++ compilers have implemented return-value optimization (which can return val-
ues by-value without any copying) for a long time, and these implementations have continuously
improved in quality. Today, the speed gain obtained by returning result values in a by-reference
argument is therefore not worth the clumsy syntax anymore (we demonstrate this in Section 4).
We therefore propose a new interface based on operator() and returning objects by value. With
this new syntax, the Chebycheff example takes the much more readable form

C++ code
1 double result = my_cos(n*my_arccos(x));

To implement dynamic polymorphism, the old functions interface uses virtual functions. There
is an abstract base class

C++ code
1 template <class Domain, class Range>
2 class VirtualFunction :
3 public Function<const Domain&, Range&>
4 {
5 public:
6 virtual void evaluate(const Domain& x, Range& y) const = 0;
7 };

in the file dune/common/function.hh. User functions that want to make use of run-time poly-
morphism have to derive from this base class. Calling such a function would incur a small
performance penalty [3], which may possibly be avoided by compiler devirtualization [5].

The C++ standard library, however, has opted for a different approach. Instead of deriving
different function objects from a common base class, no inheritance is used at all. Instead, any
object that implements operator() not returning void qualifies as a function by duck typing. If
a function is passed to another class, the C++ type of the function is a template parameter of the
receiving class. If the type is not known at compile time, then the dedicated wrapper class

C++ code
1 namespace std
2 {
3 template< class Range, class... Args >
4 class function<Range(Args...)>;
5 }

is used. This class uses type erasure to allow to handle function objects of different C++ types
through a common interface. There is a performance penalty for calling functions hidden within
a std::function, comparable to the penalty for calling virtual functions.

The dune-functions module [4] picks up these ideas and extends them. The class template
std::functionworks nicely for functions that support only pointwise evaluation. However, in a
finite element context, a few additional features are needed. First of all, functions frequently need
to supply derivatives as well. Also, for functions defined on a finite element grid, there is typically
no single coordinate system of the domain space. Function evaluation in global coordinates is
possible, but expensive; such functions are usually evaluated in local coordinates of a given
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Figure 1: Diagram of the various function interfaces

element. dune-functions solves this by introducing LocalFunction objects, which can be bound
to grid elements. When bound to a particular element, they behave just like a std::function,
but using the local coordinate system of that element.

The paper is structured as follows. The main building blocks for the proposed function interfaces,
viz. function objects, concept checks, and type erasure, are introduced in Section 2. Those
techniques are then applied to implement the extended interfaces for differentiable functions and
grid functions in Section 3. Finally, we present comparative measurements for the current and the
proposed interface in Section 4. The results demonstrate that the increased simplicity, flexibility,
and expressiveness do not have a negative performance impact.

2 Building blocks for function interfaces

The programmer interface for global functions is given as a set of model classes. These form a
conceptual hierarchy (shown in Figure 1), even though no inheritance is involved at all. Imple-
mentors of the interface need to write classes that have all the methods and behavior specified by
the model classes. This approach results in flexible code. Concept checking is used to produce
readable error messages. The following sections explain the individual ideas in detail.

2.1 Function objects and functions

The C++ language proposes a standard way to implement functions. A language construct is
called a function object if it is an ordinary function, a function pointer, or an object (or reference
to an object) of a class providing an operator(). In the following we will adopt the common
convention to call the latter a functor. In the following we will denote a function object as function
if such a call does not return void. In other words, a function foo is anything that can appear in
an expression of the form

C++ code
1 auto y = foo(x);

for an argument x of suitable type. Examples of such constructs are free functions
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C++ code
1 double sinSquared(double x)
2 {
3 return std::sin(x) * std::sin(x);
4 }

lambda expressions

C++ code
1 auto sinSquaredLambda = [](double x){return std::sin(x) * std::sin(x); };

functors

C++ code
1 struct SinSquared
2 {
3 double operator()(double x)
4 {
5 return std::sin(x) * std::sin(x);
6 }
7 };

and other things like bind expressions.

All three examples are functions in the above given sense, i.e., they can be called:

C++ code
1 double a = sinSquared(3.14); // free function
2 double b = sinSquaredLambda(3.14); // lambda expression
3 SinSquared sinSquaredObject;
4 double c = sinSquaredObject(3.14); // functor

Argument and return value do not have to be double at all, any type is possible. They can be
scalar or vector types, floating point or integer, and even more exotic data like matrices, tensors,
and strings.

To pass a function as an argument to a C++ method, the type of that argument must be explicitly
stated in the signature of the called method, or it must be a template parameter.

C++ code
1 template <typename F>
2 foo(F&& f)
3 {
4 std::cout << "Value of f(42): " << f(42) << std::endl;
5 }

Any of the example functions from above can be used as an argument of the method foo:

C++ code
1 foo(sinSquared); // call with a free function
2 foo(sinSquaredLambda); // call with a lambda expression
3 foo(sinSquaredObject); // call with a functor
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2.2 Concept checks

The calls to F are fast, because the function calls can be inlined. On the other hand, it is not clear
from the interface of foo what the signature of F should be. What’s worse is that if a function
object type with the wrong signature is passed, the compiler error will not occur at the call to foo
but only where F is used, which may be less helpful. To prevent this, dune-functions provides
light-weight concept checks for the concepts it introduces. For example, the following alternative
implementation of foo checks whether F is indeed a function in the sense given above

C++ code
1 template<class F>
2 void foo(F&& f)
3 {
4 using namespace Dune;
5 using namespace Dune::Functions;
6
7 // Get a nice compiler error for inappropriate F
8 static_assert(models<Concept::Function<Range(Domain)>, F>(),
9 "Type does not model function concept");

10
11 std::cout << "Value of f(42): " << f(42) << std::endl;
12 }

If foo is instantiated with a type that is not a function, say, an int, then a readable error message
is produced. For example, for the code

C++ code
1 foo(1); // The integer 1 is not a function object

GCC-4.9.2 prints the error message (file paths and line numbers removed)

1 In instantiation of ’void foo(F&&) [with F = int]’:
2 required from here
3 error: static assertion failed: Type does not model function concept
4 static_assert(models<Function<Range(Domain)>, F>(),
5 ^

The provided concept checking facility is based on a list of expressions that a type must support
to model a concept. The implementation is based on the techniques proposed by E. Niebler
[8] and implemented in the range-v3 library [7]. While the dune-common module provides
the general concept checking facility including the models() function that allows to check if
a type models a concept, the definitions of the function concepts discussed in this paper are
contained in the dune-functionsmodule. This includes the concept Function<Range(Domain)>
for simple functions as introduced above, as well as DifferentiableFunction<Range(Domain)>,
GridViewFunction<Range(Domain), GridView>, and LocalFunction<Range(Domain),
LocalContext> for the extended function interfaces discussed in Section 3.

2.3 Type erasure and std::function

Sometimes, the precise type of a function is not known at compile-time but selected depending on
run-time information. This behavior is commonly referred to as dynamic dispatch. The classic way
to implement this uses inheritance and the virtual keyword: All classes implementing functions
must inherit from a common base class, and a pointer to this class is then passed around instead
of the function itself.

This approach has a few disadvantages. For example, all functors must live on the heap, and
a heap allocation is needed for each function construction. Secondly, in a derived class, the
return value of operator()must match the return value used in the base class (weaker rules hold
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for pointer or reference types, which are not of interest to us, though). However, it is frequently
convenient to also allow return values that are convertible to the return value of the base class. This
is not possible in C++. As a third disadvantage, interfaces can only be implemented intrusively,
and having one class implement more than a single interface is quite complicated.

The C++ standard library has therefore chosen type erasure over inheritance to implement run-
time polymorphism. Starting with C++11, the standard library contains a class [6, 20.8.11]

C++ code
1 namespace std
2 {
3 template< class Range, class... Args >
4 class function<Range(Args...)>
5 }

that wraps all functions that map a type Domain to a type (convertible to) Range behind a single
C++ type. A much simplified implementation looks like the following:

C++ code
1 template<class Range, class Domain>
2 struct function<Range(Domain)>
3 {
4 template<class F>
5 function(F&& f) :
6 f_(new FunctionWrapper<Range<Domain>, F>(f))
7 {}
8
9 Range operator() (Domain x) const

10 {
11 return f_->operator()(x);
12 }
13
14 FunctionWrapperBase<Range<Domain>>* f_;
15 };

The classes FunctionWrapper and FunctionWrapperBase look like this:

C++ code
1 template<class Range, class Domain>
2 struct FunctionWrapperBase<Range(Domain)>
3 {
4 virtual Range operator() (Domain x) const=0;
5 };
6
7 template<class Range, class Domain, class F>
8 struct FunctionWrapper<Range(Domain), F> :
9 public FunctionWrapperBase<Range(Domain)>

10 {
11 FunctionWrapper(const F& f) : f_(f) {}
12
13 virtual Range operator() (Domain x) const
14 {
15 return f_(x);
16 }
17
18 F f_;
19 };

Given two types Domain and Range, any function object that accepts a Domain as argument and
returns something convertible to Range can be stored in a std::function<Range(Domain)>. For
example, reusing the three implementations of sin2(x) from Section 2.1, one can write
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C++ code
1 std::function<double(double)> polymorphicF;
2 polymorphicF = sinSquared; // assign a free function
3 polymorphicF = sinSquaredLambda; // assign a lambda expression
4 polymorphicF = SinSquared(); // assign a functor
5 double a = polymorphicF(3.14); // evaluate

Note how different C++ constructs are all assigned to the same object. One can even use

C++ code
1 polymorphicF = [](double x) -> int { return floor(x); };
2 // okay: int can be converted to double

but not

C++ code
1 polymorphicF = [](double x) -> std::complex<double>
2 { return std::complex<double>(x,0); };
3 // error: std::complex<double> cannot be converted to double

Looking at the implementation of std::function, one can see that virtual functions are used
internally, but it is completely hidden to the outside. The copy constructor accepts any type as
argument. In a full implementation the same is true for the move constructor, and the copy
and move assignment operators. For each function type F, an object of type FunctionWrapper
<Range(Domain),F> is constructed, which inherits from the abstract base class
FunctionWrapperBase<Range(Domain)>.

Considering the implementation of std::function as described here, one may not expect any
run-time gains for type erasure over virtual methods. While std::function itself does not
have any virtual methods, each call to operator() does get routed through a virtual function.
Additionally, each call to the copy constructor or assignment operator invokes a heap allocation.
The virtual function call is the price for run-time polymorphism. It can only be avoided in some
cases using smart compiler devirtualization.

To alleviate the cost of the heap allocation, std::function implements a technique called small
object optimization. In addition to the pointer to FunctionWrapper, a std::function stores a
small amount of raw memory. If the function is small enough to fit into this memory, it is stored
there. Only in the case that more memory is needed, a heap allocation is performed. Small object
optimization is therefore a trade-off between run-time and space requirements. std::function
needs more memory with it, but is faster for small objects.

Small object optimization is not restricted to type erasure, and can in principle be used wherever
heap allocations are involved. However, with an inheritance approach this nontrivial optimiza-
tion would have to be exposed to the user code, while all its details are hidden from the user in a
type erasure context.

While we rely on std::function as a type erasure class for global functions, this is not sufficient to
represent extended function interfaces as discussed below. To this end dune-functions provides
utility functionality to implement new type erasure classes with minimal effort, hiding, e.g., the
details of small objects optimization. This can be used to implement type erasure for extended
function interfaces that go beyond the ones provided by dune-functions. Since these utilities are
not function-specific, they can also support the implementation of type-erased interfaces in other
contexts. Similar functionality is, e.g., provided by the poly library (which is part of the Adobe
Source Libraries [9]), and the boost type erasure library [10].
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3 Extended function interfaces

The techniques discussed until now allow to model functions

f : D→ R (1)

between a domain D and a range R by interfaces using either static or dynamic dispatch. In
addition to this, numerical applications often require to model further properties of a function
like differentiability or the fact that it is naturally defined locally on grid elements. In this section
we describe how this is achieved in the dune-functionsmodule using the techniques described
above.

3.1 Differentiable functions

The extension of the concept for a function (1) to a differentiable function requires to also provide
access to its derivative

D f : D→ L(D,R) (2)

where, in the simplest case, L(D,R) is the set of linear maps from the affine hull ofD to R.

Example 1. For a function f : Rn
→ Rm the derivative D f maps each vector x ∈ D = Rn to a linear

map D f (x) from D = Rn to R = Rm. Since we can identify any linear map M : Rn
→ Rm with a

matrix M ∈ Rm×n such that the value M(y) of M at y ∈ Rn is given by the matrix vector product
M(y) = My ∈ Rm we have identified L(D,R) with Rm×n. Hence D f is itself a function mapping
vectors from Rn to matrices from Rm×n. Notice that D f (x) ∈ Rm×n is commonly referred to as the
Jacobian matrix of f at x.

To provide access to derivatives, the dune-functionsmodule extends the ideas from the previous
section in a natural way. A C++ construct is a differentiable function if, in addition to having
operator() as described above, there is a free method derivative that returns a function that
implements the derivative. The typical way to do this will be a friend function as illustrated in
the class template Polynomial:

C++ code
1 template<class K>
2 class Polynomial
3 {
4 public:
5
6 Polynomial() = default;
7 Polynomial(const Polynomial& other) = default;
8 Polynomial(Polynomial&& other) = default;
9

10 Polynomial(std::initializer_list<double> coefficients) :
11 coefficients_(coefficients) {}
12
13 Polynomial(std::vector<K>&& coefficients) :
14 coefficients_(std::move(coefficients)) {}
15
16 Polynomial(const std::vector<K>& coefficients) :
17 coefficients_(coefficients) {}
18
19 const std::vector<K>& coefficients() const
20 { return coefficients_; }
21
22 K operator() (const K& x) const
23 {
24 auto y = K(0);
25 for (size_t i=0; i<coefficients_.size(); ++i)
26 y += coefficients_[i] * std::pow(x, i);
27 return y;
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28 }
29
30 friend Polynomial derivative(const Polynomial& p)
31 {
32 std::vector<K> dpCoefficients(p.coefficients().size()-1);
33 for (size_t i=1; i<p.coefficients_.size(); ++i)
34 dpCoefficients[i-1] = p.coefficients()[i]*i;
35 return Polynomial(std::move(dpCoefficients));
36 }
37
38 private:
39 std::vector<K> coefficients_;
40 };

To use this class, write

C++ code
1 auto f = Polynomial<double>({1, 2, 3});
2 double a = f(3.14);
3 double b = derivative(f)(3.14);

Note, however, that the derivativemethod may be expensive, because it needs to compute the
entire derivative function. It is therefore usually preferable to call it only once and to store the
derivative function separately.

C++ code
1 auto df = derivative(f);
2 double b = df(3.14);

Functions supporting these operations are described by Concept::DifferentiableFunction,
provided in the dune-functionsmodule.

When combining differentiable functions and dynamic polymorphism, the std::function class
cannot be used as is, because it does not provide access to the derivative method. However, it
can serve as inspiration for more general type erasure wrappers. The dune-functions module
provides the class

C++ code
1 template<class Signature ,
2 template<class> class DerivativeTraits=DefaultDerivativeTraits ,
3 size_t bufferSize=56>
4 class DifferentiableFunction;

in the file dune/functions/common/differentiablefunction.hh. Partially, it is a reimplemen-
tation of std::function. The first template argument of DifferentiableFunction is equivalent
to the template argument Range(Args...) of std::function, and DifferentiableFunction
implements a method

C++ code
1 Range operator() (const Domain& x) const;

This method works essentially like the one in std::function, despite the fact that its argument
type is fixed to const Domain& instead of Domain, because arguments of a “mathematical function”
are always immutable. Besides this, it also implements a free method

C++ code
1 friend DerivativeInterface derivative(const DifferentiableFunction& t);
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that wraps the corresponding method of the function implementation. It allows to call the
derivativemethod for objects whose precise type is determined only at run-time:

C++ code
1 DifferentiableFunction<double(double)> polymorphicF;
2 polymorphicF = Polynomial<double>({1, 2, 3});
3 double a = polymorphicF(3.14);
4 auto polymorphicDF = derivative(polymorphicF);
5 double b = polymorphicDF(3.14);

While the domain of a derivative is D, the same as the one of the original function, its range
is L(D,R). Unfortunately, it is not feasible to always infer the best C++ type for objects from
L(D,R). To deal with this, dune-functions offers the DerivativeTraits mechanism that maps
the signature of a function to the range type of its derivative. The line

C++ code
1 using DerivativeRange = DerivativeTraits<Range(Domain)>::Range;

shows how to access the type that should be used to represent elements of L(D,R). The template
DefaultDerivativeTraits is specialized for common combinations of Dune matrix and vector
types, and provides reasonable defaults for the derivative ranges. However, it is also possible
to change this by passing a custom DerivativeTraits template to the interface classes, e.g., to
allow optimized application-specific matrix and vector types or use suitable representations for
other or generalized derivative concepts.

Currently the design of DifferentiableFunction differs from std:function in that it only
considers a single argument, but this can be vector valued.

3.2 GridView functions and local functions

A very important class of functions in any finite element application are discrete functions, i.e.,
functions that are defined piecewisely with respect to a given grid. Here, a grid covering a domain
D is a decomposition into a set of subdomains in the sense that

D =
⋃
e∈G

e.

The subdomains e ∈ G are called grid elements or cells of the grid. In many applications with
Ω ⊂ Rd those elements are disjoint, open, nonempty d-dimensional polyhedra, possibly with
curved boundaries. In Dune terminology, the k-dimensional faces of those polyhedra are called
grid entities of codimension d − k. Hence the elements are the entities of codimension 0 while
vertices, edges, and facets of those polyhedra are grid entities of codimension k = d, k = d−1, and
k = 1, respectively. For each element e ∈ G we assume that there is a so-called reference element ê
and a bijective parametrization Φe : ê→ e. We call ξ ∈ ê the local coordinate of x ∈ Dwith respect
to an element e ∈ G if x ∈ e and Φe(ξ) = x.

For a given grid G on D a function f : D → R is called a discrete function if it has a natural
piecewise definition with respect to the decomposition. Such functions are typically too expensive
to evaluate in global coordinates, e.g., at points x ∈ Ddirectly. Luckily this is hardly ever necessary.
Instead one often knows an element e and local coordinates ξ ∈ ê of x with respect to e that allow
to evaluate f (x) = f (Φe(ξ)) cheaply. Formally, this means that we have localized versions

fe = f ◦Φe : ê→ R, e is element of the grid.

To support this kind of function evaluation, Dune has provided interfaces in the style of
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C++ code
1 void evaluateLocal(Codim<0>::Entity element,
2 const LocalCoordinates& x,
3 Range& y);

Given an element element and a local coordinate x, such a method would evaluate the function at
the given position, and return the result in the third argument y. This approach is currently used,
e.g., in the grid function interfaces of the discretization modules dune-pdelab and dune-fufem.

There are several disadvantages to this approach. First, we have argued earlier that return-by-
value is preferable to return-by-reference. Hence, an obvious improvement would be to use

C++ code
1 Range operator()(Codim<0>::Entity element, cost LocalCoordinates& x);

instead of the evaluateLocal method. However, there is a second disadvantage. In a typical
access pattern in a finite element implementation, a function evaluation on a given element is
likely to be followed by evaluations on the same element. For example, think of a quadrature
loop that evaluates a coefficient function at all quadrature points of a given element. Function
evaluation in local coordinates of an element can involve some setup code that depends on the
element but not on the local coordinate x. This could be, e.g., pre-fetching of those coefficient
vector entries that are needed to evaluate a finite element function on the given element, or
retrieving the associated shape functions.

In the approaches described so far in this section, this setup code is executed again and again
for each evaluation on the same element. To avoid this we propose the following usage pattern
instead:

C++ code
1 auto localF = localFunction(f);
2 localF.bind(element);
3 auto y = localF(xLocal); // evaluate f in element-local coordinates

Here we first obtain a local function, which represents the restriction of f to a single element. This
function is then bound to a specific element using the method

C++ code
1 void bind(Codim<0>::Entity element);

This is the place for the function to perform any required setup procedures. Afterwards the local
function can be evaluated using the interface described above, but now using local coordinates
with respect to the element that the local function is bound to. The same localized function object
can be used for other elements by calling bind with a different argument. Functions supporting
these operations are called grid view functions, and described by Concept::GridViewFunction
The local functions are described by Concept::LocalFunction. Both concepts are provided in
the dune-functionsmodule.

Since functions in a finite element context are usually at least piecewise differentiable, grid view
functions as well as local functions provid the full interface of differentiable functions as outlined
in Section 3.1. To completely grasp the semantics of the interface, observe that strictly speaking
localization does not commute with taking the derivative. Formally, a localized version of the
derivative is given by

(D f )e : ê→ L(D,R), (D f )e = (D f ) ◦Φe. (3)

In contrast, the derivative of a localized function is given by

D( fe) : ê→ L(ê,R), D( fe) = ((D f ) ◦Φe) ·DΦe.
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However, in the dune-functions implementation, the derivative of a local function does by
convention always return values in global coordinates. Hence, the functions dfe1 and dfe2 obtained
by

C++ code
1 auto df = derivative(f);
2 auto dfe1 = localFunction(df);
3 dfe1.bind(element);
4
5 auto fe = localFunction(f);
6 fe.bind(element);
7 auto dfe2 = derivative(fe);

both behave the same, implementing (D f )e as in (3). This is motivated by the fact that D( fe) is hardly
ever used in applications, whereas (D f )e is needed frequently. To express this mild inconsistency
in the interface, a local function uses a special DerivativeTraits implementation that forwards
the derivative range to the one of the corresponding global function.

Again, type erasure classes allow to use grid view and local functions in a polymorphic way. The
class

C++ code
1 template<class Signature ,
2 class GridView ,
3 template<class> class DerivativeTraits=DefaultDerivativeTraits ,
4 size_t bufferSize=56>
5 class GridViewFunction;

stores any function that models the GridViewFunction concept with given signature and grid
view type. Similarly, functions modeling the LocalFunction concept can be stored in the class

C++ code
1 template<class Signature ,
2 class Element,
3 template<class> class DerivativeTraits=DefaultDerivativeTraits ,
4 size_t bufferSize=56>
5 class LocalFunction;

These type erasure classes can be used in combination:

C++ code
1 GridViewFunction<double(GlobalCoordinate), GridView> polymorphicF;
2 polymorphicF = f;
3 auto polymorphicLocalF = localFunction(polymorphicF);
4 polymorphicLocalF.bind(element);
5 LocalCoordinate xLocal = ... ;
6 auto y = polymorphicLocalF(xLocal);

Notice that, as described above, the DerivativeTraits used in polymorphicLocalF are not the
same as the ones used by polymorphicF. Instead, they are a special implementation forwarding
to the global derivative range even for the domain type LocalCoordinate.

4 Performance measurements

In this last chapter we investigate how the interface design for functions in Dune influences the
run-time efficiency. Two particular design choices are expected to be critical regarding execution
speed: (i) returning the results of function evaluations by value involves temporary objects and
copying unless the compiler is smart enough to remove those using return-value-optimization.
In the old interface, such copying could not occur by construction, (ii) using type erasure instead
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of virtual functions for dynamic polymorphism. While there are fewer reasons to believe that this
may cause changes in execution time, it is still worthwhile to check empirically.

As a benchmark we have implemented a small C++ program that computes the integral

I( f ) B
∫ 1

0
f (x) dx

for different integrands, using a standard composite mid-point rule. We chose this problem
because it is very simple, but still an actual numerical algorithm. More importantly, most of the
time is spent evaluating the integrand function. Finally, hardly any main memory is needed, and
hence memory bandwidth limitations will not influence the measurements. We have deliberately
omitted tests for derivatives and piecewise functions. As these use return-by-value and type
erasure in much the same way as function evaluation does, we do not expect much additional
information from such additional tests.

The example code is a pure C++11 implementation with no reference to Dune. The relevant inter-
faces from Dune are so short that it was considered preferable to copy them into the benchmark
code to allow easier building. The code is available in a single file attached to this pdf document,
via the icon in the margin.

To check the influence of return types with different size we used integrands of the form

f : R→ RN, f (x)i = x + i − 1, i = 1, . . . ,N,

for various sizes N. This special choice was made to keep the computational work done inside
of the function to a minimum while avoiding compiler optimizations that replace the function
call by a compile-time expression. The test was performed with n = b108/Nc subintervals for the
composite mid-point rule leading to n function evaluations, such that the timings are directly
comparable for different values of N.

For the test we implemented four variants of function evaluation:

(a) Return-by-value with static dispatch using plain operator(),

(b) Return via reference with static dispatch using evaluate(),

(c) Return-by-value with dynamic dispatch using std::function::operator(),

(d) Return via reference with dynamic dispatch using VirtualFunction::evaluate(), as in
the introduction.

The test was performed with N = 1, . . . , 16 components for the function range, using double
to implement the components. We used GCC-4.9.2 and Clang-3.6 as compilers, as provided by
the Linux distribution Ubuntu 15.04. To avoid cache effects and to eliminate outliers we did a
warm-up run before each measured test run and selected the minimum of four subsequent runs
for all presented values.

Figure 2.A shows the execution time in milliseconds over N when compiling with GCC-4.9 and
the compiler options -std=c++11 -O3 -funroll-loops. One can observe that the execution time
is the same for variants (a) and (b) and all values of N. We conclude that for static dispatch there is
no run-time overhead when using return-by-value, or, more precisely, that the compiler is able to
optimize away any overhead. Comparing the dynamic dispatch variants (c) and (d) we see that
for small values of N there is an overhead for return-by-value with type erasure compared to the
classic approach using inheritance and virtual functions. This is somewhat surprising since pure
return-by-value does not impose an overhead, and dynamic dispatch happens for both variants.

Guessing that the compiler is not able to optimize the nested function calls in the type erasure
interface class std::function to full extent, we repeated the tests using profile guided optimization.
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Figure 2: Timings for �108/N� function calls over varying vector size N using (A) GCC, (B) GCC
with profile-guided optimization, and (C) Clang.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



Functions in dune-functions 109

To this end the code was first compiled using the additional option -fprofile-generate. When
running the obtained program once, it generates statistics on method calls that are used by
subsequent compilations with the additional option -fprofile-use to guide the optimizer. The
results depicted in Figure 2.B show that the compiler is now able to generate code that performs
equally well for variant (c) and (d). In fact variant (c) is sometime even slightly faster.

Finally, Figure 2.C shows results for Clang-3.6 and the compiler options -std=c++11 -O3
-funroll-loops. Again variants (a) and (b) show identical results. In contrast, variant (c)
using std::function is now clearly superior compared to variant (d). Note that we only used
general-purpose optimization options and that this result did not require fine-tuning with more
specialized compiler flags.

5 Conclusion

We have presented a new interface for functions in Dune, which is implemented in the new
dune-functionsmodule. The interface follows the ideas of function objects and std::function
from the C++ standard library, and generalises these concepts to allow for differentiable functions
and discrete grid functions. For run-time polymorphism we offer corresponding type erasure
classes similar to std::function. The performance of these new interfaces was compared to
existing interfaces in Dune. When using the optimization features of modern compilers, the
proposed new interfaces are at least as efficient as the old ones, while being much easier to read
and use.
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[5] J. Hubička. Devirtualization in C++. online blog, http://hubicka.blogspot.de/2014/
01/devirtualization-in-c-part-1.html, 2014. (at least) seven parts, last checked on
Dec. 8. 2015.

[6] International Organization for Standardization. ISO/IEC 14882:2011 Programming Language
C++, 9 2011.

[7] E. Niebler. Range-v3 library. https://github.com/ericniebler/range-v3.

[8] E. Niebler. Concept checking in C++11. online blog, http://ericniebler.com/2013/11/
23/concept-checking-in-c11, 2013. last checked on Dec. 8. 2015.

[9] S. Parent, M. Marcus, and F. Brereton. Adobe source libraries. http://stlab.adobe.com/.

[10] S. Watanabe. Boost type erasure library. http://www.boost.org/doc/libs/release/libs/
type_erasure/.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017





Archive of Numerical Software
vol. 5, no. 1, 2017, pages 111–128
DOI: 10.11588/ans.2017.1.27719

The DUNE-DPG library for solving PDEs with
Discontinuous Petrov–Galerkin finite elements

Felix Gruber1, Angela Klewinghaus1, and Olga Mula2

1IGPM, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany
2Université Paris-Dauphine, PSL Research University, CNRS, UMR 7534, CEREMADE, 75016

Paris, France

Received: February 7th, 2016; final revision: November 7th, 2016; published: March 6th, 2017.

Abstract: In the numerical solution of partial differential equations (PDEs), a central question
is the one of building variational formulations that are inf-sup stable not only at the infinite-
dimensional level, but also at the finite-dimensional one. These properties are important since
they represent the rigorous foundations for a posteriori error control and the development of
adaptive strategies. The essential difficulty lies in finding systematic procedures to build varia-
tional formulations for which these desirable stability properties are (i) provable at the theoretical
level while (ii) the approach remains implementable in practice and (iii) its computational com-
plexity does not explode with the problem size. In this framework, the so-called Discontinuous
Petrov–Galerkin (DPG) concept seems a promising approach to enlarge the scope of problems
beyond second order elliptic PDEs for which this is possible. In the context of DPG, the result
for the elliptic case was proven by Gopalakrishnan and Qiu [2014] and requires a p-enriched test
space. Recently, the same type of result has been proven by Broersen et al. [2015] for certain classes
of linear transport problems using an appropriate hp-enrichment to build the finite dimensional
test space. In the light of this new result, we present Dune-DPG, a C++ library which allows
to implement the test spaces introduced in Broersen et al. [2015]. The library is built upon the
multi-purpose finite element package Dune (see Blatt et al. [2016]). In this paper, we present the
current version 0.2.1 of Dune-DPG which has so far been tested only for elliptic and transport
problems. An example of use via a simple transport equation is described. We conclude outlining
future work and applications to more complex problems. Dune-DPG is licensed under the GPL
2 with runtime exception and a source code tarball is available together with this paper.

1 Introduction

General context: Let Ω be a domain of Rd (d ≥ 1) and U, V two Hilbert spaces defined over
Ω and endowed with norms ‖ · ‖U and ‖ · ‖V, respectively. The normed dual ofV, denoted V′, is
endowed with the norm

‖`‖V′ B sup
v∈V

|`(v)|
‖v‖V

, ∀` ∈ V′.
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Let B : U→ V be a boundedly invertible linear operator and let b : U ×V→ R be its associated
continuous bilinear form defined by b(w, v) = (Bw) (v), ∀(w, v) ∈ U×V. We consider the operator
equation

Given f ∈ V′, find u ∈ U s. t.
Bu = f ,

(1)

or, equivalently, the variational problem

Given f ∈ V′, find u ∈ U s. t.
b(u, v) = f (v), ∀v ∈ V.

(2)

Let 0 < γ ≤ 1 be a lower bound for the (infinite-dimensional) inf-sup constant

inf
w∈U

sup
v∈V

b(w, v)
‖w‖U‖v‖V

≥ γ > 0.

Since B is invertible, problem (1) admits a unique solution u ∈ U and for any approximation
ū ∈ U of u,

‖B‖
−1
L(U,V′)‖ f − Bū‖V′ ≤ ‖u − ū‖U ≤ γ−1

‖ f − Bū‖V′ . (3)

From (3), it follows that the error ‖u − ū‖U is equivalent to the residual ‖ f − Bū‖V′ . The residual
contains known quantities and its estimation on an appropriate finite-dimensional space opens
the door to rigorously founded a posteriori concepts. However, note that the information that
the estimator can give is only meaningful when the variational formulation is well-conditioned,
i. e., for ‖B‖L(U,V′) and γ being as close to one as possible. Assuming that we have this property of
well-conditioning, a crucial point is that this needs to be inherited at the finite-dimensional level.
This issue has been well explored for standard Galerkin methods (i. e. whenU = V) and allows
to appropriately address most parabolic and second order elliptic problems with a wide variety
of finite element methods. However, there are problems for which standard Galerkin methods do
not lead to a stable discretization (one example being transport-dominated PDEs). In this context,
one can move to a Petrov-Galerkin framework where the main guiding ideas are:

• It is possible to find a test space V and a norm for V which yield γ = 1. V and its norm
depend on the specific PDE and might not coincide withU.

• For a given finite-dimensional trial space UH, there exists a corresponding optimal test
spaceVopt(UH) such that the discrete inf-sup condition

inf
wH∈UH

sup
v∈Vopt(UH)

b(wH, v)
‖wH‖U‖v‖V

≥ γ

holds with the same constant γ as the infinite-dimensional one. For more details on this,
see Section 2.1.

Since, in general, even the approximate computation of the optimal test space requires the solution
of global problems, there are essentially two ways to make the computation affordable. One is the
introduction of a mixed formulation which avoids the computation of the optimal test spaces and
only uses them indirectly. This approach was used in Dahmen et al. [2012] to construct a general
adaptive scheme when U = L2(Ω) and to show convergence under certain abstract conditions
(which have to be verified for concrete applications). It was also employed in the context of
reduced-basis construction for transport-dominated problems (see Dahmen et al. [2014]).

The other way is to make computations affordable by localization so that the optimal test spaces
can be computed by solving local problems. This is the approach taken in the DPG methodology,
initiated and developed mainly by L. Demkowicz and J. Gopalakrishnan (see e. g. Demkowicz
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and Gopalakrishnan [2011], Gopalakrishnan and Qiu [2014], Demkowicz and Gopalakrishnan
[2015]). Since, in general, the local problems to find Vopt(UH) are still infinite dimensional, the
DPG method approximates the exact optimal test functions in the context of a discontinuous
Petrov–Galerkin formulation. As a result, Vopt(UH) is replaced in practical computations by
a finite dimensional space called “near-optimal test-space”, which we will denote Vn.opt. This
is the space which is eventually used in the solution of the discrete problem. For fairly broad
classes of PDEs, there exist abstract results showing that the inf-sup stability of the discrete
problem with Vn.opt is preserved provided that Vn.opt is close enough to the true optimal test-
space Vopt(UH) in a certain abstract sense. We refer to Roberts et al. [2014] and also the concept
of delta proximality introduced in Dahmen et al. [2012] for results in this respect. Deriving more
quantifiable conditions on the form ofVn.opt is a more involved task which depends on the PDE. It
is nevertheless important since it helps to quantify the complexity of the approach in more specific
terms. This type of result was first proven for second order elliptic problems by Gopalakrishnan
and Qiu [2014]. It requires a p-enrichment strategy (with respect to the polynomial degree of
UH) to build Vn.opt. Recently, the same type of result has been derived by Broersen et al. [2015]
for certain classes of linear transport problems. It is proven there that the use of a certain hp-
enrichment in the construction of Vn.opt guarantees a sufficiently good near-optimal test space.
Beyond these theoretically backed-up cases, we also note that numerical evidence illustrates
the good stability properties of DPG for a larger spectrum of PDEs than elliptic and transport
problems. Without being exhaustive, we can find works on convection–diffusion [Broersen and
Stevenson, 2015, Niemi et al., 2013], elasticity and Stokes [Carstensen et al., 2014, Roberts et al.,
2014], Maxwell equations [Carstensen et al., 2016] and the Helmholtz equation [Demkowicz et al.,
2012]. Also, we note that the idea of hp-enrichment to build Vn.opt was explored in numerical
experiments about convection-diffusion in Niemi et al. [2013].

Motivations and contributions of the paper: In this paper, we explain the construction of
the Dune-DPG library which aims at solving different types of PDEs with a DPG variational
formulation. The main guidelines for its construction have been:

• to give the user as much liberty as possible in the nature of the problem to be addressed, in
the nature of the test and trial spaces to be used and in the geometry and mesh refinement,

• to endow the code with a modular structure in order to ensure an easy access to low-level
functionalities for which a fine control is required while keeping a high-level view for the
rest of the code.

In the light of the recent results by Broersen et al. [2015] and in order to have a rigorous back-up
on the stability of the calculations for the largest possible scope of problems, a special emphasis
has been put on giving the possibility to use h and p refined spaces for the construction of
the near-optimal test space Vn.opt. This point is actually the main novelty that the present
library offers with respect to other existing DPG libraries like Camellia (see Roberts [2014]). It is
nevertheless significant in the sense that this capability seems well suited to investigate novel
numerical schemes with rigorous error bounds for more elaborate transport based PDEs such as
kinetic problems. A work in this direction is currently ongoing and will be subject of a future
publication.

Dune-DPG is licensed under the GPL 2 with runtime exception and its latest version (0.2.1) is
released together with this paper1. The library is based upon the multi-purpose finite element
package Dune (see, e. g., Bastian et al. [2008]). In particular, we use version 2.4.1 [Blatt et al., 2016]
of the core modules Dune-Grid [Bastian et al., 2008], Dune-ISTL [Blatt and Bastian, 2006], Dune-
Geometry, Dune-Functions [Engwer et al., 2015], Dune-LocalFunctionsand Dune-TypeTree. As
a consequence, for the users of Dune, the library represents a relatively simple way to experiment
with basic DPG concepts.

1The whole Git history of Dune-DPG can be found at https://gitlab.dune-project.org/felix.gruber/dune-dpg.
We try to keep the master branch compatible to the current development branches of the Dune core modules.
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Finally, we would like to point out that Dune-DPG is still under active development and the
present release comes with a couple of limitations which will be fixed in future versions. These
are:

• the current implementation is limited to problems with constant coefficients,

• parallelization of the code has not been explored,

• the library has been tested so far in elliptic and pure transport problems but, as already
brought up, it is currently being used to study more involved PDEs.

Layout of the paper: To show how the library works, the paper is organized as follows: In
Section 2, we summarize the mathematical concepts of DPG that are relevant to understand the
library. As an example, we explain at the end of this section how the ideas can be applied to a
simple transport problem following the theory of Broersen et al. [2015]. Then, in Section 3, we
present the different building blocks that form the library. We explain how they interact and how
they make use of some features of the Dune framework upon which our library is built. Finally,
in Section 4, we validate Dune-DPG by giving concrete results related to the solution of a simple
transport problem. Some performance results are also given.

2 Theoretical Foundations for DPG

As already brought up in the introduction, the DPG concept was initiated and developed mainly
by L. Demkowicz and J. Gopalakrishnan (see e. g. Demkowicz and Gopalakrishnan [2011],
Gopalakrishnan and Qiu [2014]). Other relevant results concerning theoretical foundations are
Broersen and Stevenson [2014, 2015] and, more recently, Broersen et al. [2015]. The strategy
followed in DPG to contrive stable variational formulations is based on the concept of optimal
test spaces and their practical approximation through the solution of local problems in the context
of a discontinuous Petrov–Galerkin variational formulation. The two following sections explain
more in detail these two fundamental ideas.

2.1 The concepts of optimal and near-optimal test spaces

Assuming that we start from a well-posed and well-conditioned infinite-dimensional variational
formulation (2), we look for a formulation at the finite-dimensional level which inherits these
desirable features. Let H > 0 be a parameter (H will later be associated to the size of a mesh ΩH
of Ω). For any given finite-dimensional trial spaceUH of dimensionN (that depends on H), there
exists a so-called optimal test spaceVopt(UH) of the same dimension. It is called optimal because
the finite-dimensional version of problem (2),

Find uH ∈ UH s. t.

b(uH, v) = f (v), ∀v ∈ Vopt(UH),
(4)

is well posed and

inf
wH∈UH

sup
v∈Vopt(UH)

b(wH, v)
‖wH‖U‖v‖V

≥ γ.

In other words, the discrete inf-sup condition is bounded with the same constant γ that is involved
in the infinite-dimensional problem. This implies that the discrete problem has the same stability
properties as the infinite-dimensional problem. Therefore the residual ‖ f − BuH‖V′ is equivalent
to the actual error ‖u − uH‖U with the same constants exhibited in (3). Since these constants do
not depend on H, ‖ f − BuH‖V′ is a robust error bound that is suitable for adaptivity since we can
decrease H without degrading the constants of equivalence.



The Dune-DPG library 115

Unfortunately, the optimal test space Vopt(UH) is not computable in practice. Indeed, if {ui
H}
N

i=1
spans a basis ofUH, then the set of functions {vi

}
N

i=1 defined through the variational problems,

i ∈ {1, . . . ,N}, 〈vi, v〉V = b(ui
H, v), ∀v ∈ V (5)

spans a basis ofVopt(UH). Since these problems are formulated in the infinite-dimensional space
V, they cannot be computed exactly (in addition, the problems are global). To address this issue,
problems (5) are V-projected to a finite-dimensional subspace Vh that will be called test-search
space. Therefore, in practice, an approximation {v̄i

}
N

i=1 to the set of functions {vi
}
N

i=1 is computed
by solving for all i ∈ {1, . . . ,N},

〈v̄i, vh〉V = b(ui
H, vh), ∀vh ∈ Vh. (6)

This defines a projected test space Vn.opt(UH,Vh) B span{v̄i
}
N

i=1. For the elliptic case and some
classes of transport problems, it has been shown that it is possible to exhibit test-search spacesVh
(which depend on the initialUH) such thatVn.opt(UH,Vh) is close enough to the optimalVopt(UH)
to allow that the discrete inf-sup constant

γH B inf
uH∈UH

sup
v̄∈Vn.opt(UH ,Vh)

b(uH, v̄)
‖uH‖UH‖v̄‖Vh

(7)

is bounded away from 0 uniformly in H. For this reason, Vn.opt(UH,Vh) is called a near-optimal
test-space. In the case of transport problems, the recent work of Broersen et al. [2015] shows that
good test-search spacesVh can be found when they are defined over a refinement Ωh of ΩH.

The near-optimal test space Vn.opt(UH,Vh) is the one that is computed in practice in the Dune-
DPG library. The finite-dimensional variational formulation that is eventually solved reads

Find uH ∈ UH s. t.

b(uH, v̄) = f (v̄), ∀v̄ ∈ Vn.opt(UH,Vh).
(8)

It can be expressed as a linear system of the form Ax = F, A ∈ RN×N , x ∈ RN , F ∈ RN . It can be
proven that A is by construction symmetric positive definite. The assembly of the system and its
solution in Dune-DPG are explained in Section 3.1.

2.2 The concept of localization

Depending on the choice ofV andVh, the solution of (6) to derive the near-optimal basis functions
of Vn.opt(UH,Vh) might be costly. This is because these N problems are, in general, global in the
whole domain Ω and they cannot be decomposed into local ones. Furthermore, if the resulting
near-optimal basis functions have global support, the solution of the finite-dimensional variational
problem (8) is costly as well because the resulting system matrix A is full.

To prevent this, we need an appropriate variational formulation with a well-chosen test spaceV
which has a product structure on the coarse grid ΩH,

V B
∏

K∈ΩH

VK, (9)

where supp(v) ⊂ K for any v ∈ VK. In particular, the restriction of theV-scalar product to K ∈ ΩH
has to be a scalar product forVK:

〈·, ·〉V|K = 〈·, ·〉VK

The test-search spaceVh will be chosen in such a way, that it has the same product structure asV,

Vh B
∏

K∈ΩH

Vh,K, Vh,K ⊂ VK.
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Therefore, for any 1 ≤ i ≤ N , the near-optimal test function v̄i can be written as

v̄i =
∑

K∈ΩH

v̄i
KχK,

where χK is the characteristic function of cell K. Additionally, we need a decomposition of the
bilinear form as a sum over mesh cells of ΩH,

b (u, v) =
∑

K∈ΩH

bK (u, v) , ∀v ∈
∏

K∈ΩH

VK. (10)

Then, for every K ∈ ΩH, v̄i
K is the solution of a local problem in K,

〈v̄i
K, vh,K〉VK = bK

(
ui

H, vh,K

)
, ∀vh,K ∈ Vh,K, (11)

where {ui
H}
N

i=1 is a basis ofUH. Therefore, finding v̄i can be decomposed into a sum of problems,
each one of which is localized on a mesh cell K ∈ ΩH. Moreover, if the support of ui

H is included
in some cell K ∈ ΩH, then the support of its corresponding near-optimal test function v̄i is also a
subset of K (and the neighboring cells in some cases). In other words, we would have v̄i = v̄i

KχK

or v̄i =
∑

K′∈ neigh(K) v̄i
K′χK′ . Hence, if the basis functions ui

H ofUH have local support, the resulting
system matrix A is sparse.

2.3 An example: a linear transport equation

Let Ω = (0, 1)2 and β be a vector of R2 with norm one. For any x ∈ ∂Ω, let n(x) be its associated
outer normal vector. Then

Γ− B {x ∈ ∂Ω | β · n(x) < 0} ⊂ ∂Ω (12)

is the inflow-boundary for the given constant transport direction β. Given c ∈ R and a function
f : Ω → R, we consider the problem of finding the solution ϕ : Ω → R to the simple transport
equation

β · ∇ϕ + cϕ = f , in Ω,

ϕ = 0, on Γ−.
(13)

If we apply the DPG approach introduced in Broersen et al. [2015] to solve this problem, we first
need to introduce the following spaces. Denoting by ∇H the piecewise gradient operator, let

H(β,ΩH) B {v ∈ L2(Ω) | β · ∇Hv ∈ L2(Ω)},

equipped with squared “broken” norm ‖v‖2H(β,ΩH) = ‖v‖2L2(Ω) + ‖β · ∇Hv‖2L2(Ω). Let also

H0,Γ− (β,Ω) B closH(β,Ω){u ∈ H(β,Ω) ∩ C(Ω̄) | u = 0 on Γ−}

and
H0,Γ− (β, ∂ΩH) B {w|∂ΩH | w ∈ H0,Γ− (β,Ω)}

equipped with quotient norm

‖θ‖H0,Γ− (β,∂ΩH) B inf{‖w‖H(β,Ω) | θ = w|∂ΩH , w ∈ H0,Γ− (β,Ω)}.

The variational formulation reads

ForU B L2(Ω) ×H0,Γ− (β, ∂ΩH) andV B H(β,ΩH),
given f ∈ H(β,ΩH)′, find u B (ϕ, θ) ∈ U such that
b(u, v) = f (v), ∀v ∈ V.

(14)
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In this formulation (usually called ultra-weak formulation) the bilinear form b(u, v) is defined by

b(u, v) = b
(
(ϕ, θ), v

)
=

∫
Ω

(
−β · ∇vϕ + cvϕ

)
dx +

∫
∂ΩH

~vβ�θ ds. (15)

Note that this variational formulation depends on the mesh ΩH. Also, note the presence of an
additional unknown θ that lives on the skeleton ∂ΩH of the mesh. For smooth solutions, θ agrees
with the traces of ϕ on ∂ΩH (i. e. the union of cell interfaces of ΩH).

For the discretization, we replace θ by a lifting w ∈ H0,Γ− (β,Ω) (for details see Broersen et al.
[2015]) and take for some m ∈N,

UH B
( ∏

K∈ΩH

Pm−1(K)
)
×

(
H0,Γ− (β,Ω) ∩

∏
K∈ΩH

Pm(K)
)∣∣∣∣∣∣∣
∂Ωh

, (16)

where Pm(K) is the space of polynomials of degree m. A viable test-search space can be taken
simply as discontinuous piecewise polynomials of slightly higher degree on the finer mesh Ωh of
ΩH, namely

Vh B
∏
K∈Ωh

Pm+1(K). (17)

As a result, the discrete version of (14) reads

Find uH B (ϕH,wH) ∈ UH such that

b̃(uH, v̄) = f (v̄), ∀v̄ ∈ Vn.opt(UH,Vh).
(18)

The bilinear form b̃ is slightly different from b. It reads

b̃(u, v) = b̃
(
(ϕ,w), v

)
=

∫
Ω

(
−β · ∇vϕ + cvϕ

)
dx +

∫
∂Ωh

~vβ�w ds. (19)

The trace integral is over ∂Ωh and not ∂ΩH since Vh is now a broken space with respect to the
finer mesh Ωh. This is why we need a lifting w instead of θ here. Note that depending on the
polynomial degree m and the refinement level of Ωh, there might be undefined degrees of freedom
of w. In this case, they have to be fixed for example by minimizing ‖w‖H(β,Ω).

3 An Overview of the Architecture of DUNE-DPG

In this section we describe how the DPG method presented in Section 2 has been implemented
in Dune-DPG. As already brought up, the library has been built upon the finite element package
Dune.

The user starts by choosing the appropriate test-search space Vh and trial space UH for his
problem. Then, the bilinear form b(·, ·) and the inner product 〈·, ·〉V are declared via the classes
BilinearForm and InnerProduct (see Section 3.1.2). They both consist of an arbitrary number
of elements of the type IntegralTerm (see Section 3.1.3). The DPGSystemAssembler class handles
the automatic assembly of the linear system Ax = F associated to problem (8). As Section 3.1.1
explains, it includes:

• the assembly of the matrix A and the right hand side F

• the treatment of boundary conditions
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To assemble A, we use the decomposition (10) and define the local matrices AK by

(AK)i, j = bK(u j
H,K, v̄

i
K) (20)

where {ui
H,K}

NK
i=1 is a basis for the restriction ofUH to K and {v̄i

K}
NK
i=1 is a basis for the restriction of the

near-optimal test spaceVn.opt(UH,Vh) to K. To compute these local matrices, we follow the same
lines as the Camellia library [Roberts, 2014] and start from a basis {v j

h,K}
MK
j=1 of the test-search space

Vh restricted to K. Then, we use the bilinear form b(·, ·) and the inner product 〈·, ·〉V to construct
the matrices BK and GK defined by

(BK)i, j = bK(u j
H,K, v

i
h,K) , (GK)i, j = 〈vi

h,K, v
j
h,K〉V . (21)

It follows from (11) that the coefficients ci, j
K of the basis functions v̄i

K =
∑
MK
j=1 ci, j

K v j
h,K of the near-

optimal test space restricted to K are the columns of the matrix

CK B G−1
K BK (22)

and the local matrices satisfy
AK = AT

K = BT
KCK. (23)

The matrices CK and AK are computed by the class TestspaceCoefficientMatrix which also
offers a feature to store those matrices to reduce computational costs in case of constant coefficients
(see Section 3.1.4). Finally, the DPGSystemAssembler class constructs the global matrix A out of
the local matrices AK. In addition to these classes, the class ErrorTools handles the computation
of a posteriori estimators following the guidelines that are given in Section 3.2.

3.1 Assembling the discrete system for a given PDE

The following subsections describe the DPGSystemAssembler class and all the classes used by it.

3.1.1 DPGSystemAssembler The assembly of the discrete system Ax = F derived from
the variational problem is handled by the class DPGSystemAssembler. Before we can create a
DPGSystemAssembler by calling the method make_DPGSystemAssembler we first have to define
the trial space UH, the near-optimal test space Vn.opt(UH,Vh) as well as the bilinear form b and
the inner product that describe our DPG system. The bilinear form is an object of the class
BilinearFormwhich is explained in Section 3.1.2. As for the spacesUH andVn.opt(UH,Vh), they
are both given by a std::tuple composed of (scalar) global basis functions from Dune-Functions.
The reason to use a tuple is to handle problems involving several unknowns. For instance, in
the ultra-weak formulation introduced for the transport problem in Section 2.3, we have two
unknowns (ϕ,w) andUH is a product of two spaces.

The following lines of code taken from src/plot_solution.cc give an overview of how to set up
the transport problem from Section 2.3. The individual steps will be explained in the following
subsections. The example uses UG (see Bastian et al. [1997]) to represent the mesh but the code
admits other grid implementations. We refer to the README file included in the library for details
on this and on how to launch the program.

src/plot_solution.cc

128 using FEBasisInterior = Functions::LagrangeDGBasis<GridView, 1>;
129 FEBasisInterior spacePhi(gridView);
130
131 using FEBasisTraceLifting = Functions::PQkNodalBasis<GridView , 2>;
132 FEBasisTraceLifting spaceW(gridView);
133
134 auto solutionSpaces = std::make_tuple(spacePhi , spaceW);
135
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136 using FEBasisTest
137 = Functions::PQkDGRefinedDGBasis<GridView, 1, 3>;
138 auto testSearchSpaces = std::make_tuple(FEBasisTest(gridView));
139
140 auto bilinearForm = make_BilinearForm(testSearchSpaces , solutionSpaces ,
141 make_tuple(
142 make_IntegralTerm<0,0,IntegrationType::valueValue ,
143 DomainOfIntegration::interior>(c),
144 make_IntegralTerm<0,0,IntegrationType::gradValue ,
145 DomainOfIntegration::interior>(-1., beta),
146 make_IntegralTerm<0,1,IntegrationType::normalVector ,
147 DomainOfIntegration::face>(1., beta)));
148 auto innerProduct = make_InnerProduct(testSearchSpaces ,
149 make_tuple(
150 make_IntegralTerm<0,0,IntegrationType::valueValue ,
151 DomainOfIntegration::interior>(1.),
152 make_IntegralTerm<0,0,IntegrationType::gradGrad ,
153 DomainOfIntegration::interior>(1., beta)));
154
155 typedef GeometryBuffer<GridView::template Codim<0>::Geometry> GeometryBuffer;
156 GeometryBuffer geometryBuffer;
157
158 auto systemAssembler
159 = make_DPGSystemAssembler(bilinearForm , innerProduct , geometryBuffer);

The systemAssembler has a member variable testspaceCoefficientMatrix_ which is of type
TestspaceCoefficientMatrixBuffered or TestspaceCoefficientMatrixUnbuffered, depend-
ing on whether make_DPGSystemAssembler is called with or without a GeometryBuffer, for details
on that, see Section 3.1.4.

OncesystemAssemblerhas been defined, a call to the methodassembleSystem(stiffnessMatrix,
rhsVector, rhsFunctions) assembles the matrix A and the right-hand side vector F. They are
stored in the variables stiffnessMatrix (of type BCRSMatrix<FieldMatrix<double,1,1>>) and
rhsVector (of typeBlockVector<FieldVector<double,1>>). The input parameterrhsFunctions
is of type LinearForm and represents the function f from the right hand side of the PDE. Internally,
the class DPGSystemAssembler iterates over all mesh cells K and delegates the work of computing
local contributions AK to the system matrix A totestspaceCoefficientMatrix_.systemMatrix().
Similarly the local right-hand side vectors are computed by taking the product of the precomputed
testspaceCoefficientMatrix_.coefficientMatrix() with LinearForm::getLocalVector().
For constructing A and F out of the local matrices AK and the local right-hand side vectors, we
make use of the mapping between local and global degrees of freedom given by the index sets
from Dune-Functions.

DPGSystemAssembler is also responsible for applying boundary conditions to the system. So far,
only Dirichlet boundary conditions are implemented. To this end, first the degrees of freedom
affected by the boundary condition are marked. Then the boundary values are set to the corre-
sponding nodes with the method applyDirichletBoundary. For instance, if we are considering
the transport problem of Section 2.3, we need to set to zero the degrees of freedom of w that are in
Γ−. For this, we mark the relevant nodes with the method getInflowBoundaryMask and store the
information in a vector dirichletNodesInflow. Then we call applyDirichletBoundary as we
outline in the following listing. The sequence of instructions is given in the code below. Note that
the trial space associated to w is required. Since, in our ordering, w is our second unknown, we get
its associated trial space with the command std::get<1>(solutionSpaces) (since std::tuple
starts counting from 0).

src/plot_solution.cc

165 typedef BlockVector<FieldVector<double,1> > VectorType;
166 typedef BCRSMatrix<FieldMatrix<double,1,1> > MatrixType;
167
168 VectorType rhsVector;
169 MatrixType stiffnessMatrix;
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170
171 auto rhsFunctions
172 = make_DPGLinearForm(testSearchSpaces ,
173 std::make_tuple(make_LinearIntegralTerm<0,
174 LinearIntegrationType::valueFunction ,
175 DomainOfIntegration::interior>(f(beta))));
176 systemAssembler.assembleSystem(stiffnessMatrix , rhsVector , rhsFunctions);
177
178 // Determine Dirichlet dofs for w (inflow boundary)
179 {
180 std::vector<bool> dirichletNodesInflow;
181 BoundaryTools boundaryTools = BoundaryTools();
182 boundaryTools.getInflowBoundaryMask(std::get<1>(solutionSpaces),
183 dirichletNodesInflow ,
184 beta);
185 systemAssembler.applyDirichletBoundary<1>
186 (stiffnessMatrix ,
187 rhsVector ,
188 dirichletNodesInflow ,
189 0.);
190 }

Finally, in certain types of problems, some degrees of freedom might be ill-posed. For example,
in the transport case, the degrees of freedom corresponding to trial functions on faces aligned
with the flow direction will be weighted with 0 coefficients in the matrix or interior degrees
of freedom of the lifting w of the trace variable may be undefined. To address these issues,
DPGSystemAssembler provides several methods like defineCharacteristicFaces to interpolate
undefined degrees of freedom on characteristic faces or applyMinimization to handle undefined
degrees of freedom in the interior and optionally also on characteristic faces by minimizing a
given norm.

Once A and F are obtained, the system Ax = F (which is, from the theory, invertible) can be solved
with the user’s favorite direct or iterative scheme.

3.1.2 BilinearForm and InnerProduct As it follows from (10), the bilinear form b(·, ·) can
be decomposed into local bilinear forms bK(·, ·). The BilinearForm class describes bK and pro-
vides access to the corresponding local matrices AK defined in (20) which are then used by the
DPGSystemAssembler to assemble the global matrix A.

In our case, we view a bilinear form bK as a sum of what we will call elementary integral terms.
By this we mean integrals over K (or ∂K) which are a product of a test search function v ∈ Vh (or
its derivatives) and a trial function u ∈ UH (or its derivatives). Additionally, the product might
also involve some given function c. The current release only supports constant functions c and
the non-constant case will be delivered in a future release. For instance, in our transport equation
(cf. (19)),

bK(u, v) = bK((ϕ,w), v) B
∫

K
cvϕ︸ ︷︷ ︸

Int0

−

∫
K
β · ∇vϕ︸         ︷︷         ︸
Int1

+
∑

Kh∈Ωh,Kh⊂K

∫
∂Kh

vwβ · n

︸                        ︷︷                        ︸
Int2

, (24)

where we have omitted the tilde to ease notation here. Therefore the matrix AK =
∑

i∈I Ai
K can

be computed as a sum of the matrices Ai
K corresponding to the different elementary integrals

Inti, i ∈ I. Any of the elementary integrals can be expressed via the class IntegralTerm that we
describe in Section 3.1.3.

To create an object bilinearForm of the class BilinearForm, we call make_BilinearForm as
follows.

C++ code
1 auto bilinearForm = make_BilinearForm (testSearchSpaces , solutionSpaces , terms);
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The variables testSearchSpaces and solutionSpaces are the ones introduced in Section 3.1.1 to
representVh andUH. The object terms is a tuple of objects of the class IntegralTerm. Once that
the object bilinearForm exists, a call to the method getLocalMatrix computes AK by iterating
over all elementary integral terms and summing up their contributions Ai

K.

Let us now briefly discuss the class InnerProduct. Its aim is to allow the computation of the
inner products associated to the Hilbert spacesU and V. For this, we take advantage of the fact
that an inner product can be seen as a symmetric bilinear form b(u, v) where u and v are both
functions from some space. Hence, we can reuse the structure of BilinearForm for summing over
elementary integral terms to define the class InnerProduct. The construction of an InnerProduct
is thus done with

C++ code
1 auto innerProduct = make_InnerProduct (testSpaces , terms);

3.1.3 IntegralTerm An IntegralTerm represents an elementary integral over the interior of a
cell K, over its faces ∂K or even over faces of a partition of K. It expresses a product between a
term related to a test function v and a term related to a trial function u. Examples are Int0, Int1
and Int2 from (24).

The IntegralTerm is parametrized by two size_t that give the indices of the test and trial spaces
that we want to integrate over. Additionally we specify the type of evaluations used in the integral
with a template parameter of type

C++ code
1 enum class IntegrationType {
2 valueValue ,
3 gradValue ,
4 valueGrad ,
5 gradGrad ,
6 normalVector ,
7 normalSign
8 };

and the domain of integration with a template parameter of type

C++ code
1 enum class DomainOfIntegration {
2 interior ,
3 face
4 };

IfintegrationType is of typeIntegrationType::valueValueorIntegrationType::normalSign,
the function make_IntegralTerm has to be called as follows:

C++ code
1 auto integralTerm
2 = make_IntegralTerm<lhsSpaceIndex , rhsSpaceIndex ,
3 integrationType , domainOfIntegration>(c);

wherec is a scalar coefficient in front of the test space product and is of arithmetic type, e. g.double.
The template parameter domainOfIntegration is one of the types from DomainOfIntegration
and the parameterslhsSpaceIndex andrhsSpaceIndex refer, in this particular order, to the indices
of test and trial space in their respective tuples of test and trial spaces. Note that the objects of the
class IntegralTerm are not given the spaces themselves but only some indices referring to them.
This is because the spaces are managed by the class BilinearForm (or InnerProduct) owning the
IntegralTerm.
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For other integrationTypes, we also need to specify the flow direction beta by calling

C++ code
1 auto integralTerm
2 = make_IntegralTerm<lhsSpaceIndex , rhsSpaceIndex ,
3 integrationType , domainOfIntegration>(c, beta);

where c is again of arithmetic type and beta is of vector type, e. g. FieldVector<double, dim>.

The IntegralTerm Int1 from example (24) can be created with

C++ code
1 auto integralTerm
2 = make_IntegralTerm<0, 0, IntegrationType::gradValue ,
3 DomainOfIntegration::interior>(-1., beta);

where the two zeroes are, in this particular order, the indices of test and trial space in their
respective tuples of test and trial spaces.

The class IntegralTerm provides a method getLocalMatrix that computes its contribution Ai
K

to the local matrix AK and that is called by the getLocalMatrix method of BilinearForm or
InnerProduct. Since one would normally want to write a program which solves a fixed problem,
we use Boost Fusion2 to do as much work at compile time as possible. Since the IntegrationType
and DomainOfIntegration of each IntegralTerm are compile time constants, an optimizing C++
compiler should be able to optimize away some unused code branches. Defining the bilinear
form and inner product at compile time also gives us the opportunity to check for errors in the
problem formulation at compile time. For now this is not done, but we would like to include
such checks in the future to improve the usability of our library.

3.1.4 TestspaceCoefficientMatrix (buffered and unbuffered) For any element K, the com-
putation of the matrices CK and AK defined in (22) and (23) is handled either by the class
TestspaceCoefficientMatrixBuffered or by TestspaceCoefficientMatrixUnbuffered. Two
classes have been developed to minimize computations when the PDE coefficients are constant.
In this case CK and AK depend only on the geometry of the element K. As a result, the value
of CK and AK will be constant for all elements K having, up to a translation, the same map to
the reference element. Thus, CK and AK can be computed only once for all cells sharing this
mapping property. The class TestspaceCoefficientMatrixBuffered makes use of the above
and reduces computational costs in grids where many cells have the same mapping property.
The class TestspaceCoefficientMatrixUnbuffered handles the general case (grids with many
different cell mapping types and, in future releases, non-constant PDE coefficients).

Structurally speaking, both classes have the bilinear form b(·, ·) and the inner product 〈·, ·〉V as
template parameters and offer a method bind(const Entity& e) in which they use the methods
BilinearForm::getLocalMatrix() and InnerProduct::getLocalMatrix() to set up BK and GK
as defined in (21). They compute CK = G−1

K BK via the Cholesky algorithm and AK = BT
KCK. The

computed matrices can be accessed via the methods coefficientMatrix() and systemMatrix(),
respectively. The constructor of TestspaceCoefficientMatrixUnbuffered gets only the bilinear
form and the inner product. In addition to this, TestspaceCoefficientMatrixBuffered needs a
GeometryBuffer containing a map to save the geometry of the elements K and the corresponding
matrices CK and AK. When theTestspaceCoefficientMatrixBuffered is bound to a new element
K, then first it is checked whether its map to the reference element is already in the buffer. If so,
the saved matrices CK and AK are used. Otherwise, they are computed and added to the map.

2Fusion is a meta programming library and part of the C++ library collection Boost: http://www.boost.org/
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3.2 A posteriori error estimators

To compute the residual

‖ f − BuH‖V′ = sup
v∈V

‖ f (v) − b(uH, v)‖V
‖v‖V

,

we exploit once again the product structure ofV and use the fact that

‖ f − BuH‖
2
V′ =

∑
K∈ΩH

‖rK(uH, f )‖2V′K =
∑

K∈ΩH

‖RK(uH, f )‖2VK

where rK is the cell-wise residual. RK is the Riesz-lift of rK inVK so it is the solution of〈
RK(uH, f ), v

〉
VK

= b(uH, v) − f (v), ∀v ∈ VK. (25)

Since (25) is an infinite-dimensional problem, we project the Riesz-lift RK to a finite-dimensional
subspace VK of VK, obtaining an approximation RK. This in turn gives the a posteriori error
estimator

‖R(uH, f )‖V B

 ∑
K∈ΩH

‖RK(uH, f )‖2VK


1/2

. (26)

An appropriate choice of the a posteriori search spaceVK depends on the problem and is crucial
to make ‖RK‖VK good error indicators.

In Dune-DPG, the computation of the a posteriori estimator (26) is handled by the classErrorTools.
The following lines of code compute (26) for the solution u_H of a problem with bilinear form
bilinearForm, inner product innerProduct and right hand side rhsVector.

C++ code
1 ErrorTools errorTools = ErrorTools();
2 double aposterioriErr =

errorTools.aPosterioriError(bilinearForm ,innerProduct ,u_H,rhsVector);

The object bilinearForm is of the type BilinearForm described above. It has to be created
with an object testSpace associated to the a posteriori search space VH. The same applies for
innerProduct, which is of type InnerProduct. Also the vector rhsVector has to be set up using
the a posteriori search space.

Furthermore, ErrorTools contains a method DoerflerMarking to use the approximate cell-wise
residuals ‖RK‖VK for adaptive refinement.

4 Numerical Example: Implementation of Pure Transport in DUNE-DPG

As a simple numerical example, we solve the transport problem (13) with

c = 0,
β = (β1, β2) = (cos(π/8), sin(π/8)),
f = 1.

As Figure 1d shows, the exact solution

ϕ(x) =


√
β2

2/β
2
1 + 1 · x1, if β1 · x2 − β2 · x1 > 0√

β2
1/β

2
2 + 1 · x2, else
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describes a linear ramp starting at 0 in each point of the inflow boundary Γ− and increasing with
slope 1 along the flow direction β. There is a kink in the solution starting in the lower left corner
of Ω and propagating along β.

For the numerical solution, we let ΩH be a partition of Ω into uniformly shape regular triangles
generated by partitioning Ω = [0, 1]2 into n × n uniform quadrangles that are then each divided
from the lower left to the upper right corner into two triangles. Ωh is a refinement of ΩH to
some level ` ∈ N0 such that h = 2−`H, i. e. each triangle in ΩH gets subdivided into 4` congruent
subtriangles.

With UH and Vh defined as in (16) and (17) with m = 2, we compute uH = (ϕH,wH) ∈ UH
by solving the ultra-weak variational formulation (18). We investigate convergence in H of the
error ‖ϕ−ϕH‖L2(Ω). We also evaluate the a posteriori estimator ‖R(uH, f )‖V when the components
RK(uH, f ) are computed with a subspaceVK of polynomials of degree 5, ∀K ∈ ΩH.

Regarding the error ‖ϕ − ϕH‖L2(Ω), as Figure 1a shows, we observe linear convergence as H
decreases. This is to be expected since the polynomial degree to compute ϕH is 1. The figure
also shows that the refinement level ` of the test-search spaceVh has essentially no impact on the
behavior of the error.

Regarding the behavior of the a posteriori estimator ‖R(uH, f )‖V, it is possible to see in Figures 1b
and 1c that the quality of ‖R(uH, f )‖V slightly degrades as H decreases in the sense that, as H
decreases, ‖R(uH, f )‖V represents the error ‖ϕ − ϕH‖L2(Ω) less and less faithfully. An element that
might be playing a role is that ‖RK(uH, f )‖V is not exactly an estimation of ‖ϕ−ϕH‖L2(Ω), but of the
error including also wH, namely ‖u − uH‖U = ‖(ϕ,w) − (ϕH,wH)‖U.

The source code used to compute the values from the convergence plots in Figure 1a–c can be
found in src/convergence_test.cc while the code used to generate Figure 1d can be found
in src/plot_solution.cc. In this program, the user can easily experiment with the transport
equation by changing the values of β and c (see the README file).

In Figure 2 we compare the runtime for assembling the system with and without buffering of the
test space coefficient matrices from Section 3.1.4 on a 4 core Intel Core i7-3770 CPU with 3.40GHz
and 15GB of RAM. These performance measurements have been done for the same problem as
before and the corresponding code resides in src/profile_testspacecoefficientmatrix.cc.
The plots show the clear advantage of using the buffering whenever the grid is uniform and we
use constant coefficients.

5 Conclusion And Future Work

In Section 2, we gave a short overview of the DPG method. We then introduced our Dune-
DPG library in Section 3, documenting the internal structure and showing how to use it to solve a
given PDE. Finally, we showed some numerical convergence results computed for a problem with
well-known solution. This allowed us to compare our a posteriori estimators to the real L2 error
of our numerical solution. As a next step, we want to fully implement non-constant coefficients
in order to support a wider range of PDEs.

Furthermore, we want to improve our handling of vector valued problems with one notable
example being first order formulations of convection–diffusion problems. With our current
std::tuple of spaces structure used throughout the code, we have to implement vector valued
spaces by adding the same scalar valued space several times. With the Dune-TypeTree library
from Müthing [2015] we can handle vector valued spaces much more easily, as has already been
shown in Dune-Functions. This will result in major changes in our code, but will probably allow
us to replace our dependency on Boost Fusion with more modern C++11 constructs. In the long
run, we hope that this would give us increased maintainability and decreased compile times in
addition to the improvements in the usability of vector valued problems. Finally, we want to
explore parallelization to increase the performance. This is aligned with our long-term goal of
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Figure 1: L2 error and a posteriori error estimator of numerical solutions

making Dune-DPG a flexible building block for constructing DPG solvers for a large range of
different problem types.
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Abstract: In this document we present higher order Discontinuous Galerkin discretization of a
two-phase flow model describing subsurface flow in strongly heterogeneous porous media. The
flow in the domain is immiscible and incompressible with no mass transfer between phases. We
consider a fully implicit, locally conservative, higher order discretization on adaptively generated
meshes. The implementation is based on the open-source PDE software framework Dune.

1 Introduction

Simulation of multi-phase flows and transport processes in porous media requires careful nu-
merical treatment due to the strong heterogeneity of the underlying porous medium. The spatial
discretization requires locally conservative methods in order to be able to follow small concentra-
tions [6]. Discontinuous Galerkin (DG), Finite Volume and Mixed Finite Element, are examples
of discretization methods which achieve local conservation at the element level [13]. The first
DG method was originally developed for solving the neutron transport problem [19]. Since then,
numerous DG methods have been developed for hyperbolic problems, the Bassi and Rebay [5]
method and the Local Discontinuous Galerkin (LDG) method introduced in [11] are some ex-
amples among others. Independently of the development of the DG methods for hyperbolic
equations, Interior Penalty (IP) Discontinuous Galerkin methods for elliptic and parabolic equa-
tions were introduced in [2], [4], [14], [23]. DG methods present attractive features such as an
inherent local and global conservation, a high-order accuracy, a high parallel efficiency and a
geometric flexibility (unstructured meshes and non-conforming grids) allowing an easier local
hp-adaptivity. Furthermore, the ability of DG methods to treat rough coefficient problems and
capture discontinuities in solutions allows them to be suitable candidates for the discretization of
PDE’s arising in Environmental Engineering.

Application of DG methods to incompressible two-phase flow started with [7], [18], [21]. The
initial approach consisted in a decoupled formulation where first a pressure equation is solved
implicitly and then the saturation is advanced by an explicit time stepping scheme (Implicit
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Pressure Explicit Saturation). Upwinding, slope limiting techniques, and sometimes H(div) pro-
jection were required in order to remove unphysical oscillations and to ensure convergence.
More recently, Bastian [8] presented a fully coupled symmetric interior penalty DG formulation
for incompressible two-phase flow based on a formulation using a wetting-phase potential/cap-
illary potential formulation. Discontinuity in capillary pressure functions is taken into account
by incorporating the interface conditions into the penalty terms for the capillary potential. Het-
erogeneity in absolute permeability is treated by weighted averages. A higher-order diagonally
implicit Runge-Kutta method in time is used and there is no post processing of the velocity or
slope limiting. The author did not use any kind of adaptivity and only piecewise linear and
piecewise quadratic functions are employed.

In this work, we implement and evaluate numerically Interior Penalty DG methods for 2d and
3d incompressible, immiscible, two-phase flow. We consider a strongly heterogeneous porous
medium and discontinuous capillary pressure functions. We write the system in terms of a
phase-pressure/phase-saturation formulation. Adams-Moulton schemes of first and second or-
der in time are combined with various Interior Penalty DG discretizations in space such as the
Symmetric Interior Penalty Galerkin (SIPG), the Nonsymmetric Interior Penalty Galerkin (NIPG)
and the Incomplete Interior Penalty Galerkin (IIPG) [3]. This implicit space time discretization
leads to a fully coupled nonlinear system requiring to build a Jacobian matrix at each time step
for the Newton-Raphson method. We include in our implementation local mesh adaptivity on
non-conforming grids. To our knowledge, this is the first time the concept of local h-adaptivity is
incorporated in the DG discretization of a 3d two-phase flow with strong heterogeneity, discon-
tinuous capillary pressure functions and gravity effects. The milestone contribution of Klieber
& Rivière [18] restrained itself to a decoupled formulation with continuous capillary pressure
functions and only 2d flow on non-conforming simplicials grids were considered. We use higher
order polynomial degree up to piecewise cubics.

The rest of this document is organised as follows. In the next section, we describe the two-phase
flow model. The DG discretization is introduced in section 3. The adaptive strategy in space is
outlined in section 4. The implementation with Dune-Fem is described in section 5. Numerical
examples are provided in section 6. Finally concluding remarks are provided in the last section.

2 Problem Setting

This section introduces the mathematical formulation of a two-phase Darcy problem modeling
porous-media flow. The flow is immiscible and incompressible with no mass transfer between
phases.

2.1 Two-phase flow model

We consider an open and bounded domain Ω ∈ Rd, d ∈ {1, 2, 3} and the time interval J = (0,T),
T > 0. The flow of the wetting-phase and the nonwetting-phase is described by the Darcy’s law
and the continuity equation for each phase, namely,

vα = −λαK(∇pα − ραg), (2.1)

φ
∂ραsα
∂t

+ ∇ · (ραvα) = ραqα, (2.2)∑
α

sα = 1, (2.3)

pn − pw = pc(sw,e). (2.4)

Here, we search for the phase pressures pα and the phase saturations sα, α ∈ {w,n}. We denote with
subscript w the wetting-phase and with subscript n the nonwetting-phase. K is the permeability
of the porous medium, ρα is the phase density, qα is a source/sink term and g is the constant
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gravitational vector. We assume the porosity φ is time independent and uniformly bounded from
above and below; that is there exist φ1, φ2 > 0 such that:

0 < φ1 ≤ φ ≤ φ2.

Phase mobilities λα are defined by

λα =
krα

µα
, α ∈ {w,n}, (2.5)

where µα is the phase viscosity and krα is the relative permeability of phase α. The relative
permeabilities are functions that depend nonlinearly on the phase saturation (i.e. krα = krα(sα)).
Models for the relative permeability are the van-Genuchten model [22] and the Brooks-Corey
model [10]. For example, in the Brooks-Corey model,

krw(sw,e) = s
2+3θ
θ

w,e , krn(sn,e) = (sn,e)2(1 − (1 − sn,e)
2+θ
θ ), (2.6)

where the effective saturation sα,e is

sα,e =
sα − sα,r

1 − sw,r − sn,r
, ∀α ∈ {w,n}. (2.7)

Here, sα,r, α ∈ {w,n} are the phase residual saturations. The parameter θ ∈ [0.2, 3.0] is a result of
the inhomogeneity of the medium. A highly heterogeneous porous medium is characterized by
a large θ.

The capillary pressure pc = pc(sw,e) is a function of the phase saturation. For the Brooks-Corey
formulation,

pc(s) = pds−1/θ
w,e . (2.8)

Here, pd ≥ 0 is the constant entry pressure, needed to displace the fluid from the largest pore.

2.1.1 Wetting-phase-pressure/nonwetting-phase-saturation formulation From the con-
stitutive relations (2.3) and (2.4), we can rewrite the two-phase flow problem as a system of two
equations with two unknowns pw and sn,

−∇ · (λtK∇pw + λnK∇pc − (ρwλw + ρnλn)Kg) = qw + qn,

φ
∂sn

∂t
− ∇ · (λnK(∇pw − ρng)) − ∇ · (λnK∇pc) = qn.

(2.9)

Here, λt = λw + λn denotes the total mobility. The first equation of (2.9) is of elliptic type with
respect to the pressure pw. The type of the second equation of (2.9) is either nonlinear hyperbolic
if ∂pc(sn)

∂sn
≡ 0 or degenerate parabolic if the capillary pressure is not neglected. The diffusion term

might degenerate if λn(sn = 0) = 0.

2.1.2 Boundary properties In order to have a complete system we add appropriate boundary
and initial conditions. Thus, we assume that the boundary of the system is divided into disjoint
open sets ∂Ω = Γ̄D ∪ Γ̄N. We denote by n the outward normal to ∂Ω.

sn(x, 0) = s0
n(x), pw(x, 0) = p0

w(x) ∀x ∈ Ω, (2.10)
pw(x, t) = pwD (x, t), sn(x, t) = snD (x, t) ∀x ∈ ΓD, (2.11)

vα · n = Jα(x, t), Jt =
∑
α∈{w,n}

Jα ∀x ∈ ΓN. (2.12)

Here, Jα, α ∈ {w,n} is the inflow. In order to make pw uniquely determined the Dirichlet boundary
ΓD should be of positive measure.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



132 Birane Kane

3 Discretization

Let Th = {E} be a family of non-degenerate, quasi-uniform, possibly non-conforming partitions
of Ω consisting of Nh elements (quadrilaterals or triangles in 2d, tetrahedrons or hexahedrons
in 3d) of maximum diameter h. Let Γh be the union of the open sets that coincide with internal
interfaces of elements of Th. Dirichlet and Neumann boundary interfaces are collected in the set
Γh

D and Γh
N. Let e denote an interface in Γh shared by two elements E− and E+ of Th; we associate

with e a unit normal vector ne directed from E− to E+. We also denote by |e| the measure of e. The
discontinuous finite element space is Dr(Th) = {v ∈ L2(Ω) : v|E ∈ Pr(E) ∀E ∈ Th}, where Pr(E)
denotes Qr (resp. Pr) the space of polynomial functions of degree at most r ≥ 1 on E (resp. the
space of polynomial functions of total degree r ≥ 1 on E). We approximate the pressure and the
saturation by discontinuous polynomials of total degrees rp and rs respectively.
For any function q ∈ Dr(Th), we define the jump operator ~·� and the average operator {·} over
the interface e:

∀e ∈ Γh, ~q� := qE− − qE+
, {q} := 1

2 qE− + 1
2 qE+

,

∀e ∈ ∂Ω, ~q� := qE− , {q} := qE− .
In order to treat the strong heterogeneity of the permeability tensor, we follow [16] and introduce
a weighted average operator {·}ω:

∀e ∈ Γh, {q}ω = ωE−qE− + ωE+
qE+

,

∀e ∈ ∂Ω, {q}ω = qE− .

The weights are ωE− =
δE+

K

δE+
K +δE−

K
, ωE+

=
δE−

K

δE+
K +δE−

K
with δE−

K = nT
e KE−ne and δE+

K = nT
e KE+

ne. Here, KE−

and KE+
are the permeability tensors for the elements E− and E+.

3.1 Semi discretization in space

The derivation of the semi-discrete DG formulation is standard (see [8], [16], [18]). First, we
multiply each equation of (2.9) by a test function and integrate over each element, then we apply
Green formula to obtain the semi-discrete weak DG formulation. Hence, the aforementioned
formulation consists in finding the continuous in time approximations pw,h(·, t) ∈ Drp (Th), sn,h(·, t) ∈
Drs (Th) such that:

Bh(pw,h, ϕ; sn,h) = lh(ϕ) ∀ϕ ∈ Drp (Th), ∀t ∈ J , (3.1)
(Φ∂tsn,h, ψ) + ch(pw,h, ψ; sn,h) + dh(sn,h, ψ) = rh(ψ) ∀ψ ∈ Drs (Th), ∀t ∈ J . (3.2)

The bilinear form Bh in the total fluid conservation equation (3.1) is expressed as:

Bh(pw,h, ϕ; sn,h) = Bbulk,h +Bcons,h +Bsym,h +Bstab,h. (3.3)

The first term Bbulk,h of (3.3) is the volume contribution:

Bbulk,h := Bbulk,h(pw,h, ϕ; sn,h) =
∑
E∈Th

∫
E
(λtK∇pw,h + λnK∇pc,h − (ρnλn + ρwλw)Kg) · ∇ϕ. (3.4)

The second term Bcons,h, is the consistency term:

Bcons,h := Bcons,h(pw,h, ϕ; sn,h) = −
∑

e∈Γh∪Γh
D

∫
e
{λtK∇pw,h}ω~ϕ�

−

∑
e∈Γh∪Γh

D

∫
e
{λnK∇pc,h}ω~ϕ�

+
∑

e∈Γh∪Γh
D

∫
e
{(ρnλn + ρwλw)Kg)}ω~ϕ�.

(3.5)
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The third term Bsym,h, is the symmetry term. Depending on the choice of ε we get different DG
methods (ε = −1 SIPG, ε = 1 NIPG, ε = 0 IIPG):

Bsym,h := Bsym,h(pw,h, ϕ; sn,h) =ε
∑

e∈Γh∪Γh
D

∫
e
{λtK∇ϕ}ω · ne~pw,h�

+ ε
∑

e∈Γh∪Γh
D

∫
e
{λnK∇ϕ}ω · ne~sn,h�.

(3.6)

The last term Bstab,h is the stability term:

Bstab,h := Bstab,h(pw,h, ϕ) =
∑

e∈Γh∪Γh
D

γp
e

∫
e
~pw,h�~ϕ�. (3.7)

The right hand side of the total fluid conservation equation (3.1) is a linear form including the
Neumann and Dirichlet boundary conditions and the source terms.

lh(ϕ) =

∫
Ω

(qw + qn)ϕ −
∑
e∈ΓN

∫
e

Jtϕ + ε
∑
e∈Γh

D

∫
e
λtK∇ϕ · nepD

+ ε
∑
e∈Γh

D

∫
e
λnK∇ϕ · nesD + lstab, ∀ϕ ∈ Drp (Th).

(3.8)

Here, lstab(ϕ) is the stability term for the linear form:

lstab(ϕ) =
∑
e∈Γh

D

γp
e

∫
e
pDϕ. (3.9)

Equation (3.2) is the discrete weak formulation of the nonwetting-phase conservation equation
where the convection term−∇· (λnK(∇pw−ρng)) might be approximated by an upwind discretiza-
tion technique.

ch(pw,h, ψ; sn,h) =
∑
E∈Th

∫
E
(Kλn(∇pw,h − ρng)) · ∇ψ −

∑
e∈Γh∪Γh

D

∫
e
{Kλ#

n∇pw,h}ω · ne~ψ�

+
∑

e∈Γh∪Γh
D

∫
e
{ρnKλ#

ng}ω · ne~ψ� + ε
∑

e∈Γh∪Γh
D

∫
e
{Kλ#

n∇ψ}ω · ne~pw,h�,
(3.10)

where λ#
n = (1 − %)λn,E + %λ↑n and λ↑n is the upwind mobility:

∀e ∈ ∂E− ∩ ∂E+, λ
↑

n =

λn,E− if − K(∇pw + ∇pc − ρng) · n ≥ 0,
λn,E+

else.

Hence depending on the value of % ∈ {0, 1}, we might use central differencing or upwinding of
the mobility for internal interfaces.
The diffusion term −∇ · (λnK∇pc) is discretized by a bilinear form similar to that of (3.3).

dh(sn,h, ψ) =
∑
E∈Th

∫
E
λnK∇pc,h · ∇ψ −

∑
e∈Γh∪Γh

D

∫
e
{λnK∇pc,h}ω · ne~ψ�

+ ε
∑

e∈Γh∪Γh
D

∫
e
{λnK∇ψ}ω · ne~sn,h� +

∑
e∈Γh∪Γh

D

γs
e

∫
e
~sn,h�~ψ�.

(3.11)
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The right hand side rh includes the Neumann and Dirichlet boundary condition and the nonwet-
ting source term.

rh(ψ) =

∫
Ω

qnψ −
∑
e∈ΓN

∫
e

Jnψ + ε
∑
e∈Γh

D

∫
e
λnK∇ψ · nepD

+ ε
∑
e∈Γh

D

∫
e
λnK∇ψ · nepc(sD) +

∑
e∈Γh

D

γs
e

∫
e
sDψ, ∀ψ ∈ Drs (Th).

(3.12)

Remark 3.1 The penalty terms γp
e and γs

e are discrete positive functions that take constant values on the
interfaces. In order to ensure stability and convergence of the DG method, γp

e and γs
e must be chosen

properly. This choice is especially crucial for strongly heterogeneous problems where parameters such as
permeability, porosity, entry pressures can vary strongly, hence triggering a strong effect on the solution
behavior. Following [8], we use in this work, unless specified otherwise, the penalty formulation as below.

γp
e = Cp

rp(rp + d − 1) | e |
min(| E− |, | E+ |)

, Cp ≥ 0 (3.13)

and

γs
e = Cs

rs(rs + d − 1) | e |
min(| E− |, | E+ |)

, Cs ≥ 0. (3.14)

In the context of higher order discretization of large scale complex multiphase flow, the choice of
proper basis functions is decisive for the computational efficiency and accuracy of the solver. In
the sequel, we present the families of modal and nodal basis functions.

3.1.1 Modal basis The modal basis functions are sets of orthogonal polynomials w.r.t an
appropriate inner product. They are also designed to have desirable properties such as hierachism,
that is to say the basis for a given polynomial degree r includes the bases for polynomials degrees
less than r. The use of hierarchical basis is essential for the prospect of higher order methods and
local polynomial order adaptivity. The approximate solution sE

h (x, t) on each element E can be
expressed as:

sE
h (x, t) =

Nloc∑
j=1

ŝE
j (t)ψ j(x), ∀E ∈ Th, (3.15)

where the term {ŝ j(t)} j=1,...,Nloc denotes the time dependent modal dofs andψ j(x) is a d-dimensional
polynomial basis. In the case of piecewise polynomials of total degree at most r, the local
dimension Nloc is:

Nloc = #Pr =
(r + d)!

r!d!
. (3.16)

In the case of piecewise polynomial of degree at most r in each variable the local dimension is:

Nloc = #Qr = (r + 1)d. (3.17)

A classical choice to generate modal basis functions ψ j(x) is to choose:

ψ j(x) = P j+1(x) − P j(x), j = 1, ...,Nloc. (3.18)

where P j is the Legendre polynomial of degree j. It is also possible to use a Gramm-Schmidt
procedure with the usual inner product to build an orthonormal basis from an initial monomial
basis (see, e.g. [20]).
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3.1.2 Nodal basis The nodal approach is based on Lagrange polynomials with roots at a set
of nodal points. Therefore, the local approximation is:

sE
h (x, t) =

Nloc∑
i=1

s̃E(xi, t)lEi (x), (3.19)

where lEi (x) is the d-dimensional Lagrange polynomial based on the nodal set {xi}i=1,...,Nloc .

Following Heasthaven [17], it is possible to switch from modal to nodal and vice-versa.

s̃ = Vŝ, V>l(x) = ψ(x), Vi, j = ψ j(xi), (3.20)

where V is the Vandermonde matrix containing the evaluation of modal polynomials at the inter-
polation points. This transformation allows to evaluate efficiently higher dimensional Lagrange
polynomials li(x).

3.2 Fully coupled/Fully implicit DG scheme

The time interval [0,T] is divided into N intervals ∆ti = ti+1− ti as 0 = t0 ≤ t1 ≤ · · · ≤ tN−1 ≤ tN = T.
Let pi

w and si
n be the numerical solutions at time ti. We also denote λi

α = λα(si
n), pi

c = pc(si
n). The

approximation s0
n,h is chosen as the L2 projection of the saturation sn(0). For the sake of simplicity

and easier reading, we apply a first order Adams-Moulton (Backward Euler) time discretization
and Interior Penalty DG for space discretization to the semi-discrete system (3.1) - (3.2):

Bh(pi+1
w,h, ϕ; si+1

n,h ) = lh(ϕ), ∀ϕ ∈ Drp (Th), (3.21)

(Φ
si+1

n,h − si
n,h

∆t
, ψ) + ch(pi+1

w,h, ψ; si+1
n,h ) + dh(si+1

n,h , ψ) = rh(ψ), ∀ψ ∈ Drs (Th), (3.22)

(s0
n,h, ζ) = (s0

n, ζ), ∀ζ ∈ Drs (Th). (3.23)

(3.21)-(3.23) leads to a large, nonlinear system of algebraic equations written in the form:

G(p̄i+1
w,h, s̄

i+1
n,h ) =

Grp (p̄i+1
w,h, s̄

i+1
n,h )

Grs (p̄i+1
w,h, s̄

i+1
n,h )

 = 0, (3.24)

where p̄i+1
w,h = (pE)E and s̄i+1

w,h = (sE)E are vectors of unknowns for pi+1
w,h and si+1

n,h .
The system is solved by using a Newton-Raphson method.

JG(p̄i+1,r
w , s̄i+1,r

n )δr+1 = −G(p̄i+1,r
w , s̄i+1,r

n ), (3.25)

(p̄i+1,r+1
w , s̄i+1,r+1

n ) = δr+1 + (p̄i+1,r
w , s̄i+1,r

n ). (3.26)

Here, r denotes the rth Newton iterate and for a coupled system such as (3.25), the Jacobian JG is:

JG =

Jpp Jps

Jsp Jss

 =


∂Grp

∂p
∂Grp

∂s

∂Grs

∂p
∂Grs

∂s

 .
4 Adaptivity strategy

For the considered DG discretization of porous media two-phase flow problem, derivation of
error estimates based on rigorous a-posteriori error estimates is out of the scope of this paper.
Hence, we use heuristic indicators which depend on the local gradient of the nonwetting-phase-
saturation sn measured in the L2 norm. We define on each element E of the mesh, the indicator
ηi

E at time step i, such that:

ηi
E = ‖∇si

n‖L2(E), ∀E ∈ Th. (4.1)

Each element whose indicator ηi
E is greater than a treshold value ηTol ≥ 0 is refined.
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5 Implementation using Dune-Fem

This section is dedicated to an overview of the implementation of the DG two-phase flow simulator
based on Dune-Fem. For a more in-depth description of the Dune-Fem interface, we refer to [12].

5.1 Library requirements

Dune-twophaseDG needs the Dune core modules Dune-Common, Dune-Grid, Dune-Localfunctions,
Dune-Istl at version 2.3 (or later) and the Dune-Fem module at version 1.4 (or later). For per-
forming h-adaptivity, one has to use adaptive grids such as Alugrid_Cube or Alugrid_Simplex
from the library Dune-Alugrid, non-adaptive grids such as YaspGrid or SGrid do not provide
local adaptivity.

5.2 Structure and code description

We describe the structure of the directory of Dune-twophaseDG in terms of subdirectories, header
files and executable files. The following subdirectories are within the module:

• CMake: configuration options for building the module while using Cmake.

• doc: doxygen documentation.

• dune: header files.

• src: source files for the numerical examples.

5.2.1 The directory dune The directory dune contains different subdirectories:

• algorithm: contains the header files algorithm.hh, femscheme.hh, phaseflowscheme.hh,
probleminterface.hh and temporalprobleminterface.hh.

• estimator: contains the header file estimator.hh providing a heuristic estimator for the
numerical solution.

• models: contains the header file phaseflowmodel.hh.

• operator: contains the header filesoperator.hhproviding the classes which build the discrete
stiffness matrix and the right hand side. The header file newtoninvop.hh provides the
Newton inverse operator.

5.2.2 The directory examples The directory examples contains the lenspb folder holding the
infiltration problem header files lenspbbndmodel.hh, lenspbinitialdata.hh, lenspbmodel.hh
and lenspbphysicalparmodel.hh.

5.2.3 The directory src The src directory contains the source files for the different numerical
modules:

• 3dlens: 3d infiltration problem with gravity forces and capillarity effects,

• 2dlens: 2d infiltration problem with gravity forces and capillarity effects.

In each test, we have a source file for the main program (i.e. 3dlens.cc, 2dlens.cc).
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5.3 Features of the implementation

The implementation of the discrete formulation (3.21)-(3.23) is realized in a similar fashion as
most of the tutorial examples from the Dune-Fem-howto. Starting from the included heat DG
problem, we extend it to a system of two equations and two unknowns and we add the non-
linear formulation. First, we describe the PDE by a class phaseflowmodel, which serve as an
interface for general test cases. This is also the interface used to implement the operator. In
the phaseflowmodel (see Code 1), the methods wetting_Pressure_DiffusiveFlux() for the
wetting pressure flux, capillary_Pressure_DiffusiveFlux() for the capillary pressure flux
and gravity_Flux() for the gravity flux will return the terms multiplied with ∇v. The source()
method will return the parts of the operator multiplied with v. In order to handle the non-
linearity, we also add the methods linSource() (resp. linWetting_Pressure_DiffusiveFlux(),
linCapillary_Pressure_DiffusiveFlux() and linGravity_Flux()) returning the linearization
of the source term (resp. flux terms). The DNAPL infiltration test case has its own model
lenspbmodelwhich derives from the phaseflowmodel. The initial and boundary data are specified
respectively in lenspbinitialdata.hh and lenspbbndmodel.hh. The lenspbphysicalparmodel
class specifies the different physical properties of the lens problem such as the mobility and the
capillary pressure function formulations.

1 template < c l a s s FunctionSpace , c l a s s GridPart , c l a s s PhysParModel >
2 s t r u c t PhaseFlowModel
3 {
4 template < c l a s s Ent i ty , c l a s s Point >
5 void source ( const E n t i t y &e n t i t y ,
6 const Point &x ,
7 const RangeType &value ,
8 RangeType &f l u x ) const ;
9

10 template < c l a s s Ent i ty , c l a s s Point >
11 void l inS our ce ( const RangeType& valueUn ,
12 const E n t i t y &e n t i t y ,
13 const Point &x ,
14 const RangeType &value ,
15 RangeType &f l u x ) const ;
16

17

18 / / ! re turn the wetting pressure f l u x
19 template < c l a s s Ent i ty , c l a s s Point >
20 void wet t ing_Pressure_Di f fus iveF lux ( const E n t i t y &e n t i t y ,
21 const Point &x ,
22 const RangeType &value ,
23 const JacobianRangeType &gradient ,
24 JacobianRangeType &flux ,
25 const double lambda_n_upw=1 ,
26 const bool &useupw= f a l s e ,
27 const bool &buildRhs= f a l s e ) const ;
28

29 / / ! re turn the l i n e a r i z e d wetting pressure f l u x
30 template < c l a s s Ent i ty , c l a s s Point >
31 void l inWet t ing_Pressure_Di f fus iveF lux ( const RangeType &valueUn ,
32 const JacobianRangeType &gradientUn ,
33 const E n t i t y &e n t i t y ,
34 const Point &x ,
35 const RangeType &value ,
36 const JacobianRangeType &gradient ,
37 JacobianRangeType &flux ,
38 const double lambda_n_upw = 1 ,
39 const double gradnonwetmob_upw = 1 ,
40 const bool useupw= f a l s e ) const ;
41 }

Code 1: Excerpt from phaseflowmodel.hh.

The assembly process of the operator and the right hand side is done in the file operator.hh.
The class FlowOperator is derived from the Dune::Operator class. This is why we need
to override the operator() method. In order to build the jacobian, we introduce a class
DifferentiableFlowOperator (see Code 2) which derives from the FlowOperator and from
the interface class DifferentiableOperator:
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1 template < c l a s s JacobianOperator , c l a s s Model >
2 s t r u c t Di f ferent iab leF lowOperator
3 : publ ic FlowOperator< typename JacobianOperator : : DomainFunctionType , Model > ,
4 publ ic Dune : : Fem : : D i f f e r e n t i a b l e O p e r a t o r < JacobianOperator >

Code 2: DifferentiableFlowOperator.

In order to build the operator, we iterate over the intersections of the elements. For each in-
tersection, we evaluate the local functions on the elements on both sides of the intersection
by using a FaceQuadratureType::INSIDE for the element and FaceQuadratureType::OUTSIDE
for the neighboring element. Code 3 shows the assembly process of the operator where the
method volumetricPart() (line 24) computes the local contribution from each element and
internal_Bnd_terms() (line 34) computes local contribution from interfaces and boundaries.

1 template < c l a s s DiscreteFunct ion , c l a s s Model >
2 void FlowOperator< DiscreteFunct ion , Model >
3 : : operator ( ) ( const DiscreteFunctionType &u , DiscreteFunctionType &w ) const
4 {
5 / / c l e a r d e s t i n a t i o n
6 w. c l e a r ( ) ;
7 / / get d i s c r e t e funct ion space
8 const DiscreteFunctionSpaceType &dfSpace = w. space ( ) ;
9

10 / / i t e r a t e over grid
11 const I t e r a t o r T y p e end = dfSpace . end ( ) ;
12 f o r ( I t e r a t o r T y p e i t = dfSpace . begin ( ) ; i t != end ; ++ i t )
13 {
14 / / get e n t i t y ( here element )
15 const EntityType &e n t i t y = ∗ i t ;
16 / / get elements geometry
17 const GeometryType &geometry = e n t i t y . geometry ( ) ;
18 / / get l o c a l r e p r e s e n t a t i o n of the d i s c r e t e f u n c t i o n s
19 const LocalFunctionType uLocal = u . l o c a l F u n c t i o n ( e n t i t y ) ;
20 LocalFunctionType wLocal = w. l o c a l F u n c t i o n ( e n t i t y ) ;
21 / / obta in quadrature order
22 const i n t quadOrder = uLocal . order ( ) + wLocal . order ( ) ;
23 / / Computing l o c a l c o n t r i b u t i o n from elements
24 volumetr icPar t ( e n t i t y , quadOrder , geometry , uLocal , wLocal ) ;
25

26 i f ( ! dfSpace . continuous ( ) )
27 {
28 const I n t e r s e c t i o n I t e r a t o r T y p e i i t e n d = dfSpace . gr idP ar t ( ) . iend ( e n t i t y ) ;
29 / / looping over i n t e r s e c t i o n s
30 f o r ( I n t e r s e c t i o n I t e r a t o r T y p e i i t = dfSpace . gr id P ar t ( ) . ibeg in ( e n t i t y ) ; i i t != i i t e n d ; ++ i i t

)
31 {
32 const I n t e rs e c t i o n T yp e &i n t e r s e c t i o n = ∗ i i t ;
33 / / Computing l o c a l c o n t r i b u t i o n from i n t e r f a c e s and boundaries
34 internal_Bnd_terms ( e n t i t y , quadOrder , geometry , i n t e r s e c t i o n , dfSpace , uLocal , u , wLocal ) ;
35 }
36 }
37 }
38 / / communicate data ( in p a r a l l e l runs )
39 w. communicate ( ) ;
40 }

Code 3: Operator building.

The selection of the type of discrete function space is done in the femscheme class. The discrete
function space depends on the GridPartType and the FunctionSpace (see Code 4). It allows
to choose the polynomial order by setting the parameter POLORDER, hence permitting the use of
higher order polynomials without any further changes in the code. For the sake of simplicity and
usability, the code only supports the case rp = rs = POLORDER.

1 / / ! choose type of d i s c r e t e funct ion space and the polynomial order POLORDER
2 # i f USE_LAG_DG
3 typedef Dune : : Fem : : LagrangeDiscontinuousGalerkinSpace < FunctionSpaceType , GridPartType , POLORDER

> DiscreteFunctionSpaceType ;
4 # e l s e
5 typedef Dune : : Fem : : DiscontinuousGalerkinSpace < FunctionSpaceType , GridPartType , POLORDER >

DiscreteFunctionSpaceType ;
6 # endi f

Code 4: Type of discrete function space and polynomial order.
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In order to achieve an adaptive scheme, we implement an estimator class which supports a
method mark() (see Code 5) to mark the elements for the next refinement step. Our marking
strategy consist in looping over the mesh and selecting for refinement all elements where the L2

norm of the saturation gradient is larger than a certain tolerance ηTol. The value of the ηTol can be
specified in the parameter file with the variable phaseflow.tolerance.

1 / / ! mark a l l elements due to given t o l e r a n c e
2 bool mark ( const double t o l e r a n c e ) const
3 {
4 i n t marked = 0 ;
5 / / loop over a l l elements
6 const I t e r a t o r T y p e end = dfSpace_ . end ( ) ;
7 f o r ( I t e r a t o r T y p e i t = dfSpace_ . begin ( ) ; i t != end ; ++ i t )
8 {
9 const ElementType &e n t i t y = ∗ i t ;

10

11

12 const Dune : : ReferenceElement < double , dimension > &refElement
13 = Dune : : ReferenceElements < double , dimension > : : genera l ( e n t i t y . type ( ) ) ;
14 RangeType val ;
15 / / evaluate the phase f i e l d a t the barycentre ( note
16 / / refElement . p o s i t i o n ( 0 , 0 ) i s the barycentre in l o c a l coordinates )
17 double markVal ;
18 JacobianRangeType grad ;
19 uh_ . l o c a l F u n c t i o n ( e n t i t y ) . j a c o b i a n ( refElement . p o s i t i o n ( 0 , 0 ) , grad ) ;
20 markVal = grad [ 1 ] . two_norm ( ) ;
21

22

23 i f ( markVal > t o l e r a n c e )
24 {
25 / / make sure grid i s not overly r e f i n e d . . .
26 / / maxLevel_ i s the maximum l e v e l of ref inement allowed
27 i f ( e n t i t y . l e v e l ( ) < maxLevel_ )
28 {
29 / / mark e n t i t y f o r ref inement
30 grid_ . mark ( 1 , e n t i t y ) ;
31 / / grid was marked
32 marked = 1 ;
33 }
34 }
35 e l s e
36 {
37 / / mark f o r coarsening
38 grid_ . mark ( −1 , e n t i t y ) ;
39 }
40 }
41 / / get g loba l max
42 marked = grid_ .comm( ) . max( marked ) ;
43 re turn bool ( marked ) ;
44 }

Code 5: Excerpt from estimator.hh.

In the main function (see Code 6), we first initialize MPI, then read the parameters and construct
the grid based on the grid implementation provided in CMakeLists.txt. After initializing the
grid, we get an instance of the class Algorithm containing the algorithm (line 26). After that, the
function compute is executed in line 30.

1 i n t main ( i n t argc , char ∗ ∗ argv )
2 t r y
3 {
4 / / i n i t i a l i z e MPI , i f necessary
5 Dune : : Fem : : MPIManager : : i n i t i a l i z e ( argc , argv ) ;
6 / / append overloaded parameters from the command l i n e
7 Dune : : Fem : : Parameter : : append ( argc , argv ) ;
8 / / append p o s s i b l e given parameter f i l e s
9 f o r ( i n t i = 1 ; i < argc ; ++ i )

10 Dune : : Fem : : Parameter : : append ( argv [ i ] ) ;
11 / / append d e f a u l t parameter f i l e
12 Dune : : Fem : : Parameter : : append ( " . . / data / parameter " ) ;
13 / / type of h i e r a r c h i c a l gr id
14 typedef Dune : : G r i d S e l e c t o r : : GridType HGridType ;
15 typedef Algorithm< HGridType > AlgorithmType ;
16 / / c r e a t e grid from DGF f i l e
17 const std : : s t r i n g gridkey = Dune : : Fem : : I O I n t e r f a c e : : defaultGridKey ( HGridType : : dimension ) ;
18 const std : : s t r i n g g r i d f i l e = Dune : : Fem : : Parameter : : getValue< std : : s t r i n g >( gridkey ) ;
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19 / / the method rank and s i z e from MPIManager are s t a t i c
20 i f ( Dune : : Fem : : MPIManager : : rank ( ) == 0 )
21 std : : cout << " Loading macro grid : " << g r i d f i l e << std : : endl ;
22 / / c o n s t r u c t macro using the DGF Parser
23 Dune : : GridPtr < HGridType > g r i d P t r ( g r i d f i l e ) ;
24 HGridType& grid = ∗ g r i d P t r ;
25

26 AlgorithmType myalgorithm ( grid ) ;
27 / / Compute algorithm
28 Dune : : Timer computetimer ;
29 / / Compute the algorithm
30 myalgorithm . compute ( ) ;
31 const double compuTime = computetimer . elapsed ( ) ;
32

33 . . .
34

35 re turn 0 ;
36 }

Code 6: main function of 2dlens.cc.

In the compute() method of the class Algorithm (Code 7), we initialize two model instances
which are passed on to the Scheme class. Here, two elliptic operators are constructed and used
to evolve the solution from one time level to the next. The TimeProvider class is used to handle
time dependency.

1 / / c r e a t e time provider
2 Dune : : Fem : : GridTimeProvider< HGridType > t imeProvider ( grid_ ) ;
3 / / we want to solve the problem on the l e a f elements of the grid
4 GridPartType g r i dPa r t ( gr id_ ) ;
5 / / type of the mathematical model used
6 ProblemType problem ( timeProvider ) ;
7 / / i m p l i c i t model f o r l e f t hand s ide
8 ModelType implic i tModel ( problem , gr idPart , t rue ) ;
9 / / e x p l i c i t model f o r r i g h t hand s ide

10 ModelType expl i c i tModel ( problem , gr idPart , f a l s e ) ;
11 / / c r e a t e scheme
12 SchemeType scheme ( gr idPart , implicitModel , expl i c i tModel ) ;
13 / / ! input / output tuple and setup d a t a w r i t t e r
14 IOTupleType ioTuple ( &(scheme . s o l u t i o n ( ) ) ) ; / / tuple with p o i n t e r s
15 DataOutputType dataOutput ( grid_ , ioTuple ) ;
16

17 const bool lo ca l_adapt = Dune : : Fem : : Parameter : : getValue< bool >( " phaseflow . loca l_adapt " , f a l s e
) ;

18 const double endTime = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . endtime " , 3 . 0 ) ;
19 const double d t r e d u c e f a c t o r = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow .

r e d uc e t i m es te p f a c t or " , 1 ) ;
20 double timeStep = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . t imestep " , 0 .00125 ) ;
21 double t o l e r a n c e = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . t o l e r a n c e " , 0 . 5 ) ;
22

23 i n t s tep =1;
24 t imeStep ∗= pow( dtreducefac tor , s tep ) ;
25 / / i n i t i a l i z e with f i x e d time step
26 t imeProvider . i n i t ( t imeStep ) ;
27 scheme . i n i t i a l i z e ( ) ;
28 / / write i n i t i a l so lve
29 dataOutput . wri te ( t imeProvider ) ;
30

31

32 / / time loop , increment with f i x e d time step
33 f o r ( ; t imeProvider . time ( ) < endTime ; t imeProvider . next ( t imeStep ) )
34 {
35 std : : cout << " t=" << t imeProvider . time ( ) << std : : endl ;
36

37 i f ( lo ca l_ad apt )
38 {
39 / / mark element f o r adaptat ion
40 scheme . mark ( t o l e r a n c e ) ;
41 / / adapt grid
42 scheme . adapt ( ) ;
43 scheme . prepare ( ) ;
44 scheme . solve ( t rue ) ;
45 scheme . postpro ( ) ;
46 }
47 . . .
48 }

Code 7: Excerpt from algorithm.hh.
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5.4 Input & Output files

5.4.1 Input files
We use parameter files (see Code 8) to set parameters for the simulation.

1 # GENERAL #######################
2 #−−−−−−−−
3

4

5 # ### Parameters f o r output ######
6 phaseflow . computeEOC : 0
7 # p r e f i x data f i l e s
8 fem . io . d a t a f i l e p r e f i x : 2dtwophase
9 # save every i−th step

10 fem . io . savestep : 4 0 . 0 e00
11

12

13 # s p e c i f y d i r e c t o r y f o r data output ( i s crea ted i f not e x i s t s )
14 fem . p r e f i x : . . / Output2D / Deg3 / LagBasis
15

16

17 # upwinding of advect ive term
18 phaseflow . with_upw : f a l s e
19

20

21 # l o c a l a d a p t i v i t y
22 phaseflow . lo ca l_ad apt : t rue
23

24

25 # t o l e r a n c e f o r es t imator
26 phaseflow . t o l e r a n c e : 5
27

28

29 #number of l e v e l of ref inement
30 p h a s e f i e l d . maxlevel : 2
31

32

33 #DG penalty
34 phaseflow . penal typress : 1e−2
35 phaseflow . p e n a l t y s a t : 1e−3
36

37

38 #DG method NIPG=−1 SIPG=1 IIPG=0
39 phaseflow . DGeps : 1
40

41

42 # #################################

Code 8: Excerpt from the parameter file.

The input files are read in by the compiled program. Thus values can be modified at runtime (see
Code 9).

1 / / append d e f a u l t parameter f i l e
2 Dune : : Fem : : Parameter : : append ( " . . / data / parameter " ) ;

Code 9: Loading of the input file.

The Dune::Parameter singleton parses the given parameter file line by line. Code 10 shows how
to use Dune::Parameter. The method getValue() expects two parameters. The first one is a
std::string. The last one is a default value that will be used if the value of the parameter is not
provided in the input file. This last parameter is optional.

1 const bool loca l_a dapt = Dune : : Fem : : Parameter : : getValue< bool >( " phaseflow . loca l_adapt " , f a l s e ) ;
2 const double endTime = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . endtime " , 3 . 0 ) ;
3 double timeStep = Dune : : Fem : : Parameter : : getValue< double >( " phaseflow . t imestep " , 0 .00125 ) ;

Code 10: Example of the getValue()method utilisation.

The grid type can either be specified directly or obtained from the GridSelector. The type is
then specified during the make or CMake procedure.
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1 add_definitions(
2 -DALUGRID_CUBE
3 -DPOLORDER=3
4 -DGRIDDIM=2
5 -DWORLDDIM=2
6 -DWANT_ISTL=0
7 -DUSE_LAG_DG=1
8 )
9 add_executable(2dlens 2dlens.cc)

10 add_dune_alugrid_flags(2dlens)

For more in-depth information on the input files we refer to the DUNE documentation [12].

5.4.2 Output files
The output is handled by the DataOutput class (see Line 4, Code 11) and a tuple holding pointers
to DiscreteFunction objects is passed as a parameter. The generated vtu files are exported into
the directory specified in the parameter file by fem.prefix (see Line 14, Code 8).

1 / / type of input / output
2 typedef Dune : : tuple < DiscreteFunct ionType ∗ > IOTupleType ;
3 / / type of the data w r i t e r
4 typedef Dune : : Fem : : DataOutput< HGridType , IOTupleType > DataOutputType ;
5 IOTupleType ioTuple ( &(scheme . s o l u t i o n ( ) ) ) ; / / tuple with p o i n t e r s
6 DataOutputType dataOutput ( grid , ioTuple , DataOutputParameters ( s tep ) ) ;

Code 11: Output handling.

6 Numerical simulations

In this section we present some numerical tests for the presented DG scheme. Unless specified
otherwise, all test cases are implemented with either the SIPG or the IIPG method. In order
to ensure second order accuracy, we employ a central differencing of the mobility for internal
interfaces thus following a similar approach to that of Rivière et al. [15]. We do not use any
kind of slope limiting or upwinding techniques. The linear solver used is GMRES and we do
not use any preconditioner. The maximal polynomial order employed for the 2d problem is
rp = rs = 3. Although it is possible to use higher polynomial order (quartics and quintics), the
schemes become computationally expensive in terms of both storage and CPU time for practical
use.

6.1 Test Case 1: A vertical DNAPL infiltration Flow over a low permeability lens

A container is filled with two kinds of sand and saturated with water with density ρw =
1000 Kg/m3 and viscosity µw = 1 × 10−3 Kg/m s. The DNAPL considered in the experiment
is Tetrachloroethylene with density ρn = 1460 Kg/m3 and viscosity µn = 9 × 10−4 Kg/m s.

Brooks-Corey’s constitutive relations are used for the capillary pressure and the relative per-
meabilities. Discretization of the system is performed by Interior Penalty DG methods with a
fully implicit/fully coupled approach. All test cases in this section include gravitational forces
and capillary pressure effects. We use ALUCubeGrid for the test cases, it implements the Dune
GridInterface for 3d hexahedral meshes. The grids can be locally adapted (non-conforming)
and used in parallel computations [1].
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6.1.1 2d infiltration problem We consider here a two-dimensional DNAPL infiltration prob-
lem with different sand types. The bottom of the reservoir is impermeable for both phases.
Hydrostatic conditions for the pressure pw and homogeneous Dirichlet conditions for the satura-
tion sn are prescribed at the left and right boundaries. A flux of Jn = −5.137 × 10−5 m s−1 of the
DNAPL is infiltrated into the domain from the top. Detailed boundary conditions are specified
in Table 2 and Figure 1. Initial conditions where the domain is fully saturated with water and
hydrostatic pressure distribution are considered (i.e. p0

w = (0.65 − y) · 9810, s0
n = 0). The initial

mesh consists of 600 quadrilateral elements. We choose a time step of size ∆t = 5 s. The final
time is T = 2000 s. We consider a Newton solver tolerance newtTol = 3 × 10−7 and a linear solver
tolerance linabstol = 2.7 × 10−7.

DNAPL

0.
65

m

0.9 m

Ω

Ωlens

0.39 m 0.48 m

0.52 m

0.465 m

0.33 m 0.54 m

DNAPL

ΓEΓW

ΓS

Ω

Ωlens

ΓNΓN ΓIN

Figure 1: Geometry and boundary conditions for the DNAPL infiltration problem.

Ωlens Ω\Ωlens
Φ [-] 0.39 0.40
k [m2] 6.64 × 10−16 6.64 × 10−11

Swr [-] 0.1 0.12
Snr [-] 0.00 0.00
θ [-] 2.0 2.70
pd [Pa] 5000 755

Table 1: Parameters.

ΓIN Jn = −5.137 × 10−5, Jw = 0
ΓN Jn = 0.00, Jw = 0.00
ΓS Jw = 0, Jn = 0.00
ΓE ∪ ΓW pw = (0.65 − y) · 9810, sn = 0

Table 2: Boundary conditions.

Figure 2 and Figure 3 show the numerical results for the IIPG scheme with polynomial order
rs = rp = 3 combined with first (resp. second) order Adams-Moulton method time discretization.
We use here Lagrange DG space. The implementation of the Lagrange DG space is done by the
mean of a Vandermonde matrix operating the transformation from spectral to physical space.

It took 520 s for the DNAPL to reach the lens and to spread out in the horizontal direction until
reaching the edge of the lens. Afterwards the nonwetting front propagates down the sides of the
lens. However as expected for advection dominated problems, we witness severe undershoots
in the vicinity of the free boundary. The local h-adaptivity allows us to reduce those undershoots
to small values. Figure 4 and Figure 5 show a comparison between the modal and Lagrange
DG schemes. We witness smeared fronts for the orthonormal monomial basis unless we use
small values of penalisation. The shape of the front for the Lagrange basis are less diffusive
for large values of the penalisation parameter. Table 3 throws light upon the columns labels
used in the numerical results. In Table 4, we provide details of the simulation including total
computation times. As expected, the total computation time increases substantially with higher
order polynomial degree. One can’t help but notice that almost 80% (resp. 70%) of the total
computing time is spent building the jacobian matrix for the DG/Q3 AM1 (resp. DG/Q3 AM2).
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Figure 2: DNAPL saturation distribution after 2000 s (left), mesh distribution (right). Polynomial
order p = 3.

Figure 3: Comparison of non-wetting-phase saturation at T=2000 s. Center, profile along the
line x=0.3 m (yellow vertical line of the left figure). Right, profile along the line x=0.45 m (violet
vertical line of the left figure).

DG/Q1 AM1 Piecewise linear Lagrange DG combined with first order Adams-Moulton
DG/Q3 AM1 Piecewise cubic Lagrange DG combined with first order Adams-Moulton
DG/Q3 AM2 Piecewise cubic Lagrange DG combined with second order Adams-Moulton
Avg nb lin iter / Newton cycle Average number of linear iterations per Newton cycle
Avg assem time / lin iter Average time to assemble the Jacobian matrix per linear iteration
Avg inv time / lin iter Average time to invert the Jacobian matrix per linear iteration

Table 3: Notation in result representation.

DG/Q1 AM1 DG/Q3 AM1 DG/Q3 AM2
Avg nb lin iter / Newton cycle 486.869 310.574 517.365
Avg assem time / lin iter [sec] 0.75 9.78 9.25
Avg inv time / lin iter [sec] 0.21 2.67 4.03
Total cpu time [sec] 555.595 9669.63 10609.2

Table 4: Runtime overview for the 2d DNAPL infiltration problem.
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Figure 4: Contour plot of DNAPL saturation after 2000 s for modal orthonormal basis with
Cs = 1e−2 (left column), modal orthonormal basis with Cs = 1e−3 (center column) and Lagrange
basis with Cs = 1e − 2 (right column). Polynomial order p = 1.

Figure 5: Comparison of non-wetting-phase saturation at T=2000 s. Center, profile along the
line x=0.3 m (yellow vertical line of the left figure). Right, profile along the line x=0.45 m (violet
vertical line of the left figure).

6.1.2 3d infiltration problem In this section, we extend the previous results to the three-
dimensional case. We also consider different sand types with different permeabilities and different
entry pressures. The bottom of the reservoir is impermeable for both phases. Hydrostatic
conditions for the pressure pw and homogeneous Dirichlet conditions for the saturation sn are
prescribed at the lateral boundaries. A flux of Jn = −1.712×10−4 m s−1 of the DNAPL is infiltrated
into the domain from the top. The initial ALUCubeGrid mesh consist of 10 × 10 × 10 hexahedral
elements and resolves the interfaces between regions with different permeabilities. 60 time steps
of length ∆t = 60 s are computed (final time T = 3600 s). This grid is locally adapted (non-
conforming).
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Figure 6: Geometry of the domain for the
3d DNAPL infiltration problem.

Ω1 Ω2 Ω\Ω1 ∩Ω\Ω2

Φ [-] 0.39 0.39 0.40
k [m2] 6.64 × 10−16 6.64 × 10−15 6.64 × 10−11

Swr [-] 0.1 0.1 0.12
Snr [-] 0.00 0.00 0.00
θ [-] 2.0 2.0 2.70
pd [Pa] 5000 5000 755

Figure 7: 3d problem parameters.

Figure 8 illustrates the evolution of the nonwetting saturation during the simulation. We show
results at 3600 s of simulation time. As we increase the polynomial order, we notice undershoots
in the vicinity of the front of the propagation and a sharp discontinuity in the solution at the
lenses interfaces.

Figure 8: Contour plot of saturation distribution after 3600 s of DNAPL injection in a depth of 1 m (left col-
umn), mesh distribution (center column) and saturation profile along the line ((0.45,0.45,0);(0.45,0.45,1))(right
column).

7 Conclusion & Outlook

In this work, we presented a discontinuous Galerkin scheme for incompressible, immiscible
two-phase flow in strongly heterogeneous porous media with gravity forces and discontinuous
capillary pressures. Higher-order polynomials up to piecewise cubics are implemented. The
different test cases considered depict convection dominated problems such as DNAPL infiltration
in an initially water saturated reservoir. The oscillations appearing in the the vicinity of the front of
the propagation are reduced with the local mesh refinement. Undoubtedly this fully implicit DG
requires further theoretical and numerical research. DG schemes such as Compact Discontinuous
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Galerkin 2 (CDG2)[9], which are less sensitive to the penalty parameter value seem to be suitable
candidates for our models. Derivation of more rigorous a posteriori estimates that can robustly
estimate both temporal and spatial error are of dire interest for more efficient adaptive algorithms.
Effective local slope limiters are also needed in order to avoid the undershoots and overshoots
witnessed in the vicinity of the front of the propagation.

Apendix A

Building the library

We present here the main steps to create a local working installation of Dune-twophaseDG.

• Create a DuneWorkspace directory.

1 $ mkdir DuneWorkspace && cd DuneWorkspace

• Checkout the latest (stable) core modules from the Dune project homepage.

1 $ for MOD in common geometry grid localfunctions istl; do
2 $ git clone -b releases/2.4 https://gitlab.dune-project.org/core/dune-$MOD.git
3 $ done

• Checkout the latest (stable) version of Dune-Fem.

1 $ git clone -b releases/2.4 https://users.dune-project.org/repositories/projects/dune-fem.git

• Checkout Dune-Alugrid (required for the local grid adaptivity).

1 $ git clone -b releases/2.4 https://users.dune-project.org/repositories/projects/dune-alugrid.git

• Checkout Dune-twophaseDG.

1 $ git clone https://gitlab.dune-project.org/birane.kane/dune-twophaseDG.git

Remark 7.1 You can also download and unpack a Dune-twophaseDG tarball to a folder in your file
system and extract the content of the tar files. Make sure that the extracted Dune-twophaseDG is in
the DuneWorkspace directory.

• Configure and compile the library by typing the following command in the DuneWorkspace
directory.

1 $ cp dune-twophaseDG/scripts/opts/cmake.opts ./
2 $ ./dune-common/bin/dunecontrol --opts=cmake.opts all
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Run of a test application

We assume in this section that the compilation of all required libraries has been completed
in accordance with the description given in the previous section. The numerical model of
Dune-twophaseDG are compiled in a build-folder (default: build-cmake) and tested in the test
subfolder. For example, to run the 3d lens problem:

1 $ cd build-cmake/src/test/lenspb/3dlens
2 $ make 3dlens
3 $ ./3dlens -parameterFile ./../data/parameter3d

The parameter file specifies that all important parameters (like first time-step size, end of simu-
lation and location of the grid file) can be found in a text file in the data directory with the name
param*. The simulation starts and produces some .vtu output files and also a .pvd file in the
folder build-cmake/src/test/lenspb/Output3D.

Remark 7.2 All the test cases presented in this work can be executed with the following command.

1 $ cd build-cmake/src/test/lenspb
2 $ source ../../../../scripts/allnumtest.sh
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Abstract: We present dune-testtools, a collection of tools for system testing in scientific
software using the example of the Distributed Unified Numerics Environment (Dune). Testing
is acknowledged as indispensible support for scientific software development and assurance of
software quality to produce trustworthy simulation results. Most of the time, testing in software
frameworks developed at research facilities is restricted to either unit testing or simple benchmark
programs. However, in a modern numerical software framework, the number of possible feature
combinations constituting a program is vast. System testing, meaning testing within a possible
end user environment also emulating variability, is necessary to assess software quality and
reproducibility of numerical results. We provide an easy-to-use interface taking workload off
developers and administrators in open-source scientific numerical software framework projects.
In our approach, the large number of possible combinations is reduced using the scientific expert
knowledge of developers to identify the practically relevant combinations. Our approach to
system testing is designed to be integrated in the workflow of a research software developing
scientist.

1 Introduction

Numerical software is nowadays an integral part of research at universities and other research
facilities particularly considering natural sciences, engineering, and mathematics. Therefore, the
quality of such software directly affects the effectiveness of research and the quality of research
findings.

Often however, scientists develop and write research software themselves without advanced
knowledge of or little experience in programming. The research may require to modify, develop,
and understand the code in depth, ruling out using well-tested commercial software that may
already exist. Also, time available for thoroughly testing software quality is limited. The situation
may improve for researchers when joining their efforts to develop so-called numerical software
frameworks. Frameworks provide features, i.e. software components, commonly used in the
research area of interest. Thus, scientists profit from code reuse. What was already written by
others does not have to be written again; what is already written can be further improved. Among
the larger numerical software frameworks for solving partial differential equations, we mention
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Dune [Bastian et al., 2008, 2011], FEniCS [Logg et al., 2012], and deal.II [Bangerth et al., 2016, 2007]
as examples.

As many scientists rely on the same code, software quality becomes increasingly important in
such software frameworks. Testing software quality is a vital process when developing and
distributing software. Much theory and also practical guidance has been elaborated by the
software engineering community. We mention [Myers et al., 2011] and [Burnstein, 2006] as well-
written text books on software testing. Understandably, the focus lies on commercial software
development models where testing is already an established process and software testers are
suggested to be as many as developers themselves [Burnstein, 2006, p. 34]. In contrast, in
numerical software framework projects, developing, testing, and research are usually conducted
by the same persons. The developer is often focused on producing results rather than making
the software reliable, maintainable, and usable for others. This means little time is available
for testing. This paper focuses on quality measures and testing tools tailored for the numerical
software community in universities and other research facilities.

In Section 2, the authors introduce quality measures important for numerical software frame-
works. The challenges distinct to assuring quality in such frameworks are summarized. Section 3
introduces dune-testtools as the proposed approach to tackle the difficulties testing numerical
software frameworks more thoroughly. The example of Dune as such a framework is introduced
revealing the importance, difficulties, and the current lack of system testing. Section 4 and 5
explain the implementation and user interface of dune-testtools in detail. Read Section 6 to
know how to get to our code. Finally, Section 7 gives an outlook to the authors’ future concerns
regarding the continuous integration of testing into the software framework development process
at research facilities.

2 Quality and testing quality of numerical software frameworks

Numerical software frameworks differ vastly from software products considered in the software
engineering community. One main difference, for example, is the small number of developers in
numerical software frameworks that are also tester and scientist in personal union. Frameworks
have by purpose a very large variability and combinability of features that makes them hard to
test as a whole. We will therefore elaborate on our definition of software quality for numerical
frameworks before proceeding with our approach.

2.1 Defining quality for numerical software frameworks

The IEEE Standard Glossary of Software Engineering Terminology [IEEE, 1990] provides a com-
pact definition of software quality as “[t]he degree to which a system, component, or process meets
specified requirements . . . [and] user needs or expectations”. First, we therefore attempt to define
typical quality characteristics expected from numerical software frameworks.

• Correctly implemented code: the code is expected to be implemented correctly with respect
to syntax and functionality of features. It includes e.g. that the source code compiles with
all compilers satisfying the communicated minimum requirements. Implementation cor-
rectness also includes runtime criteria like the absence of memory leaks and race conditions
and proper error handling (e.g. through the use of exceptions).

• Numerically correct algorithms: the implemented algorithms should function as intended,
namely reproduce results expected from theory. Often, there are well-known mathematical
properties of an implemented algorithm that have to be satisfied.

• Trustworthy results: models and simulations built with the numerical software framework
should produce trustworthy results, in the sense of correctly modeling what experiments or
experts predict. Note that this is not solely a task for the framework but also for the scientist
to use it as intended.
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• Good documentation, maintainability, testabilty: a high coverage of code documentation
facilitates code reusage and also testing.

• Flexibility: in order to have many possibilities of combining features, the implementa-
tion and interfaces need to be designed with a certain level of abstraction. This is a key
competence of numerical software frameworks.

• Sufficient performance and scalability.

2.2 Testing quality for numerical software frameworks

Testing is the process of determining how well these quality characteristics apply to a numerical
software framework. In the scientific context, this process is often formalized in terms of veri-
fication and validation, e.g. [Oberkampf et al., 2002, Kelly and Sanders, 2008]. Hook and Kelly
[2009] also consider what they call “code scrutinization”, i.e. finding faults related to wrongly
implemented code, among the testing processes. They further argue that in the scientific context
it is usually not possible to determine whether a numerical software is correct because exhaustive
testing is impossible due to the large number of possible program realizations. It is rather the
goal to determine whether the software is trustworthy.

The process of code scrutinization directly corresponds to assuring correctly implemented code.
Code scrutinization is a process early in the development phase and can be supported by com-
plementing features with simple test programs. Verification of numerical code and its algorithms
is the process of testing the algorithms for cases where the outcome is well-known. For example,
for a simplified PDE and specific boundary and initial conditions there often exists an analytical
solution that the numerical solution should converge to when refining the space and time dis-
cretization; it is also well-known that a Newton-Raphson scheme converges in one iteration for
linear problems. In the examples, the numerical solution and the number of iterations are output
parameters of a test and can be automatically checked against the reference values. Validation of
a program or model is the process of analyzing the program output with expert knowledge or
in comparison with experimental data. The scientist might know that in an experimental setup
corresponding to the simulation setup the oil pumping rate lies between 4 and 5 kg/s. If the
numerical model suits the experimental setup the code can be validated using the experimental
parameter range. This can also be done automatically within a testing framework. The result
should not change if the code makes use of different but also suitable discretization scheme or
a different linear solver. Code scrutinization, verfication, and validation are processes suited
for determining if the program produces trustworthy results. All three processes are outcome
motivated, in the sense that they only evaluate results of a simulation program.

However, in the context of numerical frameworks, reusability, stability, and combinability play
a key role assuring software quality. Testing variability and combinability can be viewed as the
repetition of the above introduced processes for many possible realizations of programs and many
possbile user configurations of those programs using features of a numerical software framework.
Again, exhaustive testing is practically impossible.

2.3 Levels of testing

Burnstein [2006] decribes a need to categorize testing in four levels — unit testing, integration
testing, system testing, and acceptance testing. Unit testing tests “a single component” [Burnstein,
2006, p. 133]. Unit testing is often available for numerical software frameworks and is good
practice to write unit tests alongside every new feature.

Integration testing combines several components into working units. Integration testing can
rarely be found in numerical software frameworks. If a certain interface is of great importance
in a framework, sometimes interface checks are offered qualifying as integration testing. As the
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modules in a modular framework are considered mostly independent, intermodular integration
testing is often not sensible.

System testing, testing the combinations of features from several modules in a working numerical
program, tests a fully working end user scenario in contrast to integration testing. System testing
is not commonly employed in numerical software frameworks to the authors’ knowledge. An
exception are so-called tutorial, demo, or test programs testing specific simple setups with an
educational intention. Sometimes framework include a suite of benchmarks which qualify as
tests in the sense of verification and validation but generally do not test variability and feature
combination. However, the vast combinatoric possibilities of a numerical framework require
more comprehensive testing of module interdependencies in order to assure the reliablilty and
generality of the framework. We will therefore have a focus on system testing subsequently.

Finally, acceptance testing is “formal testing conducted to enable a user . . . to determine whether to
accept a system or component”, according to the IEEE Standard Glossary of Software Engineering
Terminology [IEEE, 1990]. In numerical software frameworks with an open-source development
model, acceptance testing is constantly ongoing through the user community and feedback is
commonly issued via mailing lists and issue trackers.

2.4 Regression testing

The code basis in open source numerical software frameworks is constantly under development
and improvement. Those changes can be tracked by the testing suite by means of so-called
regression testing. Burnstein defines that “regression testing is . . . the retesting of software that occurs
when changes are made to ensure that the new version of the software has retained the capabilities of the old
version and that no new defects have been introduced due to the changes.” [Burnstein, 2006, p. 176]. For
regression testing, the output of a numerical code is compared to a reference output created when
the software was considered correct. Regression tests are possible on all four levels. Particularly,
performing regression tests on a system test level has the ability to reveal if code changes might
be an improvement in one configuration while being harmful for another.

2.5 System testing

System testing can be considered the most important testing level for a numerical framework,
as the framework by design should allow arbitrary combination of modular blocks. In unit and
integration testing, developers usually write tests covering their own code. In system testing
however, code maintained by multiple developers is combined, revealing the bugs and corner
cases the upstream developers have not thought of.

One approach to system testing within the software engineering community is to formalize
software variability through Software Product Line Engineering (SPLE) [Pohl et al., 2005]. In
SPLE, a variability model descibing thoroughly all possible configurations of the software is set up.
Configurations usually vary in characteristic properties called variation points. Possible values of
a variation point are called variants. A variability model for a complex software usually features
a complex structure of constraints between variants.

Using SPLE in the context of a numerical framework for PDEs (Dune) has already been in-
vestigated by Remmel et al. [2011] and Remmel [2014]. She states some of the fundamental
inherent problems with SPLE for scientific frameworks: Determining a variability model for all
the scientific applications is not possible due to the unlimited variability the mathematical input
provides. Instead, SPLE is applied to model variability within the framework for a fixed math-
ematical model. This limited variability model and its constraints can only be determined with
the knowledge of the developer.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



System testing in Dune 155

3 dune-testtools – A practical approach to integration and system test-
ing in numerical software frameworks

This section will describe our approach to system testing of a numerical software framework. As
our development is driven by the Dune project as an example framework, we briefly introduce
those properties of Dune that influenced the design process.

Dune, the Distributed Unified Numerics Environment, is an open source modular numerical
software framework developed at more than 10 universities in Europe [Bastian et al., 2011]. It has
a highly modular structure where currently five modules are core modules and as such mandatory
for most applications. Built upon these core modules exist discretization modules like dune-pdelab
(fast prototyping of new discretizations [Bastian et al., 2010]) and domain-specific application
frameworks like DuMux (flow and transport processes in porous media [Flemisch et al., 2011]).
Users will typically write their codes in form of application modules depending on the above. All
those modules may further depend on external and third-party libraries. The modular structure
of Dune is managed by a CMake-based buildsystem. One of the design principles of Dune is the
definition of stable interfaces for common simulation components. The most famous example of
this generic approach is the grid interface in dune-grid that allows to easily switch the underlying
grid implementation of a code. Such a generic programming approach offers great opportunities
for easily setting up system tests.

Dune’s open source workflow includes a group of core developers that have direct write access to
the core repositories. Non-core developers contribute through merge requests. All users report
issues through issue trackers and mailing lists. Most participants including the core developers
develop Dune next to their scientific research activity. As a consequence, the resources available
for maintenance of the software are limited. Extensive testing has proven to suffer badly from
this lack of resources in the past. To the authors’ knowledge, the majority of Dune developers
work on Unix-like systems in a commandline-centered fashion and there is little to no usage of
IDEs in the Dune community.

From the above description of the Dune project, the authors conclude the following requirements
for a sustainable testing environment for modular software frameworks.

• Any solution for testing needs to integrate well into the existing modular structure of Dune.

• To lower the entry barrier to a minimum, new workflows should integrate well with existing
ones (no additional tools, IDEs etc.).

• Writing a new system test should be an easy and quick procedure.

As pointed out by Remmel et al. [2011] in the context of SPLE, the variability of framework-based
scientific applications is twofold. On the one hand, there is the variability in the mathematical
model serving as input data to the framework. On the other hand, given the output of the
framework for a fixed mathematical model (an executable), there is variability in the configuration
of the simulation run. See Figure 1 for an illustration.

The variability model for all scientific applications is too large to determine due to the infinite
nature of the mathematical variation points. Only considering the variability model for a fixed
mathematical input model also bears problems, as the variability model will still become very
large. This results from the fact that the number of variation points for scientific software such as
Dune is high and the variability model is the combinatoric product of these variants. Therefore,
a strategy to reduce the amount of test cases for system testing while assuring sufficiently high
coverage is needed.

We base our approach on the idea, that the entire Dune user base needs to be involved in the
quality assurance process. This is important for the following reasons.
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Figure 1: A simulation is set up in two stages. Firstly, a mathematical model is selected and
the necessary features for implementing this model are chosen from the features offered by the
numerical framework. Secondly, the application program is configured by the simulation input
being compile time or runtime parameters. Both stages are objected to a large variability.

• The entirety of system tests should cover all the application areas of Dune. Those are
however defined by the users putting efforts into applying Dune to new areas. In other
words, the only sensible sampling of the variability model that includes the mathematical
models is to use those samples that Dune users are actively working on.

• A system test is best written by the expert in the field, who is the user working on the
exact problem. Also, defining a reasonably large sample of the variability model for a given
model is only possible with good scientific knowledge of the problem. For instance, the
choice of linear solver and/or preconditioner for a PDE problem cannot be done a priori.

• Reusing user code for system tests can result in a mutual benefit for user and framework.
On the one hand, the user contributes samples to the framework’s test suite that increase
the coverage of the variability model. On the other hand, the user gets an automated testing
workflow for his or her code, increasing the quality and reproducibility of the code and the
scientific work and results.

To sum it up: instead of providing a full variability model, we carefully choose a set of system
tests that try to cover as many use cases of the Dune project as possible. For a given system test,
we again do not provide the full variability of the framework, but instead go for samples carefully
selected by the user. These samples should cover all of the configurations relevant to the problem.
The system tests in their entirety should aim for a full coverage of relevant variant combinations
of the framework.

Considering tools for test evaluation, we heavily rely on regression testing. In a steadily changing
code base, it is of particular importance to track regressions in a system testing context. We store
reference files, created when the code was considered correct, i.e. usually around the time of
a new version release, under version control. We mention the recently introduced large file
storage concept of Git [Git-lfs webpage] as solution to the problem of storing large files under
version control. Keeping reference files over a longer period of time eliminates the chance for
slow regression and reduces the testing effort in comparison to using ad-hoc before and after
comparisons whenever the code base is changed.

We provide an implementation of the above presented concepts in the form of the Dunemodule
dune-testtools. Having the implementation as a Dune module integrates it easily into the
modular structure of the Dune project. dune-testtools only provides means to define system
tests independently of the system the test will be run on. dune-testtools contains a Python
package dune.testtools which does the heavy lifting of the implementation. Furthermore,
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it features CMake code for the buildsystem integration and some C++ helper classes. The
following Sections 4 and 5 elaborate on how dune-testtools implements feature modeling and
test evaluation, respectively.

4 Feature modeling in dune-testtools

As mentioned previously, our approach relies heavily on the application developers to define
the variability model for their use cases. To reduce entry barriers to writing system tests to a
minimum, we try to integrate our approach as deeply as possible into the existing workflow of
Dune developers. As a consequence, we completely avoid external tools, but instead work with
what we identified as the integral parts of a simulation code:

• A C++ source file that runs the simulation,

• an ini file (i.e. a parameter file) that allows to configure the simulation run, and

• little CMake code to define executable and tests.

The C++ source file is only to a limited extent suitable for modelling variability. Code will get
duplicated too often. It will look cluttered and as a consequence it will not be maintainable.
However, we consider maintainability one of the crucial factors for the success of the quality
assurance process. We therefore decided to use the ini file for modelling variability by extending
its syntax to what we call meta ini files. Instead of just one configuration, meta ini files describe
a set of combinations and therefore serve as a domain specific language for modelling the vari-
ability model for our system tests. Meta ini files are expanded into a set of normal ini files in a
preprocessing step.

4.1 Extending ini files

Normal Dune-style ini files contain key/value pairs, which are separated by an equal sign (=).
Keys can be grouped by sections which may either be defined explicitly by bracing its name with
square brackets, or implicitly by using dots in key names. Sections may be nested to arbitrary
depth.

In meta ini files, we introduce commands which can be applied to key/value pairs with a Unix-
style pipe (|). The most important command is the expand command, as it provides the mechanism
to describe sets of configurations. The values of keys that have the expand command applied are
expected to be comma-separated lists. Those lists are split and the list of configurations is updated
to hold the product of all possible values. The following example yields a total of 6 configurations
describing all the combinations of values for theta and timestep.

Meta ini Code
1 theta = 0.5, 1.0 | expand
2 timestep = 0.1, 1.0, 10.0 | expand

Sometimes, you may not want to generate the product of possible values, but instead couple
multiple key expansions. You can do that by providing an argument to the expand command. All
expand commands with the same argument, will be expanded together. The expansion process
when having expand commands with the same argument but a differing number of comma sepa-
rated values is semantically not well-defined and therefore produces an error. The next example
yields 2 configurations and does a refinement in space and time simultaneously.

Meta ini Code
1 gridlevel = 1, 2 | expand refinement
2 timestep = 1.0, 0.5 | expand refinement
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Expansion with and without argument may be combined arbitrarily. The following example
combines the two above examples for a total of 4 configurations.

Meta ini Code
1 theta = 0.5, 1.0 | expand
2 gridlevel = 1, 2 | expand refinement
3 timestep = 1.0, 0.5 | expand refinement

Sometimes, you will want to define a key’s value depending on the value of another key, where
that other key has the expand command applied. You may do so by writing the keyname in curly
brackets into the values. See the following example, where an output naming scheme is controlled
through this mechanism.

Meta ini Code
1 dimension = 2, 3 | expand
2 boundarycondition = dirichlet , neumann | expand
3 outputfile = {boundarycondition}_{dimension}d.output

The curly bracket syntax may even be used in a nested way and provides a powerful tool for the
meta ini language.

With the expand command as shown above, a set of configurations needs to have a product
structure in order to be described by a meta ini file. To overcome this limitation, the exclude
command has been introduced. It allows to define a boolean condition using curly brackets. If
that condition evaluates to True in Python, the entire configuration is removed from the set of
configurations. Because the exclude command does not operate on a key/value pair by definition,
it is instead applied to the condition directly in a separate line of the ini file. In the following
example, the grid levels that are not suitable for three-dimensional simulations are discarded. It
yields a total of 8 configurations, 5 of which are for the two-dimensional and 3 of which are for
the three-dimensional case.

Meta ini Code
1 dimension = 2, 3 | expand
2 gridlevel = 1, 2, 3, 4, 5 | expand
3 {dimension} == 3 and {gridlevel} > 3 | exclude

Once the set of generated configurations starts to grow, it is helpful to control the naming scheme
of the generated ini files. We use the special key __name for that. You may define it according to
your needs using the curly bracket syntax. If your definition does not result in unique names,
consecutive numbering will be appended to your naming scheme. The __name key is optional and
not defining it will result in consecutively numbered ini files.

So far, we have only considered the expand and the exclude command. There are some more
commands implemented which we only mention briefly here and refer to the documentation of
dune-testtools for further reading.

• unique makes the values to the given key unique throughout the set of configurations,
useful for unique names like output filenames. The __name mechanism uses this command
internally.

• eval allows to perform simple arithmetic operations on keys

• tolower and toupper transform strings to their lower-, uppercase representations, respectively.

Note that the meta ini syntax uses some characters for defining its own syntax. These are

• { and } in values for key-dependent resolution,
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• | in values for piping commands,

• , in comma separated value lists when using the expand command.

If you want to use those characters as part of a value, you need to escape either by a preceding
backslash or by embracing quotes.

4.2 Static and dynamic variations

So far, we have introduced meta ini files as a way of expressing the variability model for simulation
codes. Each variation point is represented by a key which has the expand command applied.
However, one of the biggest challenges with the variability model of simulation environments
such as Dune is the fact that many common variation points deal with compile-time variants.
Unfortunately, not all variation points describe static variations and treating dynamic variations
as static ones will result in a waste of resources. We will therefore describe in this section, how
to extend the concept of meta ini files by the ability to describe static and dynamic variations in a
mixed fashion.

We introduce a special group in the meta ini file called __static. Any key/value pairs in the
__static section are to be passed as C preprocessor variables to the simulation executable. To that
end, the expansion process and the buildsystem need to be interleaved. We will not cover the
details of this interface from CMake to Python here. Instead, we describe the CMake API from
dune-testtools in detail in Section 4.3. Here, we restrict ourselves to describe how to add static
variations to meta ini files. See the following minimal example that defines the grid type as a
variation point.

Meta ini Code
1 [__static]
2 GRIDTYPE = Dune::YaspGrid <2>, Dune::UGGrid<2> | expand

When used with the macros described in Section 4.3, CMake will parse this meta ini file at configure
time and generate executables from the static section. In analogy to the __name mechanism, you
can control the naming scheme of the executables by defining the key __exec_suffixwith the curly
bracket syntax. The suffix will be made unique and be appended to the target basename given to
CMake.

To correctly set up executables and tests for a system test with both static and dynamic variations,
CMake needs to determine the correct number of static variants and the correct number of dynamic
variations per executable. While the first one is easily done by filtering the __static section from
the set of configurations, the latter bears some problems. We implicitly implied until now that any
non-__static key defined a dynamic variation. However, when writing more sophisticated meta
ini files, you might want to define some auxiliary keys not defining dynamic variations. Take
the following advanced example where auxiliary keys are used to define a polynomial degree
depending on the grid.

Meta ini Code
1 grid = yasp, ug | expand grid
2 deg_yasp = 2
3 deg_ug = 2, 3 | expand
4 [__static]
5 GRIDTYPE = Dune::YaspGrid <2>, Dune::UGGrid<2> | expand grid
6 DEGREE = {deg_{grid}}

The example would produce a total of four test from two executables. Two of these tests would
effectively be equivalent as they are using Dune::YaspGrid<2> as their grid type and only differ
in the unused value deg_ug. To overcome this limitation, we have to mark the keys deg_yasp and
deg_ug as auxiliary keys by putting them into the __local group. The following corrected example
produces the desired amount of three tests.
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Meta ini Code
1 grid = yasp, ug | expand grid
2 [__local]
3 deg_yasp = 2
4 deg_ug = 2, 3 | expand
5 [__static]
6 GRIDTYPE = Dune::YaspGrid <2>, Dune::UGGrid<2> | expand grid
7 DEGREE = {__local.deg_{grid}}

The keys in the __local group are expanded and they are available for curly bracket syntax
resolution. However, at the end of the expansion process, the __local section is removed from
the generated configurations and the set of configurations is shrunk by eliminating duplicate
configurations.

Using the meta ini mechanism to have CMake automatically add targets bears another problem
if you are used to guard the addition of executables in CMake with if-clauses that depend on
configure checks for external packages. Consider the above example in a situation, where the
external dependency UG was not found on the system. In that case, the executable should not
even be added in the buildsystem. Such guards need to be defined in the meta ini file through
the command cmake_guard, which similar to the exclude command does not operate on a key/value
pair but on a single value. This value is evaluated in CMake at configure time and the executable
is not added, if it evaluated to FALSE. The above example can be fixed as follows. TRUE is used as a
non-operational guard variable here, as Dune::YaspGrid is always available.

Meta ini Code
1 [__static]
2 GRID = Dune::YaspGrid <2>, Dune::UGGrid<2> | expand grid
3 TRUE, HAVE_UG | expand grid | cmake_guard

CMake provides a very useful mechanism to attach metadata to tests in the form of so called labels.
Tests can have an arbitrary amount of labels attached and labels do not have any semantics by
themselves. The testing driver ctest can be used with regular expressions on test labels. Being
able to define labels in meta ini files allows us to define different priority groups. This can be done
through the command label which, as exclude, operates on a Python Boolean expression. It takes
the label to be applied as the first argument. Similar to the expand command, you may provide
an arbitrary identifier as the second parameter. Labels with the same identifier will override
previously defined labels with the same identifier. Consider the following example where all
tests have the WEEKLY label applied, but one labeled NIGHTLY. Note how True is used to set the
default label WEEKLY for all configurations.

Meta ini Code
1 model = 1, 2, 3, 4, 5 | expand
2 True | label WEEKLY PRIORITY
3 {model} == 3 | label NIGHTLY PRIORITY

Writing system tests with dune-testtools, you might experience that a generic coding style within
the C++ source file is very beneficial. You will often define types for simulation components
in the meta ini file. If all possible variants for a given static variation point fulfill the same
interface or concept, you can do that with a single codepath and thus achieve maintainability.
We have identified this need and try to provide tools for the most common tasks either through
dune-testtools or through contribution to the Dune core modules. This currently includes

• the IniGridFactory from dune-testtools, which allows to create grids from a section in
an ini file. It provides specializations for the most important Dune grids.

• The ongoing project [dune-istl GitLab] of providing fully dynamic, ini file-based solver and
preconditioner setup in dune-istl.
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Figure 2: Expansion procedure for the macro dune_add_system_test

4.3 Incorporation into the build system

One of the core principles of dune-testtools is to provide a powerful buildsystem API to the
user, not requiring any specific CMake knowledge on the user side. The interface to add a system
test with both static and dynamic variations is the following CMake macro.

CMake Code
1 dune_add_system_test(SOURCE src
2 BASENAME base
3 INIFILE ini
4 TARGETS output
5 [SCRIPT script])

Writing such a block into a CMakeLists.txt file will trigger the following procedure, which is
illustrated by Figure 2.

• The given INIFILEwill be expanded into the current build directory.

• CMake will add executables that are built from the given SOURCE with a naming scheme
based on the given BASENAMEwith appended __exec_suffix. A list of the generated executables
is exported to the variable given to TARGETS. You may use this to alter targets by adding flags
etc. We recommend using the dune_enable_all_packages feature from dune-common though,
to minimize problems arising from the necessity to add specific flags to the generated
executables.

• Tests will be added to the ctest testing suite for all dynamic variants. The executables are
expected to take an ini file as their first and only command line argument.

The SCRIPT parameter will be explained in detail later on, as it allows you to attach testing tools to
your system tests.

dune-testtools also provides CMake macros to use meta ini files outside of the context of testing.
These can be useful for setting up reproducible numerical studies. We do not describe these here,
but instead refer to the buildsystem documentation of dune-testtools.

5 Verification and validation with dune-testtools

A test of a numerical code will usually run a small sample problem and return some data. The test
suite then needs to determine whether the test passed or failed. The criterium for success of a test
is directly related to quality measures the test is supposed to verify. To avoid rewriting the testing
code in all tests’ executables, dune-testtools implements testing methods as wrapper scripts.
Wrapper scripts in dune-testtools are Python scripts controlling pre-processing, execution of
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the program, and post-processing. The wrapper scripts decide whether a test passed or not.
It supplies useful information to the developer in case it did not. The wrapper scripts are
meant to be customized writing few lines of Python code, although dune-testtools already
provides many useful wrappers. The wrappers are configured by the meta ini file in the section
wrapper.<wrapperscriptname>.

The wrapper script for a system test is defined through the above introduced CMake macro
dune_add_system_test by setting the SCRIPT parameter. As of the writing of this article, dune-
testtools contained the wrapper scripts dune_execute.py, dune_execute_parallel.py,
dune_outputtreecompare.py, dune_vtkcompare.py, dune_convergencetest.py. These wrappers are described
in more detail in this section.

5.1 Simple execution wrappers

The default wrapper dune_execute.py is used whenever the SCRIPT parameter is omitted in CMake.
It runs the executable and forwards the return code.

The wrapper dune_execute_parallel.py runs the executable in parallel and forwards the return code.
The wrapper would be defined in the CMake macro as follows.

CMake Code
1 dune_add_system_test(...
2 SCRIPT dune_execute_parallel.py)

The number of processors for the parallel run can then be specified in the meta ini file.

Meta ini Code
1 [wrapper.execute_parallel]
2 numprocessors = 4

The MPI implementation is automatically detected by the build system and information on it is
passed to the wrapper script.

5.2 Regression tests

Assume we have a reference program output produced when the state of the program was
considered correct. Regression testing compares the output of the software’s current state to this
reference output, as introduced in Section 2.4. A very common output of numerical simulation
is a computational result in a VTU format [VTK] file, e.g. a discrete solution on an unstructured
grid. dune-testtools provides the wrapper script dune_vtkcompare.py for regression testing VTU
output.

Technical difficulties comparing such unstructured grid files include that the data is commonly
given in single precision floating point numbers which need to be compared with a certain
tolerance value (fuzzy comparison). A further problem inherent to floating point numbers is the
comparison of numbers that are physically zero but suffer from numerical noise. Finally, different
grid managers might use different ordering of vertices or cells.

The wrapper script dune_vtkcompare.py offers solutions to tackle these problems. To this end, before
comparing the data, both files are sorted by ascending vertex coordinates. Then, different sets
of parameters are sorted by their name attribute, because the parameter order in VTU files is
mutable. Floating point numbers are first compared by means of an absolute comparison, i.e.
two single precision floating point numbers a and b are considered equal if the absolute value of
their difference is smaller than the machine epsilon scaled with the magnitude of the parameter,
i.e. if |a−b| <= ε·max (P). Herein,Pdenotes the set of absolute parameter values given in the VTU
file. The machine epsilon for IEEE 754 single precision floating point numbers is ε ≈ 1.19 · 10−7,
according to the definition of Goldberg [1991].
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If a and b are not equal, the script relaxes the criterium and compares relatively. The two floating
point numbers are considered being close enough if |a − b| <= δ · max (|a|, |b|), where δ is the
threshold for the largest acceptable deviation. The relative criterium is necessary as a numerical
code introduces rounding errors for every floating point computation. The errors can easily sum
up to relatively large errors.

If a data set is physically zero, e.g. the z-component of the velocity in a simulation was fixed to
zero but the actual number is subjected to computations with rounding errors, the result can be
an array of numbers very close to zero considered as numerical noise. In a case like that, two
numbers vz,1 = 1.5 · 10−21 and vz,1 = 1.2 · 10−18 are considered zero but will fail both the absolute
and relative criterium. For these cases the scripts provides a zero threshold per parameter under
which a parameter will be considered zero and thus be exempted from comparison.

Following the above mentioned concepts, the wrapper script dune_vtkcompare.py can be configured
via the meta ini file as follows.

Meta ini Code
1 [wrapper.vtkcompare]
2 name = my_vtkfile
3 reference = path_to_reference_file
4 extension = vtu
5 relative = 1e-2
6 absolute = 1.2e-7 # set to machine epsilon of used floating point format
7 zeroThreshold.velocity = 1e-18

name and reference are mandatory parameters denoting the file to be compared and the reference
file, respectively. The path name is relative to the build directory of the test and the path reference is
relative to the source directory. extension specifies the file extensions of the files to be compared and
defaults to vtu. The parameters relative and absolutedefine the thresholds for relative and absolute
floating point comparison. Note that the absolute threshold will be scaled to the magnitude of
the data to compare. They default to δ = 10−2 and ε = 1.2 · 10−7, respectively. The zero threshold
can be set for every parameter in the VTU file by name (velocity in the above example).

The wrapper script dune_outputtreecompare.py does regression testing with arbitrary user data,
where the ini file format is used for the output. dune-testtools provides a C++ class
Dune::OutputTree that facilitates writing data to ini files. It inherits from dune-common’s
Dune::ParameterTree and adds some convenience methods for writing out data. The following
code shows how to instantiate a Dune::OutputTree and fill it with data.

C++ code
1 Dune::OutputTree outputTree("out.ini");
2 // execute code yielding a variable numIterations
3 outputTree.set("Iterations", numIterations);

Upon destruction, the contents of the Dune::OutputTree will be automatically dumped to a file.
The wrapper script comparing ini files can be configured as follows via the test’s meta ini file.

Meta ini Code
1 [wrapper.outputtreecompare]
2 name = myoutputfile
3 reference = path_to_reference_file
4 extension = out
5 type = fuzzy
6 exclude = DebugInfo
7 relative = 1e-2
8 absolute = 1.5e-7
9 zeroThreshold.norm = 1e-18
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Most options work as explained above for the VTU file comparison. The parameter type specifies
whether the files are compared exact (not recommended when floating point numbers are in-
volved) or a fuzzy comparison is preferred. When comparing fuzzy, every value in the ini file that
is convertible to a floating point number will be compared as such using the absolute and relative
thresholds specified. A key only written for e.g. debugging purposes that is not required to
equal the reference file can be excluded by specifying the exclude key that takes a space separated
list as value. Multiple such output data can be compared in a single test. For configuring the
comparison differently for multiple files the following scheme applies.

Meta ini Code
1 [wrapper.outputtreecompare]
2 name = myoutputfile1 myoutputfile2
3 reference = path_to_reference_file1 path_to_reference_file2
4 extension = out out
5
6 [wrapper.outputtreecompare.myoutputfile1]
7 type = exact
8 exclude = DebugInfo
9

10 [wrapper.outputtreecompare.myoutputfile2]
11 type = fuzzy
12 zeroThreshold.norm = 1e-18

5.3 More involved test wrappers

Several quality measures of numerical software can only be tested with more involved tests often
requiring several runs of the same executable. A before mentioned method to verify an algorithm
for e.g. a discretization scheme solving a PDE is a convergence study. The grid is refined several
times and a rate of convergence can be computed. The rate is inherent to the scheme and should
not change when the code base changes. dune_convergencetest.py implements a test wrapper for
convergence tests. It does require the program to compute an error, e.g. with respect to a known
analytical solution. The key in the meta ini file that defines the samples for the convergence test
has to marked with the convergencetest command, which is a special form of the expand command.

Meta ini Code
1 [grid]
2 refinement = 0, 1, 2, 3, 4 | convergencetest

The above example defines a test conducting a grid convergence study. The convergence test
wrapper can be configured via the same meta ini file.

Meta ini Code
1 [wrapper.convergencetest]
2 expectedrate = 2.0
3 absolutedifference = 0.1

The test runs the executable once for every level of refinement. It then computes the convergence
rate automatically and compares it to the expected one. In the above example the test would fail if
the computed rate differs by more than 0.1 from 2. To compute the rates correctly we make some
assumptions on how the data is dumped by the program. The following dummy code snippet
taken from dune-testtools outlines such a test using Dune.

C++ code
1 #include <dune/testtools/outputtree.hh>
2 #include <dune/common/parametertreeparser.hh>
3 #include <dune/common/parametertree.hh>
4
5 int main(int argc, char** argv)
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6 {
7 // read the given ini file
8 Dune::ParameterTree params;
9 Dune::ParameterTreeParser::readINITree(argv[1], params);

10
11 // get refinement level
12 auto refinement = params.get<int>("grid.refinement");
13 // ... and refine the grid accordingly
14
15 // construct an output tree with the ini tree
16 Dune::OutputTree outputTree(params);
17
18 // do simulation and compute an error norm and hmax
19
20 // output convergence data
21 outputTree.setConvergenceData(norm, hmax);
22 return 0;
23 }

Lines 7-9 read the expanded ini file associated with the run into a Dune::ParameterTree object.
A Dune::OutputTree can be constructed from the input ini file to avoid specifying its filename
redundantly. Line 21 shows how to use a convenience method of the Dune::OutputTree class to
easily dump a computed error norm and the global maximum grid element diameter to file.

Other more involved testing methods are e.g. scalability tests where a program is run with
different numbers of processors and a speed-up per additional processor can be observed. Perfor-
mance tests measure the runtime of a certain program. Code changes should usually not increase
runtime (this might be a necessary evil of another advantage), whereas a decreased runtime is
considered an improvement. The latter tests are architecture dependent and can only be executed
in comparison to a reference state obtained on the same machine. A possible scenario would be
to run such tests before and after a change to the code base. Such tests can be automated when
using appropriate version control systems. Scalability and performance testing will appear in
future releases of dune-testtools.

5.4 Writing new test wrappers

The existing test wrappers can be customized easily with little knowledge of Python. For example,
the parallel wrapper could be combined with the wrapper comparing output data, to test if the
output from a parallel program run is equal to that of a sequential execution. If you want to write a
wrapper from scratch, check the Python module dune.testtools.wrapper.argumentparser for
a list of information that CMake forwards to the wrapper scripts. Following dune-testtools’s
style of configuring test wrappers avoids confusion.

6 Code Availability and Portability

The code presented in this paper is available freely under a BSD license. You find an overview of
the quality assurance related projects of the authors under

https://gitlab.dune-project.org/groups/quality

Note, that dune-testtools also requires the module dune-python, which is also available under
the same URL. dune-python is a buildsystem extension to dune-common that unifies the ways of
distribution and installation of Dune modules and Python packages. The centerpiece of dune-
python is a Python virtualenv, a tool setting up a system-independent environment for running
Python code. It is automatically set up at configure time in the build directory. dune-python is
designed to be used by any other Dunemodule distributing Python code.

As can be expected from a project on quality assurance, we have taken measures to ensure the
quality of our code. Extensive unit testing is done for Python and C++ code and as well for
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CMake code through configure time unit tests. We do provide comprehensive documentation,
which can be built by typing makedoc in the toplevel build directory. In dune-testtools, you find
the result in the (build directory) subdirectory doc/sphinx/html.

The methods presented in this paper are - though tailored for it - not limited to usage with the
Dune project. The Python package dune.testtools, which contains the code for both meta
ini expansion and testing tools is completely general and does not contain any Dune specifics.
The interface between the Python package and the projects buildsystem, however, needs to be
rewritten in order to use it with a different numerical code.

7 Outlook – an open-source workflow for automated system testing in
numerical software frameworks developed at research facilities

The module dune-testtools presented in this paper is only a first step towards an automated
system testing workflow. It provides convenient, buildsystem integrated tools to define low di-
mensional samples of the high dimensional variability model of simulation codes based on Dune.
Furthermore, it provides tools to verify and validate results for the numerical solution of partial
differential equations specifically. All these tools focus on the definition of tests independent of
the environment that the tests are to be run in. The system tests defined with dune-testtools
may be run on any local machine by running ctest in the build directory.

In future work we will target the infrastructure for automating the execution of system tests. This
includes the following tasks:

• A buildbot [Buildbot webpage] based build server setup

• Using docker [Docker webpage] containers to model heterogeneous userlands

• Integrating buildbot into a merge-request based development model
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Abstract: This document describes a C++ -library for the generation of invariant-based models,
including first three derivatives. Using expression templates, features of C++11/14, forward au-
tomatic differentiation and modern SFINAE-techniques admits a highly efficient implementation
with a simple and intuitive interface.

1 Introduction

Efficient and robust mathematical algorithms for the solution of real-world and scientific problems
often require the computation of derivatives of complex functions. Since the manual computation
of derivatives is time-consuming and error-prone, this problem is typically solved by software.
Different strategies have been developed to solve this task. The most popular approach, finite
differences, is known to cause significant problems due to truncation errors and the difficulty to
control their accuracy for highly nonlinear problems.

For this reason several other approaches have been investigated and implemented. Besides finite
differences, the most popular strategies for the computation of derivatives are symbolic and
automatic differentiation (AD). The former computes the derivative of a function, which then can
be evaluated, whereas the latter directly computes the evaluation of the derivative.

In C++ the standard implementation technique for both symbolic and automatic differentiation is
to provide overloads for arithmetic operators and elementary functions in cmath, resp. in math.h
such that their direct evaluation can be replaced by an object that carries all information neces-
sary for the computation of derivatives. One distinguishes forward- or reverse-mode schemes.
Forward-mode schemes implement the same procedure that one typically uses for the manual
computation of derivatives. Starting from the whole function, differentiation rules are applied
recursively until we reach the point where only simple expressions, for which the derivatives are
known, must be processed. Reverse-mode schemes use a more involved strategy for the evalua-
tion of derivatives and are not of interest here1. The interested reader is referred to eg. Griewank
and Walther [2008].

An incomplete list of forward-mode schemes includes ADOLC Walther and Griewank [2012],
though with main focus on reverse-mode schemes, Sacado Heroux et al. [2005], which is part
of the Trilinos project, CoDiPack Sagebaum et al., a particularly efficient implementation of
the scientific computing group of Technische Universität Kaiserslautern, ADEPT Hogan [2014],

1For the use-cases that are of interest here, reverse-mode schemes are significantly slower than forward schemes.
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FADBAD++ Bendtsen and Stauning [1996] and CppAD Bell. Other approaches use symbolic
differentiation to compute the derivative of a function. This strategy is followed in SEMT SEM,
Gil and Gutterman [1998] and in Kourounis et al. In particular the latter seems to be interesting.
Unfortunately the article was never published and the used code is not publicly available2.
For further references the interested reader is referred to Kourounis et al. and the website
www.autodiff.org.

Despite the large number of available AD-libraries FunG3 provides some unique features. First
it is not tied to a specific type of variable. Instead it provides a small and flexible interface that
admits to work with general vector space elements. In particular FunG admits the computation of
directional derivatives with respect to matrices and provides all functionality for invariant-based
models, i.e. models that describe physical processes in terms of matrix invariants. This type of
model is the basis of state of the art models for hyperelastic materials, cf. Lubkoll [2015] and the
references therein. For these materials the mechanical properties are given in terms of a strain
density function W(F) that depends on the deformation gradient F ∈ R3,3. As an example we
consider a model for the description of muscle tissue from Martins et al. [1998], given through

W(F) = c
[
exp(b(ῑ1(C) − 3)) − 1

]
+ d

[
exp(a(ῑ6(C,M) − 1)2) − 1

]
,

ῑ1(C) = tr(C) det(C)−1/3, C = FTF,

ῑ6(C,M) = tr(CM2) det(C)−1/3,

where ῑ1 is called the first modified invariant and ῑ6 the third modified mixed invariant. The
latter is used to describe the anisotropic influence of the muscle fibers. The need to assemble∫

Ω
W(n)(F) dx, n = 1, . . . , 3 was the motivation for the development of FunG.

Another advantage is the runtime performance of the generated models, which is demonstrated
in Sec. 5. This has several reasons. The treatment of multiple variables is different from other
implementations and admits to avoid redundant computations. Furthermore, due to a compiler-
friendly code design, the generation of efficient code is strongly simplified. Careful profiling and
suitable optimizations yield an implementation that contains only small runtime overhead.

Eventually, all other investigated AD-implementations require the introduction of additional
types. Mostly these are containers for scalar unknowns. Only FADBAD++ does not need these
wrappers, though it requires to use a particular container for the implementation of the function
for which we want to compute the unknown. In this respect FunG requires less setup code for
using it. For the above introduced model of muscle tissue we can simply write:

C++ code
1 using namespace FunG;
2 // for given type Matrix
3 // initialize the structural tensor M
4 auto M = LinearAlgebra::unitMatrix<Matrix>();
5 // initialize the deformation gradient F
6 auto F = LinearAlgebra::unitMatrix<Matrix>();
7 // generate relationship between strain and deformation gradient
8 auto C = LinearAlgebra::strainTensor(F);
9 // generate the relationship between strain and energy density

10 auto W = c*( exp( b*( mi1(C) - 3 ) ) - 1 )
11 + d*( exp( a*pow<2>( mi6(C,M) - 1 ) ) - 1 );

Here mi1 and mi6 denote the first modified invariant ῑ1(F), resp. the third modified mixed
invariant ῑ6(F,M) and the function strainTensor(F) generates the strain tensor C = FTF.

2A preprint of the paper is available at www.researchgate.net/profile/Michael_Saunders2/publications.
3The name FunG is both an abbreviation for Function Generation and a tribute to Yuan-Cheng Fung one of the founders

of modern biomechanics.
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While FunG has several unique features it also lacks some functionality provided by other AD-
implementations. In particular it currently does not provide reverse-mode automatic differenti-
ation. Due to its generic approach it also lacks full jacobian computation, which would require
the introduction of new customized data structures, i.e. for higher order tensors. This strongly
opposes one of the principal ideas behind FunG, namely providing an abstraction layer that still
allows each user to use his own, possibly optimized, data structures4.

To keep the presentation concise we will mainly restrict the discussion to scalar variables. Ex-
tensions for matrices are discussed where necessary. The implementation strictly follows the
underlying mathematical structure. This is explained in Sec. 2. Then provided mathematical
functions, such as common trigonometric functions and matrix invariants, are shortly introduced
in Sec. 3. In Sec. 4 we will discuss different optimization strategies that are implemented in FunG,
using two invariant-based models as examples. Then, in Sec. 5, the performance of FunG is
compared with several automatic differentiation (AD) libraries. In Sec. 6 examples that illustrate
several features of FunG are given. This paper ends with a short summary of the attained results
(Sec. 7) and instructions for downloading and installing the library (Sec. 8).

2 Concepts

We begin by introducing the main concepts and techniques that are necessary for an efficient and
generic implementation. For this first the interfaces for functions and variables are introduced.
Then we discuss the heart of FunG, the implementations of elementary differentiation rules.

2.1 Functions in FunG

In FunG every nullary callable is treated as a constant function. Non-constant functions addi-
tionally provide a function update to change the point of evaluation x ∈ X, where X denotes
some vector space. Optionally up to the first three directional derivatives may be specified. The
interface for functions is summarized in the following list:

• Evaluate f (x), where x has been assigned before:

C++ code
1 template <class Arg>
2 const auto& operator()() const;

• Set the point of evaluation x for general arguments (for non-constant functions):

C++ code
1 template <class Arg>
2 void update(const Arg& x);

• Evaluate the first directional derivative f ′(x)δx (for non-constant functions):

C++ code
1 template <class Arg>
2 auto d1(const Arg& dx) const;

• Evaluate the second directional derivative f ′′(x)(δx, δy) (for non-linear functions):

C++ code
1 template <class ArgX, class ArgY>
2 auto d2(const ArgX& dx, const ArgY& dy) const;

4While not providing this functionality in a generic setting it is straightforward to write the corresponding assembly-
loop using FunG.
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• Evaluate the third directional derivative f ′′′(x)(δx, δy, δz) (for non-linear, non-quadratic
functions):

C++ code
1 template <class ArgX, class ArgY, class ArgZ>
2 auto d3(const ArgX& dx, const ArgY& dy, const ArgZ& dz) const;

Derivatives that are not implemented are interpreted as functions that always return zero. This
design decision has significant advantages during code generation, see Sec. 4.2. However, it is
not very convenient to use a function that may or may not provide certain member functions.
Thus it is advisable to always use a finalized version of the generated function, i.e. instead of the
generated function f, better use the result of finalize(f). The call to finalize adds all undefined
derivatives and, depending on the generated function, may perform some simplifications of the
interface. This is explained in see Sec. 6. 5

2.2 Function arguments in FunG

In the last section an interface for functions on vector spaces was presented. Therefore function
arguments should at least satisfy the requirements of a vector space element, they should be
scalable and sumable. For non-scalar variables additional operations should be supported, such as
matrix-matrix- or matrix-vector-multiplication. As example consider the matrix-valued example
in the introduction, where scalability, sumability and matrix-matrix-multiplication is required for
the function arguments.

In the following subsections the required interfaces for the classical function arguments scalars,
vectors and matrices are summarized. Other vector space elements are possible, but must be
provided by the user together with corresponding functions.

2.2.1 General interface. The following requirements hold for all variables that are to be used
with FunG:

• one of the following operations must be valid for variables v,w of type V:

C++ code
1 v += w;
2 V x = v + w;

If only the first alternative is available, then FunG will generate an implementation of the
free summation operator.

• one of the following operations must be valid for a of arithmetic type A 6:

C++ code
1 v *= a;
2 V w = a*v;

If only the first alternative is available, then FunG will generate an implementation of the
free multiplication operator.

5Currently no derivatives or order higher than the third are implemented. This is due to two reasons. First, for solving
optimization problems typically no more than the first two or three derivatives are required. Secondly, derivatives of
arbitrary order require to additionally pass the order as template argument. Together with the increasing number of
template and function arguments this leads to signatures that are sufficiently hard to read to justify the introduction of a
proxy object to increase readability. This in turn leads to a less intuitive syntax.

6Here “arithmetic” is used in the sense that std::is_arithmetic<A>::value == true.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



FunG - Automatic differentiation for invariant-based modeling 173

These operations are not only available for built-in arithmetic types, but at least one of the
alternatives is implemented in most C++ matrix libraries, such as Eigen (Guennebaud and Jacob
[2010]), Dune-ISTL (Blatt and Bastian [2007]) or Armadillo (Sanderson [2010]).

2.2.2 Extended interface. For matrices and vectors additional functionality is required. Since
vectors are treated analogously, the discussion is restricted to matrices. For these the additional
requirements are:

• access to entries,

• access to the number of rows and

• access to the number of columns.

For all cases there exist free template functions that provide access to the desired quantity via
traits classes. For accessing matrix entries there is:

C++ code
1 template <class Matrix, class Index,
2 class = std::enable_if_t<std::is_integral<Index>::value> >
3 decltype(auto) at( Matrix&& A, Index i, Index j )
4 {
5 return AccessEntryOfMatrix<Matrix>::apply( A, i, j );
6 }

Currently, FunG supports the most popular ways of accessing matrix entries, via:

A[i][j] or A(i,j).

Using the SFINAE7-technique of Sec. 2.4 it is easy to choose the correct implementation at compile
time 8.

Regarding the access of the number of rows, resp. columns, matrices of constant size and of
dynamic size are distinguished. For constant size matrices access to the number of rows and
columns at compile time enables loop-unfolding optimizations for the C++-compiler. To exploit
this fact, slightly different interfaces are provided for matrices of constant and dynamic size.

2.2.2.1 Matrices of constant size. For constant size matrices the following free template func-
tions admit access to the number of rows resp. columns:

C++ code
1 template <class Matrix>
2 constexpr auto rows()
3 {
4 return NumberOfRows<Matrix>::value;
5 }
6
7 template <class Matrix>
8 constexpr auto cols()
9 {

10 return NumberOfColumns<Matrix>::value;
11 }

Matrices of constant size often take the numbers of rows and columns as template parameters. If
template matrix types can be specified with one of the patterns

7Substitution Failure Is Not An Error.
8In case that both ways of accessing entries are supported, square brackets are used.
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C++ code
1 using M1 = MyMatrix<nRows,nCols>
2 // or
3 using M2 = MyMatrix<Scalar,nRows,nCols>

then FunG will automatically detect the number of rows and columns. Else you need to provide
a specialization of the template classes NumberOfRows and NumberOfColumns. To illustrate usage
we consider the implementation of the scalar product (A,B) :=

∑
i, j Ai jBi j:

C++ code
1 template <class Matrix>
2 auto scalarProduct(const Matrix& A, const Matrix& B)
3 {
4 using Index = decltype( rows<Matrix>() );
5
6 auto result = decltype( at(A,0,0) )(0);
7 for( Index i = 0 ; i < rows<Matrix>() ; ++i )
8 for( Index j = 0 ; j < cols<Matrix>() ; ++j )
9 result += at(A,i,j) * at(B,i,j);

10
11 return result;
12 }

2.2.2.2 Matrices of dynamic size. For matrices of dynamic size the following free template
functions admit access to the number of rows resp. columns:

C++ code
1 template <class Matrix>
2 auto rows(const Matrix& A)
3 {
4 return DynamicNumberOfRows<Matrix>::apply( A );
5 }
6
7 template <class Matrix>
8 auto cols(const Matrix& A)
9 {

10 return DynamicNumberOfColumns<Matrix>::apply( A );
11 }

Currently, there is support for

• access via public member variables n_rows and n_cols (as used in Armadillo),

• access via public member functions rows() and cols().

For other signatures suitable specializations of the template classes DynamicNumberOfRows and
DynamicNumberOfColumnsmust be provided. Again, we illustrate usage with the implementation
of the scalar product (A,B) :=

∑
i, j Ai jBi j:

C++ code
1 template <class Matrix>
2 auto scalarProduct(const Matrix& A, const Matrix& B)
3 {
4 assert( rows(A) == rows(B) && cols(A) == cols(B) );
5 using Index = decltype( rows(A) );
6
7 auto result = decltype( at(A,0,0) )(0);
8 for( Index i = 0 ; i < rows(A) ; ++i )
9 for( Index j = 0 ; j < cols(B) ; ++j )

10 result += at(A,i,j) * at(B,i,j);
11
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12 return result;
13 }

2.2.3 Usage of non-built-in arithmetic types. FunG admits the usage of user-defined arith-
metic types. For this a suitable specialization of the template class IsArithmetic must be pro-
vided:

C++ code
1 template <>
2 struct IsArithmetic< UserDefinedScalarType >
3 : std::true_type
4 {};

2.2.4 Working with expression templates in matrix libraries. In some matrix-libraries, such
as Eigen (cf. Guennebaud and Jacob [2010]), mathematical operations are implemented with ex-
pression templates that delay the actual computation until the next assignment. This may interfere
with generic implementations that use automatic type deduction. To avoid these problems in
FunG, a suitable specialization of the template class Decay must be provided. This is illustrated
for the Eigen-library, where expression-templates provide the underlying matrix- or vector-type
with the nested type PlainObject.

C++ code
1 // Default case (identity).
2 template < class F, class = void >
3 struct Decay
4 {
5 using type = F;
6 };
7
8 // Underlying type for expression templates of the Eigen library.
9 template < class F >

10 struct Decay< F, void_t< Checks::TryNestedType_PlainObject<F> > >
11 {
12 using type = typename F::PlainObject;
13 };

2.2.5 Multiple variables To work with multiple variables FunG provides a special template
class to associate an id with a variable:

C++ code
1 template <class Type, int id>
2 class Variable;

This class is a function in the sense of 2.1. If derivatives are computed with respect to id, then
this class behaves like a linear function, else like a constant function. This association of ids with
variables at compile time has two advantages. First, it admits the generation of highly efficient
code. This is explained in sec 4.2. Secondly, this approach does not require any additional storage
for id.

We can use automatic type deduction to simplify the creation of a new variable:

C++ code
1 // create variable of type Variable <std::decay_t<decltype(x)>,0>
2 auto v0 = variable<0>(x)

For the template argument Type any type that satisfies the interface for variables is admissible,
see 2.2. For problems that only depend on one variable the template class Variable is not required.
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2.3 Mathematical operations

Having defined requirements on functions and their arguments we now turn to the question how
to build up complex functions from elementary ones. Exemplarily, we consider

h(x) = exp(sin(x)) + exp(x) log(x) = ( f0 ◦ f1)(x) + f0(x) f2(x), (1)

with f0(x) = exp(x), f1(x) = sin(x) and f2(x) = log(x). The representation of h as combination of
more elementary functions can be represented in a tree structure. This is illustrated in Fig. 1:

+

◦

f0 f1(x)

∗

f0(x) f2(x)

Figure 1: Tree structure associated with h(x) = exp(sin(x)) + exp(x) log(x) = ( f0 ◦ f1)(x) + f0(x) f2(x).

The leafs are functions and all other nodes represent a mathematical operation. Then, the differ-
entiation process can be described by a small set of operations that generate a new tree. These
operations are equivalents of mathematical differentiation rules:

• the sum rule,
( f (x) + g(x))′ = f ′(x) + g′(x)

replaces the child nodes with its derivatives:

+

f (x) g(x)

δ
δx

+

f ′(x) g′(x)

Figure 2: Tree transform associated with the sum rule.

• the product rule,
( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x)

generates a more complex tree:

∗

f (x) g(x)

δ
δx

+

∗

f ′(x) g(x)

∗

f (x) g′(x)

Figure 3: Tree transform associated with the product rule.
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• and the chain rule,
f (g(x))′ = f ′(g(x))g′(x)

yields:

◦

f g(x)

δ
δx

◦

◦

f ′ g(x)

g′(x)

Figure 4: Tree transform associated with the chain rule.

With the given transformation rules it is easy to get the derivative of an arbitrary complex function
by traversing its tree representation from top to bottom and repeatedly applying the differentiation
rules. For the derivative of the function h, defined at the start of this subsection, we get:

+

◦

◦

f ′0 f1(x)

f ′1(x)

+

∗

f ′0(x) f2(x)

∗

f0(x) f ′2(x)

Figure 5: Example tree structure corresponding to h′(x).

2.3.0.1 Expression templates. We can easily evaluate the derivative h′(x) by traversing the
generated tree. However, setting up such a tree structure and traversing it adds significant
overhead that will slow down computations significantly. The classical technique for avoiding
this overhead is based on expression-templates, cf. Veldhuizen [1995], and used in most AD-
implementations, cf. eg. Hogan [2014], Walther and Griewank [2012], Sagebaum et al., Bendtsen
and Stauning [1996], Heroux et al. [2005].

Expression-templates provide an abstraction layer that separates the interface for, i.e. mathemati-
cal, operations from its implementation. With this abstraction the evaluation of the tree structures
can be performed at compile time.

In the context of FunG, simplified versions of the mathematical operators take the forms:

C++ code
1 template <class F, class G,
2 /* static concept checking */>
3 auto operator+(const F& f, const G& g) {
4 return MathematicalOperations::Sum<F,G>(f,g);
5 }
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C++ code
1 template <class F, class G,
2 /* static concept checking */>
3 auto operator*(const F& f, const G& g) {
4 return MathematicalOperations::Product<F,G>(f,g);
5 }

The template classes Sum and Product hide the actual implementation of the mathematical oper-
ations and provide the corresponding differentiation rules. Additionally there exist implementa-
tions of operator- based on operator+.

For the chain rule an overload of the function call operator is required. This overload must be
added to each function that is used within FunG (at least if the chain rule is used). This can be
done by using the CRTP9-based class Chainer:

C++ code
1 template <class Function>
2 struct Chainer
3 {
4 // provide function call operator
5 decltype(auto) operator()() const noexcept
6 {
7 return static_cast<const Function*>(this)->d0();
8 }
9

10 // support chain rule
11 template <class OtherFunction ,
12 /* static concept checks */>
13 auto operator()(const OtherFunction& g)
14 {
15 return MathematicalOperations::Chain<Function,OtherFunction>
16 (*static_cast<const Function*>(this),g);
17 }
18
19 ...
20 };

To avoid explicitly importing the overloads of Chainer to the derived class this class should no
more define the function call operator. Instead it should define a function d0with same signature
as the function call operator would have.

Assume that we already have defined a class Cos satisfying the function interface but not yet the
chain rule. Then the easiest way to add support for the chain rule is to change it from

C++ code
1 class Cos {
2 ...
3 double operator() const noexcept;
4 ...
5 };

to

C++ code
1 #include ‘‘fung/util/chainer.hh’’
2
3 class Cos : public Chainer<Cos> {
4 ...
5 double d0() const noexcept;
6 ...
7 };

9Curiously Recurring Template Pattern.
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As example we consider the function h given at the beginning of this section. In FunG we can
write

C++ code
1 auto x = variable<0>(1.); // point of evaluation
2 auto fun = finalize( exp(sin(x)) + exp(x)*log(x) );

to generate an object of type

C++ code
1 Sum<
2 Chain<Exp,Sin>,
3 Product<Exp,Log>
4 >

This class contains all relevant information to generate the derivatives of fun. Thus the tree
structures described in the beginning of this section are generated and resolved at compile time.
Since all type-information is provided to the compiler most function calls will be eliminated when
resolving these trees. This approach allows to avoid almost all implementation-related runtime
overhead.

2.4 SFINAE and void_t

In FunG SFINAE-techniques based on void_t, cf. Brown [2014], are heavily used. void_t is a
template alias that is equivalent to void for all valid template arguments10:

C++ code
1 template <class...>
2 using void_t = void;

This alias matches any well-formed type into the predicable type void. In the context of FunG,
this allows to verify interfaces at compile-time, provide a flexible interface to matrix and vector
implementations as well as to remove redundant code paths from the evaluation of derivatives.

This is illustrated for the case of the first derivative in FunG, i.e. the case that we want to know if
objects of type T provide a member function d1, taking one argument of type Arg. We can try to
access this member function in an unevaluated context via

C++ code
1 template <class T, class Arg>
2 using TryMemFn_d1 =
3 decltype( std::declval<T>().d1(std::declval<Arg>()) );

This alias can be used to define a meta-function as follows:

C++ code
1 // Default case, no suitable member function d1.
2 template <class T, class Arg, class=void>
3 struct HasMemFn_d1
4 : std::false_type
5 {};
6
7 // Specialization for the case that a suitable member function d1 exists.
8 template <class T, class Arg>
9 struct HasMemFn_d1< T , Arg , void_t< TryMemFn_d1<T,Arg> > >

10 : std::true_type
11 {};

10This implementation of void_t does not directly work with gcc-x, x<5. For these compiler versions another level of
indirection must be added.
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This meta-function can be used to choose different code paths at compile time. Alternatively one
can use the same technique as in the specialization of HasMemFn_d1 to directly use SFINAE for the
choice of implementations.

2.5 Error handling

Debugging errors in strongly templatedC++ code is often not easy due to the hard-to-read compiler
output. Two ways of providing meaningful error messages are provided. Using the technique
described in the last section, we can check satisfaction of the required interfaces and consistency of
the defined function at compile time. Using static_assertmeaningful compiler error messages
are provided.

Sometimes things may go wrong because of the concatenation f ◦ g of two functions, where
ran(g) * dom( f ). If f is implemented with the help of functions from cmath, then one can inspect
the corresponding error flag. Alternatively one may define the macro FUNG_ENABLE_EXCEPTIONS.
If defined, it enables an OutOfDomainException that is thrown as soon as a function argument
leaves the admissible domain.

3 Provided functions

Mny functions that are contained in cmath, as well as matrix invariants and an implementation
of the strain tensor are provided in FunG.

3.1 Functions from cmath

The functions in cmath are contained in namespace std. Though, in the C++11-standard it is
allowed that the implementation just forwards to the C math library in math.h, wherein the
functions and macros are part of the global namespace. This practice is followed in most stl-
implementations. For this reason it is not possible to provide the same signature for built-in
arithmetic types.

A common strategy to solve this problem in AD-implementations is the introduction of a special
variable, such as adouble in ADOL-C. In FunG the template class Variable can be used for this
purpose. For problems that only depend on one variable, it is also admissible to directly use
custom types11. To avoid ambiguity for functions that are contained in cmath the first letter of the
function name must be changed to uppercase:

C++ code
1 auto f = Sin(1.) // uppercase to avoid ambiguity
2 auto g = sin( variable<0>(1.) ) // no ambiguity

An overview on the currently available scalar functions is given in Table 1.

3.2 Invariants

Since physical models should be independent of the position of the observer they are formulated
in terms of invariants, such as det(A), tr(A) or cof(A). In FunG, optimized implementations of
the determinant12, the trace and the cofactors are provided for both, matrices of constant and
dynamic size. Based on these, implementations of different invariants are provided. These are
summarized in table 2.

The first and third invariant, the trace and determinant of a matrix A ∈ Rn,n, can also be accessed
via trace(A) resp. det(A). Another important quantity in invariant-based modeling is the strain

11In this case the post-processing through finalize yields a simpler interface, cf. Sec. 6.
12The determinant is implemented for matrices A ∈ Rn,n, n = 2, 3.
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Table 1: Available scalar functions in FunG.

Formula Code Code (built-in arithmetic)
xn/m pow<n,m>(x) Pow<n,m>(x)
√

x sqrt(x) Sqrt(x)
3
√

x cbrt(x) Cbrt(x)
3√

x2 cbrt2(x) Cbrt2(x)
2x exp2(x) Exp2(x)

exp(x) exp(x) Exp(x)
log(x) log10(x) Log10(x)

log2(x) log2(x) Log2(x)
ln(x) ln(x) LN(x)

sin(x) sin(x) Sin(x)
cos(x) cos(x) Cos(x)
tan(x) tan(x) Tan(x)

arcsin(x) asin(x) ASin(x)
arccos(x) acos(x) ACos(x)

Table 2: Available invariants in FunG.

Invariant Formula Code
ι1(A) = tr(A) i1(A)
ι2(A) = tr(cof(A)) i2(A)
ι3(A) = det(A) i3(A)

ι4(A,M) = tr(AM) i4(A,M)
ι5(A,M) = tr(AM2) i5(A,M)
ι6(A,M) = tr(A2M) i6(A,M)
ῑ1(A) = tr(A) det(A)−1/3 mi1(A)
ῑ2(A) = tr(cof(A)) det(A)−2/3 mi2(A)

ῑ4(A,M) = tr(M,A) det(A)−1/3 mi4(A,M)
ῑ5(A,M) = tr(AM2) det(A)−1/3 mi5(A,M)
ῑ6(A,M) = tr(A2M) det(A)−2/3 mi6(A,M)

tensor C = FTF for F ∈ Rn,n. An efficient implementation, that exploits symmetry, can be accessed
via:

C++ code
1 auto C = strainTensor(F);

4 Performance optimization

FunG was developed with focus on integrands that are evaluated in finite-element assembly
procedures. Thus performance is important. In this section the three most relevant optimization
strategies are shortly presented. Two examples from biomechanics are used to illustrate their
effects. The first is a compressible version of the muscle model which has been shown in the
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introduction:

W(F) = c
[
exp(b(ῑ1(C) − 3)) − 1

]
+ d

[
exp(a(ῑ6(C,M) − 1)2) − 1

]
+

e det(C) +
f
2

log(det(C)),

ῑ1 = tr(C) det(C)−1/3, C = FTF,

ῑ6 = tr(CM2) det(C)−1/3,

where a, b, c, d, e and f are material parameters. In FunG this can be implemented as follows:

C++ code
1 // for given MatrixType
2 // initialize the structural tensor M
3 auto M = LinearAlgebra::unitMatrix<Matrix>();
4 // initialize the deformation gradient F
5 auto F = LinearAlgebra::unitMatrix<Matrix>();
6
7 auto model = c*( exp( b*( mi1(F) - 3 ) ) - 1 )
8 + d*( exp( a*pow<2>( mi6(F,M) - 1 ) ) - 1 )
9 + e*det(F) + f/2*log(det(F));

10
11 // generate strain tensor
12 auto C = strainTensor(F);
13 // generate material model W(C)
14 auto W = model( C );

In the above model mi1 and mi6 denote the first modified invariant ῑ1(F), resp. the third modified
mixed invariant ῑ6(F,M) and the function strainTensor(F) generates the strain tensor C = FTF.

The second is a compressible model for adipose tissue from Sommer et al. [2013]:

W(F) = cCells(ι1 − 3) +
k1

k2
exp(k2(κι1 + (1 − 3κ) ∗ ι4)2

− 1)+

e det(C) +
f
2

log(det(C)),

ι1 = tr(C), C = FTF,
ι4 = tr(CM),

where c, k1, k2, κ are material parameters. Its implementation in FunG is given through

C++ code
1 // for given MatrixType
2 // initialize the structural tensor M
3 auto M = LinearAlgebra::unitMatrix<Matrix>();
4 // initialize the deformation gradient F
5 auto F = LinearAlgebra::unitMatrix<Matrix>();
6
7 auto model = c*( i1(F) - 3 )
8 + d*( exp( a*pow<2>( mi6(F,M) - 1 ) ) - 1 )
9 + e*det(F) + f/2*log(det(F));

10
11 // generate strain tensor
12 auto C = strainTensor(F);
13 // generate material model W(C)
14 auto W = model( C );

In the following all computations are performed on an ASUS UX32V, 4xi7-3517 1.90 GHz, 10 GiB
DDR3-RAM 1600 MHz under Kubuntu 16.04. The code was compiled with gcc 5.3.1 and addi-
tional compiler flag -std=c++1y. Constant-size matrices of Eigen, version 3.2.0, see Guennebaud
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and Jacob [2010] are used. For each described optimization technique the average computation
time for the evaluation of single member functions will be given, where the average is computed
over 107 evaluations at varying points of evaluation. No numbers are given for the evaluation of
the function value. This is due to the fact that the related computations are fully performed in the
update-function, see Sec. 4.1. Thus the function call operator only has to access the cached value.
Recall that the performance of FunG is, to large parts, a consequence of compiler-friendly code
design. Thus all measurements are strongly dependent on the used compiler.

4.1 Caching

The most efficient strategy to reduce the computation time in automatic differentiation is caching.
This is mainly due to two reasons. First, caching intermediate results that are expensive to
compute pays off. This does not only include caching of the results of iterative computations
such as sqrt(x), sin(x) or exp(x), but also the direct evaluation of every function in its update-
function. This avoids repeated evaluation in expressions such as

( f (x) ∗ g(x) ∗ h(x))′ = f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x),

where each function value is used twice. Secondly this admits to reduce the number, and often
also the size, of temporary variables. Both effects help avoiding expensive cache misses. The
influence on performance is illustrated in table 3.

adipose tissue muscle tissue

caching update d1 d2 d3 update d1 d2 d3

with 260 ns 44 ns 159 ns 490 ns 473 ns 62 ns 305 ns 1752 ns

without 270 ns 190 ns 714 ns 3090 ns 473 ns 353 ns 1673 ns 11907 ns

ratio 0.96 0.23 0.22 0.16 01.00 0.18 0.18 0.15

Table 3: Average computation time with and without caching.

4.2 Elimination of zeros

One of the disadvantages of automatic differentiation is the fact that for higher-order, possibly
mixed, derivatives significant computation time can be spend with the computation of zeros. In
most cases the compiler is not able to remove these redundant operations. Thus it pays off to
implement a mechanism that eliminate these branches.

The essential idea is to not implement functions that always return zero (such as the second
derivative of a linear function). Using the technique described in Sec. 2.4 it is straightforward to
provide suitable optimizations for the mathematical operations described in Sec. 2.3 13.

The impact on performance is illustrated in table 4. For the update- and the d1-function the
observed differences are negligible. This is to be expected since no operation can be eliminated
from the first and only few from the latter. For higher derivatives the elimination of zeros becomes
more and more relevant.

13This design decision also enables efficient treatment of multiple variables and mixed derivatives.
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adipose tissue muscle tissue

zeros update d1 d2 d3 update d1 d2 d3

with 260 ns 44 ns 159 ns 490 ns 473 ns 62 ns 305 ns 1752 ns

without 267 ns 42 ns 192 ns 835 ns 477 ns 60 ns 362 ns 2333 ns

ratio 0.97 1.05 0.83 0.59 0.99 1.03 0.84 0.75

Table 4: Average computation times with and without elimination of zeros.

4.3 Compiler flags

FunG largely consists of template classes, functions and aliases. Thus one of the prerequisites
for the generation of efficient code is that the compiler must inline most of the function calls. In
particular significantly larger amounts of code than in the “average” C++-code must be inlined.
In invariant-based models, where also loops over matrix entries must be unfolded, significant
performance increases can often be observed after adjusting the following compiler parameters:

• early-inlining-insns=5000

• max-inline-insns-auto=3000

• inline-unit-growth=100

For more details, see Stallman and the GCC Developer Community [2015], Alexandrescu [2014].
The influence of these adjustments is illustrated in table 5.

adipose tissue muscle tissue

flags update d1 d2 d3 update d1 d2 d3

with 210 ns 3 ns 75 ns 166 ns 400 ns 3 ns 246 ns 1369 ns

without 260 ns 44 ns 159 ns 490 ns 473 ns 62 ns 305 ns 1752 ns

ratio 0.81 0.07 0.47 0.34 0.85 0.05 0.81 0.78

Table 5: Average computation times with and without additional compiler flags.

Note that there is no golden rule for choosing compiler parameters. Its effects strongly differ be-
tween compilers and compiler versions. Moreover, when compiled together with an application,
where FunG typically only is a small part, other parts of the code may influence the way the
compiler optimizes the code. The latter effect can be avoided by compiling function definitions
separately.

5 Comparison with AD-libraries

To give a first idea of the performance of FunG it is compared with several AD-libraries. For this,
we consider the forward mode AD-schemes of

• ADOLC, version 2.6.1, see Walther and Griewank [2012],

• Adept, version 1.1, see Hogan [2014],

• CoDiPack, version 1.2.1, see Sagebaum et al.,
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• CppAD, github, master branch from 01/23/2016, see Bell,

• FADBAD++, version 2.1, see Bendtsen and Stauning [1996] and

• Sacado, version 12.4.2 of Trilinos, see Heroux et al. [2005].

Again the computations are performed on an ASUS UX32V, 4xi7-3517 1.90 GHz, 10 GiB DDR3-
RAM 1600 MHz under Kubuntu 16.04. The code was compiled with gcc 5.3.1 and additional
compiler flag -std=c++1y.

Since not all investigated libraries support higher derivatives only the first derivative is consid-
ered. Moreover, the following examples are restricted to scalar variables. The reason is that
matrix-valued variables are not directly supported by the other libraries 14.

In tables 6-8 computation times for different functions are compared with the best manual imple-
mentation that the author was able to provide for both, the function value and the first derivative.
Ratios are given with respect to this manual implementation. Since not all libraries support
the separate evaluation of function value and derivative the average evaluation time of both
quantities is measured over 107 evaluations with different function arguments.

• The first example is
f0(x) = x3/2 + sin(

√
x).

This function can also be written as f0 = g ◦ h, where g(x) = x3 + sin(x) and h(x) =
√

x.
The latter implementation only requires one evaluation of

√
x. In table 6 the corresponding

average computation time is given under FunG (opt). From the same table we see that
a straight-forward implementation of f0 in FunG is about 10% slower, since

√
x must be

evaluated twice.

Manual FunG (opt) FunG CoDiPack Sacado FADBAD Adept ADOLC CppAD

60 ns 60 ns 65 ns 65 ns 68 ns 222 ns 304 ns 401 ns 926 ns

1.00 1.00 1.08 1.08 1.13 3.70 5.07 6.68 15.4

Table 6: Comparison of the average computation time for the evaluation of function value and
derivative for f0(x) = x3/2 + sin(

√
x). Ratios are given with respect to the manual implementation.

As illustrated in table 6, FunG achieves the same performance as the optimized manual
implementation. Without the above introduced reformulation of f0 FunG provides the
same performance as CoDiPack. Sacado is slighly slower in this example. Despite the fact
that f0 is a very simple function the remaining libraries, FADBAD++, Adept, ADOLC and
CppAD are already significantly slower. These differences will be even more pronounced
in the following examples.

• The next example is

f1(x) = 1 + x(1 + x(1 + x(1 + x)))

( =

4∑
i=0

xi)

This example only consists of simple and cheap operations. In particular nothing has to
be computed iteratively. As illustrated in table 7, both FunG and CoDiPack achieve the
same performance as the optimized manual implementation. All other implementations
are significantly slower.

14In case that vector-valued variables are supported one could work with vectorized matrices.
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Manual FunG CoDiPack Sacado FADBAD Adept ADOLC CppAD

1.7 ns 1.7 ns 1.7 ns 4.0 ns 13.9 ns 45.8 ns 336 ns 558 ns

1.00 1.00 1.00 2.35 8.18 26.9 198 328

Table 7: Comparison of the average computation time for the evaluation of function value and
derivative for f1(x) = 1 + x(1 + x(1 + x(1 + x))). Ratios are given with respect to the manual
implementation.

• The last example is given through

f2(x, y, z) = xyz.

This demonstrates the effect of multiple variables15.

Manual FunG CoDiPack FADBAD Sacado Adept ADOLC CppAD

1.7 ns 1.7 ns 2.0 ns 8.1 ns 40 ns 48 ns 877 ns 1781 ns

1.00 1.00 1.18 4.76 23.5 28.2 515 1047

Table 8: Comparison of the average computation time for the evaluation of function value and
derivative for f2(x, y, z) = xyz. Ratios are given with respect to the manual implementation.

As illustrated in table 8 FunG achieves the same performance as the optimized manual
implementation. Only the forward-scheme of CoDiPack, which is 18% slower, provides
roughly comparable performance. The large differences with respect to the other examined
libraries is partly a consequence of the elimination strategy of Sec. 4.2.

6 Examples

We provide some examples that illustrate different features and how to use FunG. In Sec. 6.1
a model for adipose tissue is described. It illustrates the generation of invariant-based models
without usage of the template class Variable. In Sec. 6.2 a model with different variables of
different types is generated. Eventually, a model of nonlinear heat transfer is described. Such
models depend on the state and the gradient of the heat distribution. How this is realized in
FunG is demonstrated Sec. 6.3.

6.1 A model for adipose tissue

We begin with the model for adipose tissue of Sommer et al. [2013], which was already used in
Sec. 4. It is assumed that the number of rows/columns of the used matrices can be deduced at
compile time. Here cCells, k1, k2, κ denote material parameters, F is the deformation gradient and M
is a structural tensor describing the fiber directions of the interlobular septa 16. The functions i1
and i4 implement the first invariant ι1(F) = tr(F), resp. the first mixed invariant ι4(F,M) = tr(FM).

15The compared libraries provide different ways of computing derivatives in vector mode. Adept computes the adjoint
with respect to the Euclidean scalar product, CppAD computes the gradient and all others directly compute the directional
derivatives. Since all three approaches require the computation of the same values, the author considers these slightly
differing approaches worthy to compare.

16In adipose (fat) tissue anisotropic properties are mainly attributed to the interlobular septa, a network of long fibrous
collagen bundles, see. Sommer et al. [2013].
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C++ code
1 template <class Matrix>
2 auto adiposeTissueModel(double cCells, double k1, double k2,
3 double kappa, const Matrix& M, const Matrix& F,
4 int n = dim<Matrix>()) {
5 using namespace FunG;
6 using namespace FunG::LinearAlgebra;
7
8 auto aniso = kappa*i1(F) + ( 1 - 3*kappa ) * i4(F,M) - 1;
9 auto materialLaw = cCells*( i1(F) - n ) + (k1/k2) * ( exp(k2*pow<2>(aniso)) - 1 );

10
11 return finalize( materialLaw( strainTensor(F) ) );
12 }
13
14 auto f = adiposeTissueModel(cCells,k1,k2,kappa,M,F);

Observe that no specific variable is associated with the unknown F. In this case the call to
finalize yields a simplified interface. For some deformation F, the point of evaluation can be
changed via:

C++ code
1 f.update(F);

Access to function value and derivatives, with perturbations dF0, dF1, dF2, is given through:

C++ code
1 auto value = f();
2 auto firstDerivative = f.d1(dF0);
3 auto secondDerivative = f.d2(dF0,dF1);
4 auto thirdDerivative = f.d3(dF0,dF1,dF2);

Avoidance of the template class Variable enables another function that may be convenient.
Namely a call to finalize adds the additional member function:

C++ code
1 template < class Arg >
2 auto operator()( Arg&& x ) {
3 update( std::forward<Arg>( x ) );
4 return operator()();
5 }

Thus it is also possible to write

C++ code
1 auto value = f(F);

instead of

C++ code
1 f.update(F);
2 auto value = f();

6.2 An example with two variables

In this example we consider a function that takes a scalar and a matrix-valued argument:

f (x,M) =
√

x ∗ tr(M).

To generate f we use the following code:
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C++ code
1 #include ‘‘fung.hh’’
2
3 template <class Matrix>
4 auto myFunction(double initialX , const Matrix& initialM) {
5 using namespace FunG;
6 using FunG::LinearAlgebra::trace;
7
8 auto x = variable<0>(initialX);
9 auto M = variable<1>(initialM);

10
11 return finalize( sqrt(x)*trace(M) );
12 }
13 ...
14 f = myFunction(1.,M0);

Then, for scalar variables x, dx1, dx2 and matrix-valued variables M, dM we can change the point
of evaluation via:

C++ code
1 f.template update<0>(x);
2 f.template update<1>(M);

Access to the function value and its derivatives is given through:

C++ code
1 double value = f();
2 double df_dx = f.template d1<0>(dx1);
3 double df_dM = f.template d1<1>(dM);
4 double ddf_dMdx = f.template d2<1,0>(fM,dx1);
5 double dddf_dxdxdM = f.template d3<0,0,1>(dx1,dx2,dM);

6.3 A model for nonlinear heat transfer

Nonlinear partial differential equations require another feature, the possibility to use different
types associated to the same variable, such as representations of the value and gradient of a
variable. A popular example for these problems are models of nonlinear heat transfer such as the
following:

A(u,∇u) = (1 + |u|2)∇u

When computing A′(u,∇u)δu, then both u and ∇u must be taken into account. For this we need
to assign the same variable id to both value and gradient:

C++ code
1 #include ‘‘fung.hh’’
2
3 template <class Scalar, class Vector>
4 auto heatModel(const Scalar& u0, const Vector& du0) {
5 using namespace Fung;
6
7 auto u = variable<0>(u0); // state variable
8 auto du = variable<0>(du0); // gradient variable , both with id 0
9

10 return finalize( ( 1 + pow<2>(u) )*du );
11 }
12
13 auto f = heatModel(u0,du0);

To work with this kind of model arguments must be packed into tuples. Then, for a variable u
with gradient du we can change the point of evaluation via:
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C++ code
1 f.template update<0>( std::make_tuple(u,du) );

Similarly, for a perturbation v with gradient dv, we get:

C++ code
1 double value = f();
2 double df_dx = f.template d1<0>( std::make_tuple(v,dv) );
3 ...

Note that different types for v and dv are required. Thus, this does not directly work for higher
order ODE problems17.

7 Conclusion

In this paper a library for the generation of invariant-based models and complex mathematical
functions was presented. Exploiting features of C++11/14 a highly generic and still simple
implementation is provided, admitting the computation of derivatives with respect general vector
space elements, such as scalar, vector- or matrix-valued variables.

As building blocks for more complex functions FunG contains several mathematical functions
from cmath as well as a large set of principal, mixed and modified matrix invariants. Moreover an
arbitrary number – within the limits of the system architecture – of unknowns of different types
can be used.

With the help of automatic type deduction complicated template-techniques are not exposed
to users. This enables FunG to provide a small, intuitive and easily extensible interface. The
optimization strategies of Sec. 4 as well as strict application of modern C++-techniques and SOLID
principles, cf. Martin [2009], admit the generation of highly efficient code. This was demonstrated
by the examples in Sec. 5.

17For the next version, there is an extension planned that admits to directly use gradient variables of the same type as
the state.
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8 Download and installation

Both, the current stable version (1.3.2) and the master branch can be accessed from

http://lubkoll.github.io/FunG or https://github.com/lubkoll/FunG.

Aiming at high quality, re-usable code, FunG was developed using continuous integration18 and
extensive unit testing with the Google C++ test framework, cf. Sen [2010]19.

FunG is licensed under the GNU General Public License v3.0 (GPL v3). For compilation a C++-
compiler with support for the following features of C++14 are required:

• decltype(auto) and

• the type traits aliases with trailing “_t”.

For installation go to the root directory of FunG and issue the following commands20:

• mkdir build

• cd build

• cmake ..

• make install

To compile and run the unit tests issue the following commands in the build directory:

• make

• ctest (--verbose)

18https://travis-ci.org/lubkoll/FunG
19For test coverage see https://coveralls.io/github/lubkoll/FunG.
20Since FunG is header-only the make install command only copies the header files to the installation directory.
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Abstract: We present our effort to extend and complement the core modules of the Distributed
and Unified Numerics Environment DUNE (http://dune-project.org) by a well tested and
structured collection of utilities and concepts. We describe key elements of our four modules
dune-xt-common, dune-xt-grid, dune-xt-la and dune-xt-functions, which aim at further
enabling the programming of generic algorithms within DUNE as well as adding an extra layer of
usability and convenience.

1 Introduction

Over the past decades, numerical approximations of solutions of partial differential equations
(PDEs) have become increasingly important throughout almost all areas of the natural sciences.
At the same time, research efforts in the field of numerical analysis, computer science and
approximation theory have led to adaptive algorithms to produce such approximations in an
efficient and accurate manner: by now, for a large variety of PDEs advanced approximation
techniques are available, such as wavelet methods [27], spectral methods [14], radial basis functions
[8] and in particular grid-based discretization techniques such as Finite Volume and continuous or
discontinuous Galerkin methods [10].

Focusing on the latter class, there exist a variety of open source and freely available PDE software
frameworks with a strong scientific background, such as deal.ii [2], DUNE [4, 3], Feel++ [26],
FreeFem++ [16], Fenics [20] and libMesh [19]. We consider the C++-based Distributed and Unified
Numerics Environment (DUNE), which consists of the core modules dune-common, dune-geometry,
dune-grid, dune-istl [6, 7] and dune-localfunctions1, complemented by the discretization
frameworks dune-fem [9, 12], dune-gdt2 and dune-pdelab [5].

DUNE yields highly efficient programs, is fairly well documented and has a large developer and
user base with a strong background in numerical analysis and scientific computing. However,
since it is mainly targeted at researchers and centered around code efficiency, it has a steep learning
curve and lacks some convenience features. In addition, despite enabling flexible numerical

∗The author gratefully acknowledges funding by the DFG SPP 1648 “Software for Exascale Computing”
under contract OH 98/5-1.

1All available under http://dune-project.org.
2https://github.com/dune-community/dune-gdt
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schemes and providing an exceptionally powerful and generic grid concept, it does not allow for
generic algorithms at all times, as detailed further below. To remedy this situation we propose a
family of DUNE extension modules.

This paper is organized as follows: Section 2 gives a brief overview of dune-xt and presents our
testing framework which is used in all modules. The remaining sections each give an in-depth
discussion of one of the DUNE modules which make up dune-xt.

2 The dune-xt project

The dune-xt project aims to provide an extra layer of usability and convenience to existing
DUNE modules and at the same time to enable programming of generic algorithms, in particular
in the context of discretization frameworks. It consists of the four modules dune-xt-common,
dune-xt-grid, dune-xt-la and dune-xt-functions (which we refer to as dune-xt), which are
detailed throughout this paper.

We complement our discussion with extensive code listings and examples, which are not necessarily
meant to be directly usable (for instance, we shall omit the main() in C++ code and frequently drop
the Dune:: namespace qualifier to improve readability). In addition we provide references to code
locations, where “dune/foo/bar.hh” denotes the location of a file within the dune-foomodule and
“dune/xt/foo/bar.hh” denotes the location of a file within the dune-xt-foomodule. However, we
do not provide individual references for elements of the C++ standard template library, which are
prefixed by std::.3

Since the main goal of dune-xt is to provide a solid infrastructure, it does not ship examples for
the usage of all of its parts. Thus, we often refer to the generic discretization toolbox dune-gdt4

for examples and motivation.

2.1 Code availability

The dune-xtmodules are open source software and freely available on GitHub: https://github.
com/dune-community/.5 They are mainly developed by T. Leibner, R. Milk and F. Schindler with
contributions from A. Buhr, S. Girke, S. Kaulmann, B. Verfürth and K. Weber, amounting to roughly
43.000 lines of code at the time of writing. All modules are dual licensed under a BSD 2-Clause
License6 or any GPL-2.0+ License7 with linking exception8, thus being license-compatible to
DUNE. We refer to the supplementary material, which contains a snapshot of the dune-xt-super9

module which bundles together all required dependencies and the dune-xtmodules described in
this paper.

2.2 Testing

Testing code and exposing it to as many different circumstances as possible is an extremely
important part of software development, especially given the templated nature of DUNE and the
large amount of provided grid managers. In order to actually take a burden off the developer, tests
have to be executed automatically in a reliable manner on each published code change, should
be carried out in as many different configurations as possible, and reports of test failure have
to be delivered to the developer responsible for the change. In this section we describe the test
procedure that is used in dune-xt.

3We refer to http://en.cppreference.com/ instead.
4https://github.com/dune-community/dune-gdt
5See Section 2.2 on why we cannot make use of https://gitlab.dune-project.org/.
6http://opensource.org/licenses/BSD-2-Clause
7http://opensource.org/licenses/gpl-license
8http://www.dune-project.org/license.html
9https://github.com/dune-community/dune-xt-super
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For testing, we use the Google C++ Testing Framework10 (Gtest) in combination with the DUNE
module dune-testtools11, introduced in [18]. Further, we use Travis CI12 to automatically run
tests on each push to the code repository.

Gtest is a testing library for C++ code of the xUnit family [22]. It provides assertion macros that
make it very easy to write tests. Assertions can be non-fatal, such that the test will continue to run
and output failure information if an assertion fails. This allows for the detection of several faults
in one test cycle. Gtest uses fixtures, “recipies” for parametrization, setup and teardown of tests,
to make tests run independently of each other. Fixture classes allow to use the same configuration
for several different tests and to share code between tests, minimizing the effort needed for writing
and maintaining tests. Still, objects for each test are created only for that specific test and not
shared between tests, which prevents hard-to-reproduce failures due to interacting tests.

We often want to run the same test for several related (template) classes. For this purpose,
Gtest supports type parameterized test fixtures. The desired types have to be collected in the
testing::Types struct and passed to a test macro that automatically runs the test for all types.
However, constructing a large Types struct with permutations or products of type tuples is
inconvenient. Moreover, Gtest currently only supports up to 50 types per test13 which is frequently
exceeded in dune-xt. Consider the following class from dune-xt-functions, which represents a
scalar-, vector-, or matrix-valued constant function f : Rd

→ Rr×c

C++ code
1 template <class E, class D, size_t d, class R, size_t r, size_t rC>
2 class ConstantFunction;

and suppose we want to test the ConstantFunction class for all combinations of dimensions d, r, rC
∈ {1, 2, 3} and domain and range field types D, R ∈ {float, double}. This adds up to 22

· 33 = 108
different specialized ConstantFunction classes that would have to be manually written in the test
code. Each time we want to add another field type or higher dimensions, a lot of specializations
have to be manually added. In addition, macros are necessary to circumvent the 50 types limit of
Gtest complicating the test code even more.

To circumvent these problems, we use the dune-testtools module which provides tools for
system testing in DUNE. Among other features, dune-testtools makes it easy to create tests
with dynamic and static variations. The configuration is done by providing a meta ini file that
contains the possible variations (see Listing 1).

Code Listing 1: Meta ini file for test configuration
1 d = 1, 2, 3 | expand
2 r = 1, 2, 3 | expand
3 rC = 1, 2, 3 | expand
4 D = float, double | expand
5 R = float, double | expand
6 grid = SomeGridImplementation <{D}, {d}> | expand
7 E = {grid}::Codim<0>::Entity
8
9 [__static]

10 FUNCTIONTYPE = ConstantFunction <{E}, {D}, {d}, {R}, {r}, {rC}>

The expand command tells dune-testtools to create all possible values of the corresponding key,
the curved brackets make dune-testtools paste the content of the embraced variable. FUNCTIONTYPE
can be used like a preprocessor define in the associated C++ test code. Provided the meta ini file and
the C++ test file, dune-testtools creates 108 executables which each test a single specialization of

10https://github.com/google/googletest
11https://gitlab.dune-project.org/quality/dune-testtools
12https://travis-ci.org/
13https://github.com/google/googletest/blob/master/googletest/include/gtest/internal/
gtest-type-util.h
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Figure 1: Travis integration with Github gives visual feedback for automatic tests (failing: left,
succeeding: right), in particular to keep the workload for library developers at a minimum when
handling code changes and contributions.

ConstantFunction. Adding another field type or higher dimensions is as simple as adding it to the
meta ini file without modifying the test code at all. In addition, dynamic variations, i.e. parameters
that are provided at runtime and not at compile time, can easily be added in a similar way, see [18].

Besides the reduced code complexity, this setup also makes it easier to debug tests as one can see
at a glance which types are failing and debug only the associated tests. Creating an executable
per tested type instead of testing all types in one executable using the Types struct greatly reduces
memory consumption during compilation. As a downside we see increased total compile times.
Depending on the available build infrastructure this can be offset by the greater available parallelism
in building the test, resulting in more but smaller binaries.

Writing the tests is only the first step. Even the most comprehensive test suite is useless without
getting regularly executed. We therefore continuously test each module on every update of the
module’s code repository using the Travis CI infrastructure (Travis)14, whose use is free of charge
for open source projects. Relying on Google’s Compute Engine15 and following the setup specified
in the module’s .travis.yml file Travis provides us with a highly flexible environment to run our
test suites in. Using Travis’ “build matrix“16 feature our test suites are run with a diverse setup of
available DUNE modules, from the minimal set of hard dependencies specified in each dune.module

file to the full set of suggested ones, as well as different compilers (currently gcc 4.9 and 5.3 and
clang 3.7). Travis offers tight integration with Github17 pull requests (see Figure 1) and branches,
each of which gets automatically tested whenever new commits get added, with visual on-page
and email feedback. This is one of the main reasons why we host our modules on Github. In our
opinion the prompt and automatic feedback on the validity of code contributions, with reasonably
high coverage, is of enormous value to the development process.

3 The dune-xt-common module

Just like dune-common, we provide a common infrastructure in dune-xt-common with minimal
dependencies, which is used throughout the other modules.

3.1 Improved handling of dense containers

dune-common contains the FieldVector18 and FieldMatrix19 classes, which model small dense vectors
and matrices of fixed size (in particular used for coordinates, affine reference maps and function
evaluations). These containers are implemented to provide maximum performance, but lack some
convenience features. In particular the lack of certain operators and contructors make it difficult

14https://travis-ci.org/dune-community
15https://cloud.google.com/compute/
16https://docs.travis-ci.com/user/customizing-the-build/#Build-Matrix
17https://github.com
18dune/common/fvector.hh
19dune/common/fmatrix.hh
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to write generic code. Consider, for instance, a generic string conversion utility (assuming T is a
matrix type):

C++ code
1 template <class T>
2 static inline T from_string(const std::string ss,
3 const size_t rows = 0,
4 const size_t cols = 0)
5 {
6 T result(rows, cols); // <- does not compile for FieldMatrix
7 // ... fill result from ss
8 return result;
9 }

The above example does compile if T is a DynamicMatrix20, but not if T is a FieldMatrix, which makes
it extremely difficult to write generic code. And while it is clear that constructing a FieldMatrix of
fixed size M×N is not sensible for other values of rows and cols, the construction in line 6 should be
possible for rows = M and cols = N (throwing an appropriate exception otherwise).

In order to allow for generic algorithms we provide templated VectorAbstraction and Matrix-
Abstraction classes in dune/xt/common/{matrix,vector}.hh (along with specialization for all sensible
vector and matrix classes), which allow for generic creation of and access to matrices and vectors.
Additionally, we provide is_vector and is_matrix traits, which allow to rewrite the above example:

C++ code
1 #include <dune/xt/common/matrix.hh>
2 #include <dune/xt/common/type_traits.hh>
3
4 using namespace Dune::XT::Common;
5
6 template <class T>
7 static inline typename std::enable_if<is_matrix<T>::value, T>::value
8 from_string(const std::string ss, const size_t rows = 0, const size_t cols = 0)
9 {

10 auto result = MatrixAbstraction<T>::create(rows, cols);
11 // ... fill result from ss using MatrixAbstraction < T >::set_entry(...)
12 return result;
13 }

It is thus possible to use from_stringwith matrices of different type:

C++ code
1 #include <dune/common/fmatrix.hh>
2 #include <dune/common/dynmatrix.hh>
3
4 auto fmat = from_string<Dune::FieldMatrix<double, 2, 2>>("[1. 2.; 3. 4.]");
5 auto dmat = from_string<Dune::DynamicMatrix<double>>( "[1. 2.; 3. 4.]");

In particular, one can use it with any custom matrix implementation by providing a specialization
of MatrixAbstractionwithin the user code:

C++ code
1 class CustomMatrix { /* user provided matrix implementation */ };
2
3 struct MatrixAbstraction<CustomMatrix> { /* implement specialization */ };
4
5 auto cmat = from_string<CustomMatrix>("[1. 2.; 3. 4.]");

20dune/common/dynmatrix.hh
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Based on these abstractions we provide many generic implementations in dune-xt. For instance,
we provide an extension of the FloatCmp21 mechanism from dune-common (see Section 3.4) for any
combination of vectors (which allows for the same syntax as its counterpart in dune-common, see
Section 3.4):

C++ code
1 #include <dune/common/dynvector.hh>
2 #include <dune/xt/common/float_cmp.hh>
3
4 std::vector< double > svector({1., 1.});
5 Dune::DynamicVector< double > dvector(2, 1.);
6
7 Dune::XT::Common::FloatCmp::eq(svector, dvector);

3.2 Improved string handling and Configuration

As already hinted at above, we provide the string conversion utilities

C++ code
1 template< class T >
2 static inline T from_string(const std::string ss,
3 const size_t size = 0, const size_t cols = 0);
4
5 template< class T >
6 static inline std::string to_string(const T& ss);

in dune/xt/common/string.hh. These can be used with any basic type as well as with all matrices and
vectors supported by the abstractions from Section 3.1. We use standard notation for vectors ("[1
2]") and matrices ("[1 2; 3 4]"), see the previous paragraph for examples. The from_string function
takes optional arguments which determine the size of the resulting container (for containers of
dynamic size), where 0 means automatic detection (the default).

Based on these string conversion utilities, we provide an extension of dune-common’s Parameter-
Tree22 in dune/xt/common/configuration.hh: the Configuration class. The Configuration is derived from
ParameterTree and can thus be used in all places where a ParameterTree is expected. While it also adds
an additional layer of checks (in particular regarding provided defaults), report and serialization
facilities, one of its main features is to allow the user to extract any type that is supported by
the string conversion facilities. Given a sample configuration file in .ini format (for example the
default configuration required to create a cubic grid using the factory methods discussed below),

Code Listing 2: Contents of the cube_gridprovider_default_config() in dune-xt-grid
1 type = xt.grid.gridprovider.cube
2 lower_left = [0 0 0 0]
3 upper_right = [1 1 1 1]
4 num_elements = [8 8 8 8]
5 num_refinements = 0
6 overlap = [1 1 1 1]

we can query the resulting Configuration object config for the types supported by the ParameterTree,

C++ code
1 auto num_refinements = config.get<int>("num_refinements");

as well as for all types supported by our string conversion utilities (including custom matrix and
vector types as explained in the previous paragraph):

21dune/common/float_cmp.hh
22dune/common/parametertree.hh
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C++ code
1 auto lower_left = config.get<FieldVector<double, dimDomain>>("lower_left");

The above is valid for all 0 ≤ dimDomain≤ 4, due to the automatic size detection of from_string.

3.3 Timings

Getting information about how long certain portions of an application take to run is crucial
to guide optimization efforts. It can also be useful to estimate the entire loop execution time
from the first couple of loops and of course for benchmarking parts of or an entire application
for different parameters. Mature and generally simple to use tools exist, both commercial (e.g.,
Intel VTune23, Allinea Map24) and free (e.g., Vagrind/Callgrind25, Oprofile26), that allow very
fine-grained performance analysis of a given code, down to function or even instruction level. It is
however very hard or impossible to measure custom, arbitrary sections of code with these tools
and to present those measurements in an easily understood format. The dune-common module
provides a straightforward implementation of a Timer27 class that relies on std::system_clock to
measure expired walltime. This is enough for simple needs, but we extend on this concept with
the Timings and related classes in dune/xt/common/timings.hh, because measuring user and system
time can be greatly insightful and having a centralized managing facility with its own output
capabilities is much easier for the user. The global Timings instance keeps a map of named sections
and associated TimingData objects. The user can start/stop sections manually or use a guard object
to start a timing at object construction and stop it when the guard object goes out of scope:

Code Listing 3: Timing example
1 using namespace Dune::XT::Common;
2 timings().start("sec");
3 for (auto i : value_range(5)) {
4 ScopedTiming scoped_timing("sec.inner");
5 busywait(i * 200);
6 }
7 timings().stop("sec");
8 busywait(1000);
9 auto file = make_ofstream("example.csv");

10 timings().output_all_measures(*file);

Internally TimingData expands on Timer by measuring wall, system and user time between start and
stop concurrently using a boost::timer::cpu_timer28. Timings has a couple of output_* functions that
all write data in the Comma Separated Values (CSV) format and which distinguish themselves
from one another in which measures are produced and whether averages, minima and maxima
are calculated over MPI-ranks. We chose the CSV format for our output because it enables post
processing and analysis by a wide variety of tools, e.g. Pandas [21] or matplotlib [17].

Code Listing 4: example.csv
1 threads,ranks,sec_avg_usr ,sec_max_usr ,sec_avg_wall ,sec_max_wall ,

sec_avg_sys ,sec_max_sys ,sec.inner_avg_usr ,sec.inner_max_usr ,
sec.inner_avg_wall ,sec.inner_max_wall ,sec.inner_avg_sys , sec.inner_max_sys

2 8,1,2050,2050,2050,2050,0,0,2050,2050,2050,2050,0,0

23https://software.intel.com/en-us/intel-vtune-amplifier-xe
24http://www.allinea.com/products/map
25http://valgrind.org/info/tools.html#callgrind
26http://oprofile.sourceforge.net/
27dune/common/timer.hh
28http://www.boost.org/doc/libs/1_58_0/libs/timer/doc/cpu_timers.html#Class-cpu_timer
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3.4 Extending Float Comparison

Floating point operations are not always exact, so using operator== to compare primitive floating
point types may yield unwanted results. To avoid this problem, dune-common provides functions eq,
ne, gt, lt, ge and le in the namespace Dune::FloatCmp to approximately compare floating point numbers.
There are three variants of approximate comparisons (absolute, relativeWeak and relativeStrong)
implemented in dune-common. The absolute compare style checks two floating point numbers a
and b for equality by

|a − b| ≤ εabs,

where εabs is a specified tolerance parameter. This works well for numbers that are neither too
small nor too large, but two numbers with absolute values lesser than εabs will always be specified
as equal while for large numbers the gap between two adjacent floats may become greater than
εabs rendering the result the same as with ==. The compare styles relativeWeak

|a − b| ≤ εrel max(|a| , |b|)

and relativeStrong
|a − b| ≤ εrel min(|a| , |b|)

use a tolerance parameter that is scaled with the numbers and thus are suitable for a wide
range of numbers. However, problems occur if one of the numbers is zero. Thus, we provide a
fourth compare style numpy in dune/xt/common/float_cmp.hh that is equivalent to the implementation
in numpy.isclose29. Here, both an absolute tolerance εabs and a relative tolerance εrel are chosen and
the numbers a, b are considered equal if

|a − b| ≤ εabs + εrel |b| .

This allows for an absolute comparison (with a sufficiently small εabs) near 0 and a relative
comparison elsewhere and is thus the default compare style in dune-xt-common. Note that this
comparison is not symmetric with respect to a, b, so XT::Common::FloatCmp::eq(a,b)may not be the
same as XT::Common::FloatCmp::eq(b,a) in some cases. The absolute, relativeWeak and relativeStrong
compare styles are also supported by dune-xt-common and can be chosen by providing a template
parameter to the comparison functions.

Often we rather want to compare vectors of floating point numbers instead of scalar values. This
could be done by looping over the components of the vectors and comparing them one by one,
which is inconvenient for the user. dune-xt-common has built-in support for vector comparisons, i.e.
one can compare any two vectors as long as there are VectorAbstractions (see Section 3.1) available
for both vector types. In particular, std::complex and vectors containing std::complex values are
supported.

4 The dune-xt-gridmodule

The dune-xt-gridmodule builds on dune-grid and dune-xt-common to provide powerful con-
cepts to improve performance (such as the EntityInlevelSearch and the Walker) or to allow for generic
algorithms (such as the GridProvider).

4.1 Searching the grid

A typical task within a PDE solver is to prolong discrete function data from one discrete function
space onto another one (that is usually associated with a finer grid). Without a direct, one-to-
one identification mapping of degrees of freedom (DoF) available (think of different discrete
functions stemming from dune-fem and dune-pdelab), this requires identifying those entities in
the source space where the source function should be evaluated in quadrature points defined

29http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.isclose.html

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



Extending DUNE: dune-xt 201

with respect to the range space. With the EntityInlevelSearch we provide a means to that end in
dune/xt/grid/search.hh for arbitrary grids, as long as the range grid covers a subset of the physical
domain of the source grid.

C++ code
1 template <class GridViewType , int codim = 0>
2 class EntityInlevelSearch : public EntitySearchBase<GridViewType>
3 {
4 // not all types shown
5 public:
6 EntityInlevelSearch(const GridViewType& gridview)
7 : gridview_(gridview)
8 , it_last_(gridview_.template begin<codim>())
9 {}

10
11 template <class PointContainerType>
12 EntityVectorType operator()(const PointContainerType& points);
13
14 private:
15 const GridViewType gridview_;
16 IteratorType it_last_;
17 };

It is modeled after the HierarchicSearch30 in dune-grid, with the extension that instead of finding
one Entity for one point at a time we allow searching for a sequence of points (via operator())
and return a sequence of entities accordingly. As another improvement the implementation
remembers the last search position on the source grid across search calls. This greatly improves
the performance over the naive implementation of restarting the search for every operator() in case
of equivalent grids.

4.2 Providing generic access to grid views and grid parts

There exists an unfortunate disagreement between dune-grid and dune-fem, whether grid views
or grid parts are to be used to model a collection of grid elements, which makes it hard to implement
generic algorithms. Think of some code which needs to create a LevelGridView or LevelGridPart,
depending on the further use for a discrete function space implemented via dune-pdelab or
dune-fem:

C++ code
1 #include <dune/fem/gridpart/levelgridpart.hh>
2
3 template <class GridType>
4 void create_level(GridType& grid, const int lv) {
5 // either ?
6 auto level_view = grid.levelGridView(lv);
7 // or ?
8 Dune::Fem::LevelGridPart<GridType> level_part(grid, lv);
9 // ...

10 }

In dune/xt/grid/gridprovider.hhwe thus provide the GridProvider, the purpose of which is to hold a
the grid object and to allow for a generic creation of grid views and grid parts to ultimately allow
for generic code despite the above mentioned disagreement:

C++ code
1 template <class GridType>
2 class GridProvider
3 {
4 // not all methods and types shown ...

30dune/grid/utility/hierarchicsearch.hh
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5 public:
6 std::shared_ptr<GridType>& grid_ptr();
7 GridType& grid();
8
9 template <Layers layer_type , Backends backend>

10 typename Layer<layer_type , backend>::Type layer(const int lv = 0);
11 };

Together with the Layers and Backends enum classes31, this allows to write generic code by passing a
grid provider along with the required tag:

C++ code
1 #include <dune/xt/grid/provider.hh>
2
3 using namespace Dune::XT::Grid;
4
5 template <class GridType , Backends backend>
6 void create_level(GridProvider<GridType>& grid_provider , const int lv) {
7 auto level_part_or_view = grid_provider.layer<Layers::level, backend>(lv);
8 // ...
9 }

We provide several factory methods to create a GridProvider (for instance make_cube_grid, which
creates grids of rectangular domains and make_dgf_grid and make_gmsh_grid, which either create grids
from the respective definition file). In addition, we provide a means to select a factory at runtime
using the GridProviderFactory struct, given the type of the grid G and a Configuration object config (for
instance using the default one for make_cube_grid, see Listing 2),

C++ code
1 #include <dune/xt/gridprovider.hh>
2
3 #using namespace Dune::XT::Grid;
4
5 auto grid_provider = GridProviderFactory<G>::create("xt.grid.gridprovider.cube",
6 config);

which is particularly useful in conjunction with configuration files or Python bindings.

4.3 Identification of domain boundaries

PDE solvers need to prescribe the solution’s behaviour on the boundary of the computational
domain. In general, there may exist a large number of different boundary conditions in any given
problem, and therefore any PDE solver needs to provide a way to identify parts of that domain
boundary and categorize them. Unfortunately, dune-grid does not provide such a mechanism.

This problem is tackled in dune-pdelab, for instance, by deriving from Dune::TypeTree::LeafNode32

and implementing the following methods:

C++ code
1 virtual bool isDirichlet(const IntersectionGeometryType& intersection_geometry ,
2 const FieldVector<D, d - 1>& coord) const;
3
4 virtual bool isNeumann(const IntersectionGeometryType& intersection_geometry ,
5 const FieldVector<D, d - 1>& coord) const;

31dune/xt/grid/layers.hh
32dune/typetree/leafnode.hh
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This approach is however limited to the boundary types defined in dune-pdelab and the user has
no means to extend this approach to other boundary type (one cannot just add a isCustomBoundary()
method to the interface).

We therefore propose a more flexible mechanism that is based on mapping the boundary category
to types derived from BoundaryType33.

C++ code
1 class BoundaryType
2 {
3 protected:
4 virtual std::string id() const = 0;
5
6 public:
7 virtual bool operator==(const BoundaryType& other) const
8 {
9 return id() == other.id();

10 }
11 };
12
13 class DirichletBoundary : public BoundaryType
14 {
15 protected:
16 virtual std::string id() const override final
17 {
18 return "dirichlet boundary";
19 }
20 };
21
22 class NeumannBoundary : public BoundaryType { /*...*/};
23
24 class RobinBoundary : public BoundaryType { /*...*/};

For a given grid view (and its type of intersection), access to the type of the boundary is granted
by the BoundaryInfo class concept

C++ code
1 template <class IntersectionType>
2 class BoundaryInfo
3 {
4 public:
5 virtual BoundaryType& type(const IntersectionType& intersection) const = 0;
6 };

based on which a PDE solver library (such as dune-gdt) can provide generic algorithms which act
only on parts of the domain boundary by checking

C++ code
1 if (boundary_info.type(intersection) == DirichletBoundary()) {
2 // ...
3 } else if (boundary_info.type(intersection) == NeumannBoundary()) {
4 // ....
5 } else
6 // ...

In addition, this concept can be easily extended by the user by simply deriving from BoundaryType.
As implementations of the BoundaryInfo concept, we currently provide:

• AllDirichlet and AllNeumann, the purpose of which is self-explanatory.

33dune/xt/grid/boundaryinfo/types.hh
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• NormalBased, which allows to identify boundary intersections by the direction of their outward
pointing normal.

In order to allow for problem definition classes to define domain boundaries independently of
the type of the grid, we also provide the BoundaryInfoFactory. User classes can hold a complete
description of one of the boundary infos from above in a Configuration instance. Given the type of
the grid (and thus the type of an intersection), one is then able to create an instance of one of the
implementations of the BoundaryInfo concept of correct type, as required:

C++ code
1 #include <dune/grid/yaspgrid.hh>
2 #include <dune/grid/sgrid.hh>
3 #include <dune/xt/common/configuration.hh>
4 #include <dune/xt/grid/boundaryinfo.hh>
5
6 using namespace Dune::XT::Common;
7 using namespace Dune::XT::Grid;
8
9 class Problem

10 {
11 public:
12 Configuration boundary_info_cfg()
13 {
14 Configuration config;
15 config["type"] = "xt.grid.boundaryinfo.normalbased";
16 config["default"] = "dirichlet";
17 config["neumann.0"] = "[ 1. 0.]";
18 config["neumann.1"] = "[-1. 0.]";
19 return config;
20 }
21 };
22
23 typedef typename Dune::YaspGrid<2>::LeafIntersection YI;
24 typedef typename Dune::SGrid<2, 2>::LeafIntersection SI;
25
26 Problem problem;
27 auto boundary_info_y = BoundaryInfoFactory<YI>::create(problem.boundary_info_cfg());
28 auto boundary_info_s = BoundaryInfoFactory<SI>::create(problem.boundary_info_cfg());

The type of boundary_info_y, for instance, is std::unique_ptr<BoundaryInfo<YI>>. Given a rectangular
domain inR2, it models a Neumann boundary left and right and a Dirichlet boundary everywhere
else.

4.4 Periodic Gridviews

Periodic boundary conditions are frequently used to model an infinite domain. To apply periodic
boundary conditions in the context of Finite Volume methods, intersections on the periodic
boundary have to be linked to the intersection on the opposite side of the (finite) grid. For Finite
Element methods, the indices of connected degrees of freedom (DoFs) on the boundary have
to be identified and suitable constraints applied. In any case, the implementation can be quite
time-consuming and cumbersome if there is no support from the underlying grid manager.

Support for periodic boundary conditions in DUNE is varying from grid to grid. YaspGrid supports
periodic boundaries using the parallel DUNE grid interface which requires the user to run a parallel
program. Several grid managers including dune-alugrid [1] and SPGrid [25] support periodicity
by gluing together edges of the unit cube [25]. While this allows to obtain the neighboring entity
of an intersection on the periodic boundary, DoFs still have to be modified by hand.

Regarding the uneven support for periodic boundary conditions in DUNE, we provide the
PeriodicGridView class in dune/xt/grid/periodic_gridview.hh which is derived from a given arbitrary
Dune::GridView. As long as the GridView models an axis-parallel hyperrectangle with conforming
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faces, it is enough to replace a GridView by the corresponding PeriodicGridView in existing code to
apply periodic boundary conditions (see Listing 5). This is internally achieved by replacing the
IndexSet and iterators and the corresponding methods (begin, end, ibegin, iend, size and indexSet) of
the GridView by periodic variants, utilizing the search capabilities from Section 4.1. The remaining
methods are forwarded to the underlying GridView. Periodic directions can be specified by supplying
a std::bitset (see Listing 5). By default, all directions are made periodic.

Code Listing 5: Usage of PeriodicGridView
1 using namespace Dune::XT::Grid;
2 GridViewType grid_view = grid.leafGridView();
3 std::bitset<3> periodic_directions(std::string("100")); // periodic in z-direction
4 PeriodicGridView<GridViewType> periodic_grid_view(grid_view , periodic_directions);
5 // use periodic_grid_view from here on to apply periodic boundary conditions ...

The PeriodicIntersectionIterator that can be obtained by the ibegin and iend methods returns a
PeriodicIntersection when dereferenced. The PeriodicIntersection behaves exactly like the non-
periodic Intersection except that it returns neighbor()== true and an outside() entity on the periodic
boundary. The outside() entity is the entity adjacent to the periodically equivalent intersection, i.e.,
the intersection at the same position on the opposite side of the domain. The indexSet()method
returns a PeriodicIndexSet which assigns the same index to entities that are periodically equivalent.
Hence, the PeriodicIndexSet is usually smaller than the corresponding IndexSet. The begin and end
methods of PeriodicGridView return a PeriodicIteratorwhich visits only one of several periodically
equivalent entities.

Note that there existed a similar but independently developed class PeriodicGridPart in dune-fem
that contained a periodic index set but no periodic intersections. Unfortunately, the PeriodicGridPart
was removed in the dune-fem release 1.2..

4.5 Walking the grid

Since we are considering grid-based numerical methods, we frequently need to iterate over the
elements t ∈ τh of a grid view. In order to minimize the amount of required grid iterations, we
want to be able to carry out N operations on each grid element, as opposed to walking the entire
grid N times. We thus provide in dune/xt/grid/walker.hh the templated Walker class, working with
any GridView (from dune-grid) or GridPart (from dune-fem):

C++ code
1 template <class GridViewType>
2 class Walker
3 {
4 // not all methods and types shown ...
5 public:
6 void add(Functor::Codim0<GridViewType>& functor/*, ... */);
7 void add(Functor::Codim1<GridViewType>& functor/*, ... */);
8 void add(Functor::Codim0And1<GridViewType>& functor/*, ... */);
9

10 void walk(const bool use_tbb = false);
11 };

The user can add an arbitrary amount of functors to the Walker, all of which are then locally executed
on each grid element. Each functor is derived from one of the virtual interfaces Functor::Codim0,
Functor::Codim1 or Functor::Codim0And1, for instance

C++ code
1 template <class GridViewType>
2 class Codim0
3 {
4 public:
5 typedef typename XT::Grid::Entity<GridViewType>::Type EntityType;
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6
7 virtual void prepare() {}
8 virtual void apply_local(const EntityType& entity) = 0;
9 virtual void finalize() {}

10 };

where prepare (and finalize) are called before (and after) iterating over the grid, while apply_local
is called on each entity of the grid. The user might note here the usage of traits from
dune/grid/{entity,intersection}.hh to extract required information from a GridView or GridPart in
a generic way. Each add method of the Walker accepts an additional argument which allows to
select the elements and faces the functor will be applied on. For instance, in the context of a
discontinuous Galerkin discretization in dune-gdt we want to apply local coupling operators on
all inner faces of the grid and local boundary operators on all Dirichlet faces of the grid. Presuming
we were given suitable implementations of these local operators as functors and a BoundaryInfo
object in the sense of the previous paragraph, the following would realize just that:

C++ code
1 #include <dune/xt/grid/walker.hh>
2
3 using namespace Dune::XT::Grid;
4
5 Walker<GV> walker(grid_view);
6 walker.add(coupling_operator , new ApplyOn::InnerIntersectionsPrimally<GV>());
7 walker.add(boundary_operator , new ApplyOn::DirichletIntersections<GV>(boundary_info));
8 // add more, if required...
9 walker.walk()

The use of the new keyword will not create memory leaks here as the pointer is wrapped into a
std::unique_ptr in the addmethod of the walker. Note that the walkmethod allows to switch between
a serial and a shared memory parallel iteration over the grid, at runtime (via the use_tbb switch).
In particular, the user only has to provide implementations of the functors and need not deal with
any parallelization issues (or different types of grid walkers, depending on the parallelization
paradigm).

5 The dune-xt-lamodule

As discussed (Section 3.1), dune-common provides small dense vectors and matrices which are,
e.g., used for coordinates. In addition, any PDE solver requires large vectors and (usually sparse)
matrices to represent assembled functionals and operators stemming from the underlying PDE.
Linear algebra containers are a performance critical aspect of any discretization framework and
one usually does not want to bet on a single horse: there exists external backends which are well
suited for serial and shared memory parallel computations (such as EIGEN[15]) while others are
more suited for distributed memory parallel computations (such as dune-istl). Neither is fitting
for every purpose and we thus require a means to exchange the implementation of matrices and
vectors depending on the circumstances. This calls for abstract interfaces for containers and linear
solvers, which we provide within the dune-xt-lamodule.

5.1 Generic linear algebra containers

We chose a combination of static and dynamic inheritance for these interfaces, allowing for
virtual function calls that act on the whole container (such as scal) while using the “Curiously
recurring template patterns” (CRTP, see [11]) paradigm for methods that are called frequently
(such as access to individual elements in loops), allowing the compiler to optimize performance
critical calls (for instance by inlining). We provide a thread-safe helper class CRTPInterface in
dune/xt/common/crtp.hh along with thread-safe CHECK_...macros for debugging, as the tools provided
in dune/common/bartonnackmanifcheck.hhmay not work properly in a shared memory parallel program.
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All matrices and vectors are derived from ContainerInterface34:

C++ code
1 template <class Traits, class ScalarType = typename Traits::ScalarType>
2 class ContainerInterface
3 : public CRTPInterface<ContainerInterface<Traits, ScalarType>, Traits>
4 {
5 // not all methods and types shown ...
6 public:
7 typedef typename Traits::derived_type derived_type;
8
9 // Sample CRTP implementation:

10 inline void scal(const ScalarType& alpha)
11 {
12 // as_imp() from CRTPInterface performs a static_cast into derived_type.
13 // Thus, scal() of the derived class is called.
14 CHECK_AND_CALL_CRTP(this->as_imp().scal(alpha));
15 }
16 inline void axpy(const ScalarType& alpha, const derived_type& xx);
17 inline derived_type copy() const;
18
19 // Default implementation:
20 // could be overriden by any derived class.
21 virtual derived_type& operator*=(const ScalarType& alpha)
22 {
23 scal(alpha);
24 return this->as_imp();
25 }
26 };

The ContainerInterface enforces just enough functionality to assemble a linear combination of
matrices or vectors, which is frequently required in the context of model reduction (compare [24]).
Given an affine decomposition of a parametric matrix or vector B, we need to assemble

∑Q−1
q=0 θqBq

for given component containers Bq and scalar coefficients θq. The following generic code will
work for any matrix or vector type C derived from ContainerInterface:35

1 #include <dune/xt/la/container/container-interface.hh>
2
3 using namespace Dune::XT::LA;
4
5 template <class C>
6 typename std::enable_if<is_container<C>::value, C>::type
7 assemble_lincomb(const std::vector<C>& components ,
8 const std::vector<double>& coefficients)
9 {

10 auto result = components[0].copy();
11 result *= coefficients[0];
12 for (size_t qq = 1; qq < components.size(); ++qq)
13 result.axpy(coefficients[qq], components[qq]);
14 return result;
15 }

All containers in dune-xt-la are implemented with “copy-on-write” (COW) [23, 190-194]. Im-
plementing data sharing among entities with data duplication only occurring if an entity tries
to modify the referenced data is a well established and common technique in Computer Science.
This pattern (also sometimes denoted as “lazy copy”) typically incurs minimal runtime overhead
for the required reference counting for the great benefit of being able to pass around copies of
an entity without immediate expensive memory copies. Since all container implementations in
dune-xt-la are proxy classes that forward operations to the respective backend instances, we

34dune/xt/la/container/container-interface.hh
35Note the use of the is_container traits in line 6 that we provide in dune/la/container/container-interface.hh.

Together with std::enable_if, this checks that C is derived from ContainerInterface at compile time.
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insert the COW logic into the backend call, which is then used throughout the class to access the
backend (in addition to allowing the user to directly access the underlying backend):

C++ code
1 BackendType& backend()
2 {
3 ensure_uniqueness();
4 return *backend_;
5 }

The backend_ is simply a std::shared_ptr<BackendType> on which the ensure_uniqueness method can
query the current status by a call to unique and perform the deep copy, if required. Note that due
to COW and move semantics for all matrices and vectors in dune-xt-la, the only deep copy in
Listing 5.1 is actually done in line 11 (neither in line 10 nor in line 14)

Based on ContainerInterface we provide the VectorInterface36 for dense vectors and the Matrix-
Interface37 for dense and sparse matrices. Each derived vector class has to implement the methods
size, add_to_entry, set_entry and get_entry_ref, which allow to access and change individual entries of
the vector. The interface provides default implementations for all relevant mathematical operators,
support for range-based for loops and many useful methods, such as dot, mean, standard_deviation
and l2_norm, just to name a few.

Each derived matrix class has to implement rows, cols, add_to_entry, set_entry and get_entry to allow
for access to individual entries, mv for matrix/vector multiplication and clear_row, clear_col, unit_row
and unit_col, which are required in the context of solving PDEs with Dirichlet Constraints or
pure Neumann problems. Every matrix implementation (even a dense one) is constructible from
the same type of sparsity pattern (which we provide in dune/xt/la/container/pattern.hh) and the
access methods ..._entry are only required to work on entries that are contained in the pattern.
The interface provides several mathematical operators, norms and a means to obtained a pruned
matrix (where all entries close to zero are removed from the pattern).

We also provide several vector and matrix implementations:

• The CommonDenseVector and CommonDenseMatrix in dune/xt/la/container/common.hh, based on the
DynamicVector and DynamicMatrix from dune-common. These are always available.

• The EigenDenseVector, EigenMappedDenseVector, EigenDenseMatrix and EigenRowMajorSparseMatrix in
dune/xt/la/container/eigen.hh, based on the EIGEN package (if available). The EigenMappedDense-
Vector allows to wrap an existing double* array and the EigenRowMajorSparseMatrix allows to
wrap existing matrices in standard CSR format, which allows to wrap other container
implementation (for instance in the context of Python bindings).

• The IstlDenseVector and IstlRowMajorSparseMatrix in dune/xt/la/container/istl.hh, based on
dune-istl (if available).

To allow for generic algorithms we also provide the Backends enum class along with the default_
backend, default_sparse_backend and default_dense_backend defines (which are set depending on the
build configuration). These can be used in other libraries and user code to obtain suitable containers
independently of the current build configuration.

Consider, for instance, an L2 projection of a function f : Ω → R onto a discontinuous Galerkin
discrete function space defined on a grid view τh modeling Ω. Given local basis functions ϕt

i ,

36dune/xt/la/container/vector-interface.hh
37dune/xt/la/container/matrix-interface.hh
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0 ≤ i < I of such a space on each entity t ∈ τh, the local DoF vector f t
h ∈ R

I of the projected discrete
function is given as the solution of the linear system

L2t
· f t

h = lth, with
(
L2t)

i, j
:=

∫
t
ϕt

iϕ
t
j and

(
lth
)

i
:=

∫
t

fϕt
i . (1)

The problem of assembling and solving (1) is a typical situation within any PDE solver. In
dune-gdt, for instance, (1) is roughly assembled as follows, given a local basis and an appropriate
quadrature:

C++ code
1 #include <dune/xt/la/container.hh>
2
3 using namespace Dune::XT::LA;
4
5 typedef typename Container<double, default_dense_backend>::MatrixType LocalMatrixType;
6 typedef typename Container<double, default_dense_backend>::VectorType LocalVectorType;
7
8 // ... on each grid element
9 LocalMatrixType local_matrix(local_basis.size(), local_basis.size(), 0.);

10 LocalVectorType local_vector(local_basis.size(), 0.);
11 LocalVectorType local_DoFs(local_basis.size(), 0.);
12
13 // ... at each quadrature point, given evauations of the local basis as basis_values
14 // and of the source function as source_value
15 for (size_t ii = 0; ii < local_basis.size(); ++ii) {
16 local_vector[ii] += integration_element * quadrature_weight
17 * (source_value * basis_values[ii]);
18 for (size_t jj = 0; jj < local_basis.size(); ++jj) {
19 local_matrix.add_to_entry(ii, jj,
20 integration_element * quadrature_weight
21 * (basis_values[ii] * basis_values[jj]));
22 }
23 }

Note that we neither have to manually specify the correctly matching matrix and vector types nor
to include the correct headers (which depend on the current build configuration). The Container
traits together with any of the default_... defines always yields appropriate available types (lines
1, 5, 6).

5.2 Runtime selectable solvers

In order to determine the local DoF vector in the above example, we need to solve the algebraic
problem: find local_DoFs, such that

local_matrix · local_DoFs = local_vector.

In addition to such small, dense problems we also require the inversion of large (sparse) system
and product matrices. For interesting large and real-world problems, however, there are few linear
solvers available which can be used as a black box (if at all). Most problems require a careful
choice and detailed configuration of the correct linear solver. We thus require access to linear
solvers which can be used in a generic way but also exchanged and configured at runtime.

In dune/xt/la/solver.hhwe provide such solvers via the Solver class:

C++ code
1 template <class MatrixType>
2 class Solver
3 {
4 // simplified variant
5 public:
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6 Solver(const MatrixType& matrix);
7
8 static std::vector<std::string> types();
9

10 static Configuration options(const std::string type = "");
11
12 template <class RhsType, class SolutionType>
13 void apply(const RhsType& rhs, SolutionType& solution) const;
14
15 template <class RhsType, class SolutionType>
16 void apply(const RhsType& rhs, SolutionType& solution,
17 const std::string& type) const;
18
19 template <class RhsType, class SolutionType>
20 void apply(const RhsType& rhs, SolutionType& solution,
21 const Configuration& options) const;
22 };

We provide specializations of the Solver class for all matrix implementations derived from
MatrixInterface (see the previous paragraph). To continue the example from the previous paragraph,
this allows to determine the local DoF vector of the L2 projection:

C++ code
1 #include <dune/xt/common/exceptions.hh>
2 #include <dune/xt/la/solver.hh>
3
4 try {
5 XT::LA::Solver<LocalMatrixType>(local_matrix).apply(local_vector , local_DoFs);
6 } catch (XT::Exceptions::linear_solver_failed& ee) {
7 DUNE_THROW(Exceptions::projection_error ,
8 "L2 projection failed because a local matrix could not be inverted!\n\n"
9 << "This was the original error: " << ee.what());

10 }

The above example shows a typical situation within the library code of dune-gdt: we need to
solve a small dense system for provided matrices and vectors of unknown type. We can do so
by instantiating a Solver and calling the black-box variant of apply (line 5). This apply variant is
default implemented by calling

C++ code
1 apply(rhs, solution, types()[0]);

where types() always returns a (non-empty) list of available linear solvers for the given matrix type,
in descending priority (meaning the first is supposed to “work best”). For instance, if local_matrix
was an EigenDenseMatrix, a call to types()would reveal the following available linear solvers:

1 {"lu.partialpiv", "qr.householder", "llt", "ldlt", "qr.colpivhouseholder",
2 "qr.fullpivhouseholder", "lu.fullpiv"}

On the other hand, if the matrix was an EigenRowMajorSparseMatrix, a call to types()would yield
1 {"bicgstab.ilut", "lu.sparse", "llt.simplicial", "ldlt.simplicial",
2 "bicgstab.diagonal", "bicgstab.identity", "qr.sparse",
3 "cg.diagonal.lower", "cg.diagonal.upper", "cg.identity.lower",
4 "cg.identity.upper"}

Given a (large sparse) system_matrix (for instance stemming from a discretized Laplace operator)
and rhs vector, we can solve the corresponding linear system using a specific solver by calling

C++ code
1 #include <dune/xt/la/solver.hh>
2
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3 XT::LA::Solver<SystemMatrixType> linear_solver(system_matrix);
4 linear_solver.apply(rhs, solution, "ldlt.simplicial");

The above call to apply is default implemented by calling

C++ code
1 apply(rhs, solution, options(type));

where options(type) always returns a Configuration object with appropriate options for the selected
type. With type = "ldlt.simplicial", for instance, we are implicitly using the following options
(which are the default for "ldlt.simplicial"):

1 type = ldlt.simplicial
2 post_check_solves_system = 1e-5
3 check_for_inf_nan = 1
4 pre_check_symmetry = 1e-8

All implemented solvers default to checking whether the computed solution does actually solve
the linear system and provide additional sanity checks. We make extensive use of exceptions
if any check is violated, which allows to recover from undesirable situations in library code (as
shown in the example above). We also provide our own implementation of the DUNE_THROWmacro
in dune/xt/common/exceptions.hhwhich replaces the macro from dune-common and can be used with
any Dune::Exception. Apart from a different formatting (and colorized output), it also provides
information of interest in distributed memory parallel computations.

The "ldlt.simplicial" solver, for instance, does only work for symmetric matrices and we thus
check the matrix for symmetry beforehand (which can be disabled by setting "pre_check_symmetry" to
0). Each type of linear solver provides its own options, which allow the user to fine-tune the linear
solver to his needs. For instance, the iterative "bicgstab" solver with "ilut" preconditioning accepts
the following options (in addition to "post_check_solves_system" and "check_for_inf_nan", which are
always supported):

C++ code
1 #include <dune/xt/la/solver.hh>
2
3 XT::LA::Solver<SystemMatrixType> linear_solver(system_matrix);
4 auto options = linear_solver.options("bicgstab.ilut");
5
6 options["max_iter"] = 1000;
7 options["precision"] = "1e-14";
8 options["preconditioner.fill_factor"] = 10;
9 options["preconditioner.drop_tol"] = "1e-4";

10
11 linear_solver.apply(rhs, solution, options);

The actually implemented variant of Solver in dune-xt-la also takes a communicator as an optional
argument, to allow for distributed parallel linear solvers. We provide several implementations
of such parallel solvers based on dune-istl. A linear solver for IstlRowMajorSparseMatrix, for
instance, supports the following types(), most of which can be readily used in distributed parallel
environments:

C++ code
1 {
2 #if !HAVE_MPI && HAVE_SUPERLU
3 "superlu",
4 #endif
5 "bicgstab.amg.ilu0", "bicgstab.amg.ssor", "bicgstab.ilut",
6 "bicgstab.ssor", "bicgstab"
7 #if HAVE_UMFPACK
8 , "umfpack"

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



212 Leibner, Milk, Schindler

9 #endif
10 }

6 The dune-xt-functionsmodule: Local and localizable functions

A correct interpretation of data functions and a correct handling of analytical and discrete functions
is an important part of every PDE solver. Given a domain Ω ⊂ Rd and a grid view τh of this domain,
one is usually not interested in considering a function f : Ω → R, but rather its local function
f t := f |t ◦ Φt with respect to a grid element t ∈ τh, where Φt : t̂→ t denotes the reference mapping
from the respective reference element t̂ to the actual element t, as provided by dune-grid.For
simplicity’s sake we only present the scalar case here, but he same concepts apply to vector- and
matrix-valued functions, as implemented in dune-xt-functions. This allows to compute integrals
in terms of quadratures from dune-geometry and shape functions from dune-localfunctions
defined on the reference elements of a grid. In addition, one is interested in “localized derivatives”
of f , for instance its localized gradient ∇t ft := ∇ f ◦Φt. While the localized gradient of a function does
not coincide with the gradient of a local function it is an important tool to preserve the structure of
an integrand, when transformed to the reference elements for integration. Using the chain rule,
we obtain for the latter ∇ f t = ∇( f ◦Φt) = (∇ f ◦Φt)∇Φt, while the following holds for the former:
∇t f t = ∇ f ◦Φt = ∇( f ◦Φt)(∇Φt)−1 = ∇ f t(∇Φt)−1.

Consider for instance the following integral arising in the weak formulation of a Laplace operator,
which is transformed to the reference element t̂, where a, ϕ and ψ denote scalar functions and
Λ2

t := |det(∇Φt⊥
∇Φt)|: ∫

t
(a∇ψ) · ∇ϕ =

∫
t̂
Λt

(
(a ◦Φt)(∇ψ ◦Φt)

)
· (∇ϕ ◦Φt).

Using the definition of a local function and a localized gradient, the above is equivalent to

. . . =

∫
t̂
Λt (at

∇tψ
t) · ∇ϕt, (2)

which nicely preserves the structure of the original integrand.

For a given grid view τh, we thus call a function localizable with respect to τh, if there exists a local
function with localized derivatives for each element of the grid view. These functions form the
discontinuous space of locally polynomial functions with varying polynomial degree,

Q(τh) :=
{

q : Ω→ R
∣∣∣ ∀t ∈ τh ∃k(t) ∈N, such that qt

∈ P̂k(t)(t)
}
,

where P̂k(t) denotes the set of polynomials q : t̂→ R of maximal order k. Note that in the context
of integration, the polynomial degree of the integrand is limited by the availability of suitable
quadratures and always finite in practical computations. Thus, even functions such as f (x) = sin(x)
can in practical computations only be represented by surrogates f ≈ f̃ ∈ Q(τh). Consequently, the
space Q(τh) presents a common space for all functions, including analytically given data functions
and, most importantly, discrete functions of any discretization framework.

This concept allows for a generic discretization framework such as dune-gdt, where all operators,
functionals, projections and prolongations are implemented in terms of localizable functions. Thus,
a Laplace operator which locally realizes (2) can be used to assemble a system or product matrix,
where ψt and ϕt are basis functions of a discrete function space, or to compute the norm of any
combination of analytical or discrete functions, in which case ψt and ϕt model the corresponding
local functions. In dune-xt-functions, we provide interfaces and implementations to realize this
concept of localizable functions and local functions (not to be confused with shape functions from
dune-localfunctions) and for the remainder of this section we discuss the realization of these
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concepts in dune-xt-functions. A similar effort has been undertaken in the dune-functions
module [13], independently of our work. Since both efforts share the same mathematical basis it is
planned to make dune-xt-functions compatible to dune-functions in future work.

Given a grid element t ∈ τh, we model a collection of (scalar-, vector- or matrix-valued) local
functions ϕt : t̂→ Rr×c, for r, c ∈N (where t̂ denotes the reference element associated with t) by
the LocalfunctionSetInterface in dune/xt/functions/interfaces.hh:

C++ code
1 template<class EntityType ,
2 class DomainFieldType , size_t dimDomain ,
3 class RangeFieldType , size_t dimRange, size_t dimRangeCols = 1>
4 class LocalfunctionSetInterface
5 {
6 // not all methods and types show ...
7 public:
8 virtual const EntityType& entity() const
9

10 virtual size_t size() const = 0;
11 virtual size_t order() const = 0;
12
13 virtual void evaluate(const DomainType& xx, std::vector<RangeType>& ret) const = 0;
14 virtual void jacobian(const DomainType& xx,
15 std::vector<JacobianRangeType>& ret) const = 0;
16 };

The template parameter EntityType models the type of the grid element t ∈ τh, the parameters
DomainFieldType and dimDomain model Rd

⊃ t while RangeFieldType, dimRange and dimRangeCols model
Rr×c.38 The resulting DomainType is a FieldVector<DomainFieldType, dimDomaim>, while RangeType and
JacobianRangeType are composed of FieldVector and FieldMatrix, depending on the dimensions. Each
set of local functions has to report its polynomial order and size. The methods evaluate and jacobian
expect vectors of size size() for ret.

Note that we use a combination of static polymorphism, to fix the type of the grid and all dimension
at compile time, and dynamic polymorphism, which allows to exchange functions of same grid
and dimensions at runtime.

By implementing all operators and functionals in terms of LocalfunctionSetInterface, a discretization
framework can realize the above claim of unified handling of analytical and discrete functions.
This is for instance the case in dune-gdt, where the local bases of discrete function spaces are
realized as implementations of LocalfunctionSetInterface. In addition, we also provide an interface
for individual local functions, which can be used by data functions and local functions of discrete
functions:

C++ code
1 template <class E, class D, size_t d, class R, size_t r, size_t rC>
2 class LocalfunctionInterface
3 : public LocalfunctionSetInterface<E, D, d, R, r, rC>
4 {
5 // not all methods and types shown ...
6 public:
7 virtual void evaluate(const DomainType& xx, RangeType& ret) const = 0;
8 virtual void jacobian(const DomainType& xx, JacobianRangeType& ret) const = 0;
9

10 virtual size_t size() const override final
11 {
12 return 1;
13 }
14 }

38As a shorthand, we write <E, D, d, R, r, rC> instead of <EntityType, DomainFieldType, dimDomain,
RangeFieldType, dimRange, dimRangeCols>.
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Alongside, we also provide the following interface for localizable functions which mostly act as
containers of local functions:

C++ code
1 template <class E, class D, size_t d, class R, size_t r, size_t rC>
2 class LocalizableFunctionInterface
3 {
4 // not all methods and types shown ...
5 public:
6 virtual std::string name() const;
7
8 virtual std::unique_ptr< LocalfunctionInterface<E, D, d, R, r, rC>>
9 local_function(const EntityType& entity) const = 0;

10 };

Based on this interface we provide visualization and convenience operators, allowing for

C++ code
1 (f - f_h).visualize(grid_view , "difference");

where fmay denote a localizable data function and f_hmight denote a discrete function, if both
are localizable with respect to the same grid_view. Expressions such as f - f_h, f + f_h or f*f_h yield
localizable functions via generically implemented local functions (if the dimensions allow it).

We also provide numerous implementations of LocalizableFunctionInterface in dune-xt-functions,
most of which can also be created using the FunctionsFactory39, given a Configuration:

• CheckerboardFunction in dune/xt/functions/checkerboard.hhmodels a piecewise constant function,
the values of which are associated with an equidistant regular partition of a domain. Sample
configuration for a function R2

→ R:
1 lower_left = [0. 0.]
2 upper_right = [1. 1.]
3 num_elements = [2 2]
4 values = [1. 2. 3. 4.]

• ConstantFunction in dune/xt/functions/constant.hhmodels a constant function. Sample configu-
ration for a function Rd

→ R2×2, for any d ∈N, mapping to the unit matrix in R2:
1 value = [1. 0.; 0. 1.]

• ExpressionFunction in dune/xt/functions/expression.hh models continuous functions, given an
expression and order at runtime (expressions for gradients can be optionally provided).
Sample configuration for f : R2

→ R2 given by (x, y) 7→ (x, sin(y)):
1 variable = x
2 order = 3
3 expression = [x[0] sin(x[1])]
4 gradient.0 = [1 0]
5 gradient.1 = [0 cos(x[1])]

Note that the user has to provide the approximation order, resulting in f being locally
approximated as a third order polynomial on each grid element.

• GlobalLambdaFunction in dune/xt/functions/global.hhmodels continuous functions by evaluating
a C++ lambda expression. Sample usage for f : R2

→ R given by (x, y) 7→ x:

C++ code
1 GlobalLambdaFunction< E, D, 2, R, 1 > f([](DomainType x){ return x[0]; },
2 1); // <- local polynomial order

39dune/xt/functions/factory.hh
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• Spe10::Model1Function in dune/xt/functions/spe10.hhmodels the permeability field of the SPE10
model1 test case, given the appropriate data file40.
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Abstract: We present FoamGrid, a new implementation of the Dune grid interface. FoamGrid
implements one- and two-dimensional grids in a physical space of arbitrary dimension, which
allows for grids for curved domains. Even more, the grids are not expected to have a manifold
structure, i.e., more than two elements can share a common facet. This makes FoamGrid the
grid data structure of choice for simulating structures such as foams, discrete fracture networks,
or network flow problems. FoamGrid implements adaptive non-conforming refinement with
element parametrizations. As an additional feature it allows removal and addition of elements
in an existing grid, which makes FoamGrid suitable for network growth problems. We show
how to use FoamGrid, with particular attention to the extensions of the grid interface needed
to handle non-manifold topology and grid growth. Three numerical examples demonstrate the
possibilities offered by FoamGrid.

1 Introduction

Various simulation problems are posed on domains that are not open subsets of a Euclidean
space. Frequently, such domains are surfaces or curves embedded in a higher-dimensional
Euclidean space. Equations on such domains, sometimes called geometric partial differential
equations, comprise diffusion and transport on the surface [Dziuk and Elliott, 2007b], flow prob-
lems [Nitschke et al., 2012, Reuther and Voigt, 2015], and phase-field equations [T. Witkowski,
2012]. Sometimes, movement of the surface itself is modeled [Dziuk and Elliott, 2007a], and this
movement may couple with processes on the surface [Gross and Reusken, 2011].

As an additional difficulty, some boundary value problems are posed on domains Ω that do not
even have the structure of a topological manifold. That is, not every point of Ω has a neighborhood
that is homeomorphic to an open subset of Rd. Figure 1 illustrates this: While the surface patch
on the left is locally homeomorphic to Euclidean space, the one in the middle is a T-junction, and
the one on the right is a touching point. Two-dimensional domains with such features appear in
applications like the simulation of closed-cell foams [Nammi et al., 2010], or networks of fractures
in rock mechanics [McClure and Horne, 2013, McClure et al., 2015]. Of considerable importance
are also one-dimensional networks embedded into a two- or three-dimensional Euclidean space.
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Figure 1: Computational domains might not be topological manifolds. Left: manifold; center:
T-junction; right: touching point

Figure 2: One- and two-dimensional network grids

They appear in models of traffic networks [Garavello and Piccoli, 2006], supply chains [D’Apice
et al., 2010], but also in simulations of biological systems like root networks [Dunbabin et al., 2013],
neural networks [Lang et al., 2011], or blood vessel networks [Cattaneo and Zunino, 2014a]. An
overview over flow problems on networks is given in [Bressan et al., 2014]. Figure 2 shows two
example domains for network problems.

Various discretization methods have been proposed for surface and network equations [Dziuk
and Elliott, 2013, Olshanskii et al., 2009]. Explicit discretizations, which are the focus of this work,
use a grid of the same dimension as the domain. For manifold surface grids it is reasonably
simple to generalize grid data structures to such a setting. The main hurdles are admitting that
the number of coordinates of a vertex can be different from the effective grid dimension, and
making sure that grids are not required to have a boundary. Several standard simulation codes
support such surface grids. We mention Alberta [Schmidt and Siebert, 2005] (standalone and as
part of Dune), AMDiS [Vey and Voigt, 2007], and FEniCS [Rognes et al., 2013]. Moreover, the
GeometryGrid Dune meta grid allows to embed any Dune grid into a Euclidean space of higher
dimension.

Grid data structures for non-manifold grids are more challenging. To handle T-junctions, for
example, the data structure must cope with the fact that element facets (i.e., edges in a 2d grid)
may have more than two neighbors (Figure 1). While this is not very difficult to implement, it
requires the introduction of additional data fields and logic, which is not used when the grid
happens to be a manifold. Since the latter case is predominant, such additional features mean
space and run-time overhead for most users. Therefore, standard grid data structures do not allow
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for non-manifold topologies. Numerical examples of processes on non-manifold topologies in the
literature are typically done using ad hoc implementations of the necessary grid data structures.

Unfortunately, using ad hoc implementations wastes a lot of human resources. While the domain
may be non-standard, many of the equations on network grids differ little from their Euclidean
counterparts. However, existing code like finite element assemblers for diffusion and transport
processes cannot be reused on ad hoc grid data structures. They require detailed knowledge of
the grid, and it is a challenge to port an existing assembler to a new grid data structure. Also,
since the data structure is ad hoc, it is difficult to reuse it in other contexts. In particular, it is
difficult to share it with other groups working in the same field.

The Dune software system (see www.dune-project.org and [Bastian et al., 2008b,a]) has found
an elegant solution for both problems. Dune is a set of open-source C++ libraries dedicated to
various aspects of finite element and finite volume methods. Its grid component, implemented in
the dune-grid module, specifies an abstract interface for computational grids. The specification
mandates what a data structure should be able to do to qualify as a Dune grid, and how this
functionality should be accessible from C++ code. Examples of such functionality include being
able to iterate over the elements and vertices, and getting the maps from the reference element
to the grid elements. Those parts of a numerical simulation code that use the grid, such as the
matrix assemblers or error estimators, are written to use only the abstract grid interface. Grid
data structures implementing this interface are then completely decoupled from the algorithms
that use them.

This decoupling has various interesting consequences. Using the Dune grid interface, it is easy
to swap a given grid implementation for another one. Indeed, in typical Dune applications the
C++ grid type is set once in the code, and handed around as a template parameter. Changing the
initial typedef and recompiling the code is usually sufficient to switch to an alternative grid data
structure. This possibility to easily switch between grid implementations allows to provide tailor-
made grid data structures for special simulation needs. For example, dune-grid itself provides
YaspGrid, the implementation of a structured grid with very little run-time and space overhead.
In contrast, UGGrid implements a very flexible unstructured grid with non-conforming and
red–green refinement.

In this paper we present FoamGrid, a new implementation of the Dune grid interface that is
dedicated to surface and network grids. Its main features are:

• FoamGrid implements one- and two-dimensional simplex grids embedded in a physical
Euclidean space of arbitrary dimension w. Hence, it targets geometric and surface PDEs.

• The grids do not need to have the structure of a topological manifold. Network configura-
tions like the ones in Figures 1 and 2 are supported.

• A FoamGrid can be adaptively refined. In the standard setup, refining a triangle results
in four coplanar triangles. Additionally, FoamGrid elements can be parameterized, i.e.,
they can be given a map that describes a nonlinear embedding of the element into Rw. As
the element gets refined more and more, its shape approaches the one described by the
parameterization (Figure 4).

• Finally, the domain of a FoamGrid can grow and shrink at run-time. Elements can be added
and removed even when there is no coarser “father” element, without invalidating the
grid data structure. Data can be transferred during this process. This allows to elegantly
simulate network growth and remodeling processes.

FoamGrid is available as a Dune module dune-foamgrid and is installed just like any other
Dune module. dune-foamgrid is free software, available under the either the LGPLv3+, or
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the GPLv2 with a linking exception clause. The git repository is publicly accessible at https:
//gitlab.dune-project.org/extensions/dune-foamgrid.git and contributions are welcome.

Using Dune and FoamGrid for simulations of network and surface PDE problems has a number
of important advantages. First of all, you do not have to implement the grid data structure
yourself. While not overly difficult, quite a bit of thought has gone into FoamGrid, which would
need work to be replicated. Then, since FoamGrid implements the Dune grid interface, large
amounts of existing application and infrastructure code can be used directly with FoamGrid.
This includes things like finite element spaces and assemblers, error estimators, and grid file
readers and writers. This advantage is demonstrated in particular by the numerical example in
Section 4.1, which required no additional coding at all to extend an existing planar code to a
network setting.

As a further advantage, once a user starts employing FoamGrid and the Dune grid interface, he
immediately has the power of all other Dune grid implementations at his disposal. All of these
are easily usable together with FoamGrid. Hence, e.g., in simulations that couple network grids
with background grids, several implementations of such background grids are readily available.
(Authors’s remark: the Dune extension module dune-grid-glue offers a convenient way to do the
coupling – www.dune-project.org/modules/dune-grid-glue). Since the Dune grid interface is
a well-established standard, it is easy to learn how to use FoamGrid. If a user already knows
Dune, there is little additional knowledge needed. Since FoamGrid is open source, sharing code
based upon it is particularly easy.

While FoamGrid has many interesting features, there is also a number of things it does not
currently support. For example, elements can only be simplices, and they must be one- or two-
dimensional. (The authors could not think of a use case for a higher-dimensional network grid.
Write us if you know one.) Adaptive grid refinement is currently non-conforming, which leads
to hanging nodes, and, possibly, to holes in the surface (Figure 5). Finally, the current FoamGrid
implementation is purely sequential, and FoamGrid objects cannot be distributed across several
processes. However, the development of FoamGrid is ongoing, and these features may appear
in later releases.

The present article is structured as follows. Chapter 2 briefly explains how to use FoamGrid.
Everything mentioned there is codified in the Dune grid interface specification, and hence you
can also read this chapter as an introduction to the use of the Dune grid interface. Chapter 3
then explains the special features that FoamGrid offers. In particular, these are support for
T-junctions, adaptive refinement with element parameterizations, and the ability to “grow”.
Finally, in Chapter 4 we give three numerical examples showcasing the different features of
FoamGrid. The first shows unsaturated flow through a two-dimensional fracture network using
finite elements. The second example shows h-adaptive, locally mass-conservative transport of
a therapeutic agent in a microvascular network using finite volumes. The third one models the
growth of plant root networks.

2 FOAMGRID and the DUNE grid interface

In this chapter, we start by describing the programmer interface of FoamGrid. FoamGrid im-
plements the Dune grid interface, hence in many central aspects, it can be used just like any
other Dune grid. This chapter focuses on these aspects. You can therefore also read it as a brief
review of the Dune grid interface. For more details, you may want to consult the Dune online
documentation and [Bastian et al., 2008b,a].

The central class of the FoamGrid grid implementation is

C++ code
1 template <int dim, int dimworld>
2 class FoamGrid;
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available from the header dune/foamgrid/foamgrid.hh. This class implements a hierarchical grid
as defined in [Bastian et al., 2008b, Def. 13], i.e., a coarse (or macro) grid, and element refinement
trees rooted in each of its elements. The first template parameter dim is the grid dimension d,
which must be either 1 or 2. The second template parameter dimworld is the dimension w of
the Euclidean embedding space. It must be equal to or greater than the grid dimension, but can
otherwise be arbitrary. For the rest of this article we use dim and dimworld in code examples, and
d and w in text to denote the dimensions of the grid and the physical space, respectively.

To construct FoamGrid objects, the FoamGrid class implements the entire Dune grid interface for
the setup of unstructured grids. In particular, the class GridFactory is implemented for FoamGrid.
Thus, all file-reading methods based on this interface are available. For example, files in the gmsh
format [Geuzaine and Remacle, 2015] can be read by using the line

C++ code
1 std::shared_ptr<FoamGrid<2,3> grid( GmshReader<FoamGrid<2,3>>::read("filename.msh") );

This will read the file named “filename.msh”, and set up a new FoamGrid<2,3> object with it.
The new grid object is returned in a shared pointer called grid. Note that vertex coordinates in
gmsh files always have three components, so reading a gmsh file into a FoamGrid<1,2> object will
discard the third entry. As a special feature, gmsh files can contain elements with polynomial
geometries of order up to five. While FoamGrid element geometries are always affine, FoamGrid
can use the higher-order geometries during mesh refinement (Section 3.3).

Writing FoamGrid objects to disk is equally straightforward. All Dune file writing codes rely on
the grid interface only, and can therefore be used with FoamGrid. For example, writing the object
pointed to by the grid shared pointer into a VTK file called my_filename.vtu can be achieved by
including the header dune/grid/io/file/vtk.hh from the dune-gridmodule, and writing

C++ code
1 typedef FoamGrid<2,3> GridType;
2 VTKWriter<GridType::LeafGridView> vtkWriter(grid->leafGridView());
3 vtkWriter.write("my_filename");

The resulting file can be visualized, e.g., with the ParaView software.

2.1 Elements and geometries

In Dune, finite element assembly typically takes place on the leaf elements of the refinement
trees. These elements form the leaf grid view, which encapsulates the notion of a textbook non-
hierarchical finite element grid. From a FoamGrid, the leaf grid view can be obtained in the usual
way, i.e.,

C++ code
1 auto foamGridLeafView = grid->leafGridView();

which already has been used in the VTK example above.

Access to grid elements and vertices is provided by the grid view. Elements can be iterated over
using begin/end-iterators

C++ code
1 for (auto it = foamGridLeafView.begin<0>();
2 it != foamGridLeafView.end<0>();
3 ++it)
4 {
5 // do something with the element in ’*it’
6 }
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where the number 0 specifies that the loop is to be over the grid elements (it is the codimension
of the grid elements with respect to the grid). Using the C++11 range-based-for syntax, the same
loop can be written more concisely

C++ code
1 for (const auto& element : elements(foamGridLeafView))
2 {
3 // do something with the element in ’element’
4 }

Similarly, a loop over all vertices of the grid is written as

C++ code
1 for (auto it = foamGridLeafView.begin<dim>();
2 it != foamGridLeafView.end<dim>();
3 ++it)
4 {
5 // do something with the vertex in ’*it’
6 }

In this code, the number dim (i.e., the grid dimension), specifies that the loop is to be over
the grid vertices, because vertices are zero-dimensional and hence have codimension dim in a
dim-dimensional grid. Alternatively, one can write

C++ code
1 for (const auto& vertex : vertices(foamGridLeafView))
2 {
3 // do something with the vertex in ’vertex’
4 }

The objects vertex and element (or *it in the iterator loops) are instances of what in Dune ter-
minology are called entities. Entities are implemented by the Entity interface class in dune-grid.
They provide topological information about the grid elements and vertices, like links to the cor-
ners vertices of an element, and to the father and descendant elements in the refinement tree. In all
these aspects, FoamGrid objects behave just like any other Dune grids. Furthermore, each element
entity provides a Geometry object, which represents the affine map F : Tref → T ⊂ Rw from the ref-
erence element Tref to the grid element T. This map provides the geometrical information needed
to assemble finite element and finite volume systems, like evaluation of F and its inverse F−1, the
inverse transposed Jacobian matrix ∇F−T, and the functional determinant J B

√

det∇FT∇F. Note
that since for surface grids the world dimension w is larger than the dimension of the reference
element Tref, the image of Tref under F is a set of measure zero inRw. In finite-precision arithmetic
the argument of the method implementing F−1 will typically not be in the domain of F−1. The
Geometry implementation of FoamGrid therefore extends F−1 to the entire space Rw. Given a
point x ∈ Rw not necessarily in T, FoamGrid computes a point ξ in the plane spanned by Tref such
that |F(ξ) − x| is minimized. The affine function F is tacitly extended from Tref to its entire affine
hull here.

To compute element fluxes, elements in a Dune grid provide a set of so-called intersections, which
relate elements to their neighbors. This mechanism is very flexible, and in particular handles
general non-conforming situations very well. Nevertheless, using grids for network domains
stretches the bounds of the current intersection concept, and some generalization is needed. We
have therefore dedicated a separate chapter to FoamGrid intersections (Chapter 3.1).

2.2 Attaching data to grids

Data is attached to FoamGrid objects in the same way as to other Dune grids. Each grid view
object can provide a corresponding IndexSet object
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C++ code
1 const auto& indexSet = foamGridLeafView.indexSet();

This index set provides an integer number for each entity (i.e., vertex, edge, or element) of the
grid view. For each dimension and reference element type, these numbers are consecutive and
start at zero. They can hence be used to address random-access containers holding the simulation
data. This approach is convenient, flexible, and efficient.

Data stored in arrays is lost if the grid changes, either by refinement (Section 2.3) or by grid
growth (Section 3.2). To preserve data across grid modifications, FoamGrid, just like any other
Dune grid, additionally provides a set of persistent numbers. These are obtained by an IdSet
object

C++ code
1 const auto& idSet = grid->localIdSet();

(remember that in our initial example the variable grid was a shared pointer to a FoamGrid).
Persistent numbers are neither consecutive nor restricted to start at zero, but they can be used to
access search trees or hash maps. Before modifying the grid, all simulation data must be copied
into such data structures, and copied back to arrays after the modification is completed. While
such copying is costly, its run-time is usually negligible compared to the cost of the actual grid
modification.

2.3 Adaptive refinement

FoamGrid supports red refinement (non-conforming refinement) of simplices, where each triangle
is split into four congruent smaller triangles. If a two-dimensional FoamGrid is refined locally,
then hanging nodes appear in the grid. Depending on the discretization used, this may or may
not be a problem. True red–green refinement, which avoids the hanging nodes, may appear in
later versions of FoamGrid.

Adaptive grid refinement in FoamGrid is controlled via the standard Dune grid interface. In a
first step the method

C++ code
1 bool mark (int refCount , const Codim<0>::Entity& element);

is used to mark an element element for refinement (refCount > 0) or coarsening (refCount
< 0). The method returns true if the element was successfully marked. The mark of an element
element can be obtained with the method

C++ code
1 int getMark (const Codim<0>::Entity& element) const;

which returns 1 for elements marked for refinement, -1 for elements marked for coarsening, and
0 for unmarked elements.

The grid is then modified in a second step with the methods

C++ code
1 bool coarsen = grid.preAdapt(); // true if at least one element
2 // will be coarsened
3 bool refined = grid.adapt(); // true if at least one element
4 // was refined
5 grid.postAdapt();

Between preAdapt() and adapt() it is possible to check the following flag
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T1
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Figure 3: Intersection between two elements T1 and T2. From its reference element Tref,i, there
are two maps to Tref,1 and Tref,2 (the reference elements of T1 and T2), respectively, and one to Rw.
These maps describe the shape of the intersection in T1, T2, and Rw, respectively.

C++ code
1 bool mightVanish = element.mightVanish(); // true if the element might
2 // vanish due to coarsening
3 // by grid.adapt()

Similarly, between adapt() and postAdapt() one can check the flag

C++ code
1 bool isNew = element.isNew(); // true if element was created by last
2 // call to adapt()

Both are useful to manage the transfer of data associated with the grid. As FoamGrid itself does
not store any associated data, the data transfer from the old grid to the adapted grid is managed
by the user. An example featuring adaptive refinement and coarsening is presented in Section 4.2.

3 Distinctive and novel features of the FOAMGRID implementation

The previous chapter has described those aspects where FoamGrid behaves just like any other
Dune grid. However, FoamGrid also has a few features that set it apart from most other Dune
grids. The present chapter is dedicated to those features.

3.1 Handling intersections in a non-manifold grid

The defining feature of FoamGrid is its capability to handle network grids, i.e., grids with a
non-manifold topology (Figures 1 and 2). In particular, more than two elements can meet in a
common vertex in a one-dimensional grid, and more than two triangles can meet in a common
edge in a two-dimensional grid.

Information about how a given element relates to its neighbors is essential for finite volume and
DG methods, or more generally all methods involving element boundary fluxes. For this, the
Dune grid interface provides the notion of intersections. In Dune terminology, an intersection is the
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set-theoretic intersection between the closures of two neighboring elements. Only intersections
that have positive (d − 1)–dimensional measure qualify as intersections in the Dune sense, and
those are equipped with a coordinate system, i.e., a map from a (d − 1)–dimensional reference
element Tref,i to the intersection (Figure 3). Note that if the grid is conforming, then intersections
will be geometrically the same as shared element faces. However, in general non-conforming
grids, intersections are only subsets of element faces.

Intersections provide all information needed to compute element boundary fluxes. In particular,
for each point on an intersection, you can get the vector n that is tangent to the element at that
point, and normal to the element boundary. Also, you get the embeddings of the intersection into
the two elements, in form of maps from the intersection reference element Tref,i to the element
reference elements Tref,tr (Figure 3). Those maps pick up the same ideas used to model element
geometries in Section 2.1. They are called geometry-in-inside and geometry-in-outside, respectively.

In C++ code, intersections are objects of type Intersection. For any given element (which is
then called the inside element), all its intersections with neighboring elements can be accessed
by traversing them with a dedicated iterator. Using range-based for syntax, a loop over all
intersections of the element called element is written as

C++ code
1 for (const auto& intersection : intersections(foamGridLeafView ,element))
2 {
3 // do something with ’intersection’
4 }

If you iterate over all intersections of all elements, then you will encounter each intersection
twice, but once with its role reversed. An exception are the intersections of elements with the
domain boundary, which also count as Dune intersections, but which are only accessible from
one element. See the dune-grid class documentation for the details on the user interface of the
Intersection class.

Unfortunately, the Dune intersection mechanism, as flexible as it is, is not flexible enough for
network grids. The original idea was that while elements may have more than one neighbor
across a given facet, there is (even in non-conforming situations) at most one neighbor at any
given point on that facet. This reflects the assumption that computational domains are expected
to be topological manifolds. At the time of writing, this assumption is still reflected in the grid
interface. In particular, the method

C++ code
1 bool neighbor() const;

(a public member of the Intersection class), informs whether there is a neighbor across a
given intersection. However, this information is insufficient in network grids, where even in a
conforming grid there may be an arbitrary number of neighbors meeting at a common intersection.
Finite volume and DG methods need access to this group of neighbors, to know how to distribute
the flux across this intersection.

For this reason the intersection concept and programmer interface is being revisited, and is likely
to undergo changes in the future to better support network grids. Changes to the Dune interface
can only be made in a democratic process, and it is therefore unclear at what point in time such a
change will happen.

Two different approaches have been proposed to the Dune grid development community. We
describe them both briefly here. The full proposal text is available at www.dune-project.org/
modules/dune-foamgrid.

The first approach tries to be as minimally invasive as possible. In particular, it retains the
notion of an intersection as an object that relates two elements. The extension consists of two
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semantic rules, and a change to the neighbormethod. The first of the semantic rules makes sure
that the “number of neighbors” across a given intersection is well-defined. Remember that the
geometry-in-inside is, roughly speaking, the intersection interpreted as a subset of the element T1.

Rule 1 For any two intersections of a given element T1, the geometries-in-inside are either disjoint or
identical.

With the number of neighbors properly defined, the neighbor method is generalized to return
this number instead of a yes/no answer:

C++ code
1 std::size_t neighbor() const;

The number of intersections with identical geometries-in-inside will be equal to the value returned
by neighbor() for each of those intersections. Note that this change is fully backward-compatible,
as intersections in a non-network grid will return either 1 or 0 here, which casts to the values true
or false as used previously.

The second semantic rule provides a way to find all intersections that share a common geometry-
in-inside. No additional interface method is added for this. Rather, it is guaranteed that all
such intersections appear consecutively when traversing the intersections with the intersection
iterator.

Rule 2 If more than one neighbor is reachable over a given geometry-in-inside, then all intersections for
this geometry-in-inside shall be traversed consecutively by the intersection iterator.

With this rule, groups of neighbors can be identified and used in flux computations.

The second approach is more radical, because it changes the idea of an intersection itself. Inter-
sections cease to be objects that relate pairs of elements. Rather, they now become objects that
relate groups of elements. As a consequence, each intersection still has only one geometry-in-
inside. However, for each intersection there is now more than one outside element, each with
corresponding geometry-in-outside and index-in-outside.

To access this information, more interface methods need to be changed. First of all, the neighbor
method needs to be changed as proposed above. Secondly the methods

C++ code
1 Entity outside () const;
2 LocalGeometry geometryInOutside () const;
3 int indexInOutside () const;

of the Intersection interface class need to be replaced by

C++ code
1 Entity outside (std::size_t i=0) const;
2 LocalGeometry geometryInOutside (std::size_t i=0) const;
3 int indexInOutside (std::size_t i=0) const;

respectively. Rather than returning the unique outside element or its geometry or index, the
methods must now return the corresponding quantity for the i-th outside element.

These changes are again fully backward-compatible. In grids without multiple intersections,
at most the 0-th outside element will be available. The default parameter ensures that this
intersection will be returned when the method is called without argument.

As an advantage, this proposal retains the rule that the geometries-in-inside must form a disjoint
partition of the element boundary (modulo zero-sets). Also, it is easier to attach data to such
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intersections, which is a feature that has been requested various times in the past. On the
downside, to iterate over all neighbors of an element, two nested loops are needed, instead of
only one. This will make some code a bit longer, and more difficult to read.

Both proposals are currently under discussion. However, even with the current status quo,
applications involving fluxes can be written for network domains. One-dimensional domains
are straightforward as there the intersections are a fortiori conforming (see Sections 4.2 and 4.3).
Two-dimensional networks need more trickery, but can also be made to work. Once either of the
proposed interface extensions has been officially accepted, implementations of such methods will
be much simpler.

3.2 Grid growth

A certain number of network problems is posed on domains that grow and/or shrink in the course
of the simulation. Examples are fracture growth processes and simulations of bone trabeculae
remodeling. To support such simulations, FoamGrid objects are allowed to grow and shrink,
i.e., elements can be added and removed from the grid at runtime. Finite element and finite
volume data is kept during such grid changes, using an approach much like the one used for
grid adaptivity. Of all Dune grids, FoamGrid is currently the only one to support this feature.
The programmer interface combines ideas from the GridFactory class to insert new vertices and
elements, with the adaptivity interface to allow to keep data across steps of grid growth.

Growth and shrinkage of grids is a two-step process. First, new elements and vertices are handed
to the FoamGrid object. These are not inserted directly; rather, they are queued for eventual
insertion. In addition, individual elements can be marked for removal. Once all desired elements
and removal marks are known to the grid, the actual grid modification takes place in a second
step.

Queuing elements for insertion and removal is controlled by three methods. The first,

C++ code
1 unsigned int insertVertex(const FieldVector<double,dimworld>& x);

queues a new vertex with coordinates x for insertion. The return value of the method is an index
that can be used to refer to this vertex when inserting new elements. The index remains fixed
until all queued elements are actually inserted in the grid (by the growmethod), but may change
during the execution of that method. Inserting elements is done using

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices);

which mimics the corresponding method from the GridFactory class. The argument type has
to be a simplex type, because (currently) FoamGrid supports only simplex elements. The array
vertices must contain the indices of the vertices of the new element to be inserted. These
can be either indices of existing vertices, or new indices obtained as the return values of the
insertVertexmethod.

Analogously a new element with a parametrization can be inserted by calling

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices,
3 const std::shared_ptr<VirtualFunction<
4 FieldVector<ctype,dim>,
5 FieldVector<ctype,dimworld>
6 > >& elementParametrization);
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Finally, the method

C++ code
1 void removeElement(const Codim<0>::Entity& element);

marks the given element for removal.

Once all desired elements are queued for insertion or removal, the actual grid modification takes
place in a second step. The grid is modified using the method

C++ code
1 bool elementsInserted = grid->grow(); // true if at least one element was inserted

While element removal is guaranteed, queuing elements does not assure that the element will
be inserted. New elements are restricted by the fact that Dune grids are hierarchic objects. The
vertices given by the user to form an element are always leaf vertices but may be contained in
different hierarchic levels. However, elements can only be constituted by vertices of the same
level. Therefore, new elements in FoamGrid are always inserted on the lowest possible level
substituting the given vertex by its hierarchic descendants or ancestors. Note that it is not
generally guaranteed that relatives of the given vertices on the same level can be found. In that
case, the element will not be inserted. The method grow will return true if it was possible to
insert at least one element.

After the call to grow, it is possible to check whether a given element has been created by the last
call to the growmethod:

C++ code
1 bool isNew = element.isNew(); // true if element was created by last growth step

which is a method of the interface class Entity<0>, i.e. elements. Observe that this is the same
method that returns whether an element has been created by grid refinement. Hence its semantics
depends on whether it is queried after a call to grow or after a call to adapt. Using this method is
helpful, e.g., when setting initial values and/or boundary conditions for newly created elements.

The growth is completed with the call

C++ code
1 grid->postGrow();

which removes all isNewmarkers.

Summing up, growing or shrinking the grid while keeping grid data consists of the following
steps. Note the relationship to grid adaptivity with data transfer.

1. Mark elements for removal; queue new vertices and elements for insertion.

2. Transfer all simulation data attached to the grid into an associative container indexed by
the entity ids described in Section 2.2.

3. Call grow().

4. Resize data array; copy data from the associative container into the array.

5. Set initial data at newly created elements and vertices and boundary conditions at newly
formed boundaries. Note that element removal always creates new boundaries.

6. Finalize by calling postGrow().
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Figure 4: Grid refinement with element parametrizations

While grid growth itself is straightforward, it is difficult to use in combination with adaptive
refinement. Grid refinement in Dune leads to hierarchical grids, which are forests of refinement
trees. Not every element of such a forest can be added or removed without violating certain
consistency conditions. In one-dimensional grids, there are relatively few problems, and grid
growth and refinement can be used together to good effect. For two-dimensional grids we have
tried to be as general as possible, but there are limits.

There are obstacles both to the removal of elements and to the insertion of new ones, if grid
refinement is involved. First of all, only leaf grid elements can be removed. There is no conceptual
problem with element removal if the element has no father. If it does have a father, however,
removing only a subset of its 2d sons is a violation of the Dune grid interface specification,
which mandates that the sons of an element must (logically) cover their father [Bastian et al.,
2008b, Def. 11.1]. Deliberately allowing this violation nevertheless appears to be the only viable
solution, as all other possibilities amount to only allowing the removal of large groups of elements,
which is rarely desired.

Inserting new elements into a refinement forest of elements is even more problematic, because
the new element needs to be assigned a level number in the hierarchy. Ideally, this level would
always be zero, because if the element had a larger level number it would be expected to have a
father. FoamGrid does violate this assumption if necessary, which does not lead to problems in
practice, unless multigrid-type algorithms are used. On the other hand, the element level must
be the same as the levels of all of its vertices. If the vertices are new, their levels can be freely
chosen. However, grid growth almost always involves vertices that already exist in the grid.
When trying to insert elements with vertices having different level numbers, FoamGrid currently
tries to replace existing vertices by their father vertices, to obtain a set of d+1 vertices on the same
level (which then determines the element level).

3.3 Element parametrizations

In a standard non-conforming red refinement algorithm, new vertices are placed at the edge
midpoints of refined elements. That way, while the grid gets finer and finer, the geometry of the
grid remains identical to the geometry of the coarsest grid. To also allow improvements to the
geometry approximation, FoamGrid can use element parametrizations. Each coarse grid element
T with reference element Tref of a FoamGrid can be given a map

ϕT : Tref → R
w,
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which describes an embedding of T into physical spaceRw. This does not influence the grid itself
— elements of a FoamGrid are always affine. However, when refining the grid, new elements
are not inserted at edge midpoints. Rather, for each new vertex which would appear at an edge
midpoint in standard refinement, the corresponding local position in its coarsest ancestor element
T is determined using the refinement tree. This position is then used as an argument for ϕT, and
the result is used as the position of the new vertex. That way, the grid approaches the shape
described by the parametrization functions ϕT more and more as the grid gets refined (Figure 4).

In dune-grid, element parametrizations are implemented as small C++ objects. These must
inherit from the abstract base class

C++ code
1 VirtualFunction<FieldVector<double,dim>,
2 FieldVector<double,dimworld> >;

declared in dune/common/function.hh.

One object of this type needs to be created for each element of the coarse grid. The base class has
a single pure virtual method

C++ code
1 virtual void evaluate(const FieldVector<double,dim>& x,
2 FieldVector<double,dimworld>& y) const = 0;

which implements the evaluation of ϕT. The first argument x is a position in local coordinates of
the corresponding coarse grid triangle. The result ϕT(x) is returned in the second argument y.

Element parametrizations are handed to the GridFactory during grid construction. Normally,
grid elements are entered using the method

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices);

of the GridFactory class. For parametrized elements, there is the alternative method

C++ code
1 void insertElement(const GeometryType& type,
2 const std::vector<unsigned int>& vertices,
3 const std::shared_ptr<VirtualFunction<
4 FieldVector<ctype,dim>,
5 FieldVector<ctype,dimworld>
6 > >& elementParametrization);

This inserts the element with vertex numbers given in the array vertices and an element
parametrization given by the object elementParametrization into the grid. The GmshReader
uses this method for some of the higher-order elements that can appear in gmsh grid files.

To see the effect of element parametrizations, Figure 4 shows an example where the coarsest grid
consists of only two triangles covering the domain Ω = [−1, 1]2

× {0}. As a parametrization we
use the global function

ϕ : R2
→ R3, ϕ

(
x1
x2

)
=

 x1
x2

0.2 · exp(−|x|) cos(4.5π|x|)

 , (1)

and each element parametrization ϕT first maps its local coordinates to R2, and then applies
the global function ϕ. Hence, upon refinement, the grid will approach the graph of the func-
tion (1). The code for this example is provided in the dune-foamgrid module itself, in the file
dune-foamgrid/examples/parametrized-refinement.cc.
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Figure 5: Adaptive refinement with element parameterizations leads to non-conforming geome-
tries

There is one pitfall when using element parametrizations together with non-conforming adaptive
refinement for two-dimensional grids. If a hanging node appears in the course of refinement,
the position of this node is determined by the parametrization functions of the corresponding
element, which is typically not the midpoint of the adjacent longer edge. As a consequence, the
grid will have holes wherever different refinement levels meet (Figure 5). While this may seem
surprising at first sight, it is nevertheless a logical consequence of the hanging nodes refinement.
The continuous domain is approximated by discontinuous grids, in direct correspondence to how
discontinuous FE functions may be used to approximate continuous PDE solutions.

The non-conforming geometry approximation shows another shortcoming of the current Dune
intersection concept. There, intersections are defined as set-theoretic intersections of (closures
of) neighboring elements. However, in the geometrically non-conforming situation, neighboring
elements do not actually intersect, and one can only speak of logical intersections. The practical
consequence of this is that intersections do not have a single well-defined shape in Rw anymore.
Rather, there are now two of them. This possibility to have two global element shapes is not
currently reflected by the Dune grid interface. In the current implementation of FoamGrid, the
method Intersection::Geometrywill always return the global shape of the intersection as seen
from the inside element.

3.4 Moving grids

Many interesting geometric PDE problems are posed on surfaces that change their shape over
time. Discretization of such PDEs can require a surface grid that can move and deform during
a simulation (see, e.g., [Dziuk and Elliott, 2007a]). FoamGrid caters to such applications by
providing a method that allows to reset the position of any grid vertex at any time. This method
is a public member of the FoamGrid class and has the signature

C++ code
1 void setPosition(const Traits::Codim<dimgrid>::Entity& vertex,
2 const FieldVector<ctype, dimworld>& pos);

It will reset the position of the vertex given in vertex to the position given in pos.

While setPosition can be called for grid vertices on any level, it is really only advisable to call it
for vertices from the leaf grid view. Recall that in a globally or locally refined Dune grid, copies
of the same vertex exist on different refinement levels. The setPosition method will set the
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Figure 6: Grid for a discrete fracture network, courtesy of Patrick Laug. The network and grid
were generated using the software described in [Borouchaki et al., 2000].

position of any ancestor and descendant vertices of the argument vertex to the position given in
the pos argument. That way, the grid hierarchy remains consistent, and the grid will not “move
back” to its original shape after eventual coarsening. However, this only works if setPosition is
called for the leaf vertices.

4 Numerical examples

We close the article with three numerical examples. These show how seemingly challenging
algorithms can be implemented with ease using the FoamGrid grid manager.

4.1 Unsaturated Darcy flow in a discrete fracture network

For our first example we simulate unsaturated Darcy flow through a network of two-dimensional
fractures embedded intoR3. We only consider the flow in the network itself, but FoamGrid can be
easily coupled to higher-dimensional background grids using the dune-grid-gluemodule [Bas-
tian et al., 2010, Engwer and Müthing, 2016].

Let the computational domain Ω be the union of a finite number of closed, bounded hypersurfaces
inR3. We use the Richards equation to model the flow in Ω [Bear, 1988]. That is, we suppose that
the state of the system in a time interval [0,T] can be described by a scalar pressure head

p : Ω × [0,T]→ R.

From the pressure head, the volumetric water content θ and relative permeability kr can be
computed using the Brooks–Corey and Burdine parameter functions

θ(p) =

θm + (θM − θm)
( p

pb

)−λ
for p ≤ pb

θM for p ≥ pb,
kr(θ) =

(
θ − θm

θM − θm

)3+ 2
λ

,

where θm, θM, pb, and λ are scalar parameters. The water content θ satisfies the Richards equation

∂
∂t
θ(p) + div v(x, p) = 0, v(x, p) = −K f (x) kr(θ(p))∇(p + z). (2)

For simplicity we suppose that the flow is purely driven by the boundary conditions, and omit
the gravity term z.
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Equation (2) is a quasilinear equation in the pressure head p. In [Alt and Luckhaus, 1983] (see also
[Berninger et al., 2011]) it was shown how the Kirchhoff transformation can be used to transform
it to a semilinear equation for a generalized pressure

u : Ω × [0,T]→ R, u(x, t) = u(p(x, t)) B
∫ p

0
kr(θ(q(x, t))) dq.

We discretize this equation in time using an implicit Euler method, and in space using first-
order Lagrangian finite elements. The resulting weak discrete spatial problem can be written as
a minimization problem for a strictly convex functional. At each time step, we determine the
minimizer of this functional by a monotone multigrid method [Berninger et al., 2011].

For the implementation we used the code used for the numerical examples in [Berninger et al.,
2011]. Since vertex-based finite elements were used for the discretization, no changes to the
numerical algorithm were needed to also apply it to network grids. Originally, the code used
the Dune libraries and the UGGrid grid manager for unstructured grids. Even though the code
for [Berninger et al., 2011] was not written with network flow problems in mind at all, it could
nevertheless be reused as is, after only a handful of trivial bugfixes. The only changes necessary
were replacing the line

C++ code
1 typedef UGGrid<2> GridType;

by

C++ code
1 typedef FoamGrid<2,3> GridType;

and adjusting the boundary data specification. This once more proves the point that using the
Dune grid interface gives great flexibility, and allows code to do more things than planned by the
original authors.

We present an example simulation using an artificially created network grid. The grid, which
can be seen in Figure 6, was created by Patrick Laug using the fracture network grid generator
described in [Borouchaki et al., 2000]. The grid spans the volume [−6.5, 6.5]2

× [−2.165, 2.165]
(length and pressure head are given in meters). We assume the network to be filled with a sand-
like material with parameters θm = 0.0458, θM = 1, hydraulic conductivity K f = 6.54 · 10−5 m/s,
bubbling pressure pb = 0.0726 m, and λ = 0.694.

We assume the network to be initially devoid of water, setting p = −10 m. Then, water is injected
in a unit circle centered at the point (0, 6.5, 0) on the boundary ∂Ω ∩ {x1 = 6.5} with a constant
pressure head of p = 3 m; no-flow boundary conditions are imposed at the remaining boundary.
Figure 7 shows several steps in the evolution of the physical pressure head p. As expected, one
can see the fluid entering, and slowly filling almost the entire network. At the end, a steady state
is reached, and the pressure head is constant in each connected component of the domain.

4.2 Transport of a therapeutic agent in the microvasculature

The next example demonstrates local grid adaptivity, and the treatment of network bifurcations.
We model the propagation of a therapeutic agent for cancer therapy in a network of small blood
vessels. To reduce the computational effort, the network of three-dimensional vessels is reduced
to a one-dimensional network Ω embedded in a three-dimensional tissue domain T .

We first discuss the one-dimensional model for flow in a blood vessel segment, disregarding any
bifurcations. Starting from a three-dimensional blood vessel domain Ξ, we describe blood in the
microvasculature as an incompressible Newtonian fluid with viscosity µ and density % governed
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Figure 7: Unsaturated Darcy flow in a fracture network. The color visualizes the physical pressure
head p.

Figure 8: Single-phase two-component flow in a blood vessel network. One-dimensional elements
are rendered as tubes. The color visualizes the fluid pressure. Left: stationary pressure p; right:
initial element sizes.
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by the Stokes equation. Further, we assume an axially symmetric blood vessel segment with
constant radius R, cross-section area A, the parametrized tangent on the vessel centerline λ(s),
λ : R → R3, s 7→ λ(s), and a rigid vessel wall. Then, with the assumption of constant pressure p
in a cross-section and negligible radial velocities vr the Stokes equations can be integrated over a
vessel segment yielding the one-dimensional equation

A
%

∂p
∂s
λ + 2π

µ

%
(2 + γ)v̄λ = 0

∂
∂s

(
πR4

2µ(2 + γ)
∂p
∂s

)
= 0

 in Ω. (3)

The parameter γ shapes a power-type axial velocity profile with mean velocity v̄, yielding a
quadratic velocity profile for γ = 2 and flatter profiles for γ > 2. For a detailed derivation in
a more general setting, see the reduction of the Navier–Stokes equations to one-dimensional
equations in [Quarteroni and Formaggia, 2003]. Equation (3) is a simplified stationary version
of the one-dimensional blood flow equations described by Quarteroni and Formaggia [2003],
neglecting vessel wall displacement and inertial forces.

Small blood vessels are exchanging mass with the embedding tissue through the vessel wall. The
fluid exchange can be modeled by Starling’s law, and results in an additional source term. With
this modification, (3) becomes

A
%

∂p
∂s
λ + 2π

µ

%
(2 + γ)v̄λ = 0

∂
∂s

(
πR4

2µ(2 + γ)
∂p
∂s

)
− 2πRLp(p − p̄i) = 0

 in Ω, (4)

where Lp is the empirical filtration coefficient dependent on, e.g., the intrinsic permeability and
thickness of the membrane, and the viscosity of the interstitial fluid. The source term further
depends on the pressure in the surrounding tissue p̄i. For the sake of simplicity, this tissue
pressure is subsequently assumed constant. Equation (4) was also used by Cattaneo and Zunino
[2014a] in a finite element setting to model coupled vessel-tissue flow processes in a tumor tissue.

The transport of a therapeutic agent is modeled by an advection–diffusion equation using the
velocity field calculated by equation (4). Similar to the reduction of the Stokes equations we can
reduce the three-dimensional advection–diffusion equation by integration over a vessel segment
assuming a constant concentration c = x% on a given cross-section with area A = πR2 [D’Angelo,
2007, Cattaneo and Zunino, 2014b]. The transport over the vessel wall can be described by the
Kedem–Katchalsky equation [Kedem and Katchalsky, 1958], yielding

∂(Ac)
∂t

+ v̄
∂(Ac)
∂s
−De

∂2(Ac)
∂s2 − 2πR

[
Lc(c − c̄i) + Lp(p − p̄i)(1 − σc)c

]
= 0 in Ω. (5)

The last term in (5), accounting for transport across the vessel wall, consists of an advective
and a diffusive part where advection is reduced by the reflection coefficient σc ∈ [0, 1] for larger
molecules. Again, we assume the mean tissue concentration c̄i to be constant.

To model a network of such segments we split the blood vessel network Ω at junctions into pieces
yielding a set of vessel segments Ωi each governed by equations (4) and (5). At each junction we
require continuity of pressure

p = p1 = ... = p j.

Together with these coupling conditions, and boundary conditions on ∂Ω, Equation (4) has a
unique solution, which is the stationary pressure field p.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



236 O. Sander, T. Koch, N. Schröder, B. Flemisch

For the transport at the junctions, we require continuity of concentration

c = c1 = ... = c j,

and, for Qi, the volume flux leaving segment Ωi at the junction, we require mass conservation

j∑
i=1

Qi = 0.

We discretize equations (4) and (5) in space with a standard finite volume scheme and piecewise
linear one-dimensional grid elements. This demands balancing fluxes over the edges of the
elements. Assume that we have calculated all element transmissibilities

ti B
πR4

i

2µ(2 + γ)
. (6)

Then, the volume flux Qi j from element i to a neighboring element j can be calculated as

Qi j = ti j(pi − p j) =
tit j∑N
k=0 tk

(pi − p j). (7)

One can see that the transmissibility at branching points is dependent on the transmissibility of
all N neighboring elements. Assuming that all element transmissibilities ti reside in an array
transmissibility, the calculation of the two-point transmissibilities ti j could look as follows
using FoamGrid. Note that only a single loop over the grid entities is necessary to calculate the
transmissibilities.

C++ code
1 // for each element with index eIdx
2 std::vector<double> tSums(e.subEntities(/*codim=*/ 1), 0.0);
3 std::vector<double> tij;
4 std::vector<std::size_t> neighborFacetMap;
5
6 // loop over all intersections of this element
7 for(const auto& intersection : intersections(foamGridLeafView , element))
8 {
9 if(intersection.neighbor())

10 {
11 std::size_t nIdx = foamGridLeafView.indexSet().index(intersection.outside());
12 tij.push_back(transmissibility[eIdx]*transmissibility[nIdx]);
13 neighborFacetMap.push_back(intersection.indexInInside());
14 tSums[intersection.indexInInside()] += transmissibility[eIdx];
15 }
16 if(intersection.boundary())
17 // boundary treatment ...
18 }
19
20 // compute the two-point transmissibilities
21 for (std::size_t i = 0; i < tij.size(); i++)
22 transmissibilitiesIJ[i] /= tSums[neighborFacetMap[i]];

This code works well using the grid interface of dune-grid-2.4, even though that interface does
not have any provisions for network grids at all (Section 3.1). This is because the grid is one-
dimensional. In this case, each intersection always covers entire element facets (i.e., vertices).
Therefore, the indexInInsidemethod can be used to group intersections.

To reduce numerical diffusion induced by the implicit Euler scheme, the grid can be refined
adaptively around the concentration front. Initially, the grid is refined around inflow boundaries,
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(a) t = 3 s (b) t = 56 s

(c) t = 201 s (d) t = 501 s

Figure 9: Single-phase two-component flow in a blood vessel network. One-dimensional elements
are rendered as tubes. The gaps merely exist to better visualize the adaptive grid. The images
show the mole fraction x at different simulation times. Note how a concentration wave enters the
network from the top, and is tracked by a zone of high grid resolution, even as it goes through a
bifurcation point.
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and during the simulation the grid is adapted by a local gradient-based concentration indicator
as described in [Wolff, 2013]. This indicator marks an element i for refinement if

maxi(∆ci j) − ∆cmin

∆cmax − ∆cmin
≥ εr,

and for coarsening if
maxi(∆ci j) − ∆cmin

∆cmax − ∆cmin
< εc,

where ∆ci j denotes the concentration difference between element i and a neighboring element j.
The parameters εr, εc ∈ [0, 1] (εr > εc) are problem dependent. We achieved robust adaptation
behavior in our example for εr = 0.3 and εc = 0.05. The indicator is evaluated before every time
step and marks elements for refinement or coarsening using the mark method, see Section 2.3.
The adaption of the grid is then handled by FoamGrid. Between the preAdapt and postAdapt
steps, we have to transfer data, i.e., primary variables and spatial parameters from the old grid to
the new adapted grid. As can be seen in Figure 9, the refinement scheme works well even around
network bifurcations.

We simulate a network of capillaries in rat brain tissue scanned by Motti et al. [1986] and recon-
structed as segment network with three-dimensional geometrical information by Secomb et al.
[2000]. The network data comprises three-dimensional location of vessel segments, inflow and
outflow boundary markers, vessel segment radii, and velocity estimates for each vessel segment.
The domain has a bounding box of 150µm×160µm×140µm. The given vessel radii vary between
2µm and 4.5µm. The estimated velocities are in a range of 0.5 mm

s to 7.5 mm
s . We choose the blood

viscosity µ = 3.0Pa · s, the filtration coefficient Lp = 3.33 · 10−12 m
Pa·s , the effective diffusion coeffi-

cient over the vessel wall Lc = 10−5 1
sm , and the diffusion coefficient of the transported agent trail

De = 2.93 · 10−14 1
s , calculated with the Stokes–Einstein radius. We assign the following boundary

conditions for the flow problem (4)

p = pD on ∂Ωoutflow,[
R2

µ(2 + γ)
∂p
∂z

]
· n = v̄ · n = vN on ∂Ωinflow.

The velocities for the inflow segments are set to the estimates provided by Secomb et al. [2000]
along with the grid geometry. We simulate the arrival of a therapeutic agent by a Dirichlet
boundary condition for equation (5) on a subset ∂Ωc of ∂Ωinflow, namely,

c = cD on ∂Ωc,

c = 0 on ∂Ωinflow \ ∂Ωc.

Specifically, we enforce a mole fraction of xD = 10−8 at one of the inflow vessel segments with a
Dirichlet boundary condition. At outflow boundaries, we neglect diffusive fluxes. Note that a
full upwind scheme is employed for the concentration, so no further boundary condition for the
advective fluxes is necessary at outflow boundaries.

Figure 8 shows the resulting stationary pressure field and the initial element size. In Figure 9, one
can see the resulting mole fraction at various times. Note how the local grid refinement follows
the steepest gradients, i.e., the transport front. The resulting mole fractions vary from segment
to segment due to different radii. This also automatically ensures a finer grid around vessel
bifurcations. The one-dimensional elements are depicted as three-dimensional tubes scaled with
their respective radius.
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4.3 Root water uptake and root growth at plant-scale

In environmental and agricultural research fields, models describing root architectures are used
to investigate water uptake and root growth behavior of plants [Dunbabin et al., 2013]. In our
final example, a one-dimensional network embedded intoR3 is used to describe such a plant root
architecture. We simulate water flow through the root network and root growth.

Plant roots can be described by a tree-like network of pipes which consist of xylem tubes [Tyree
and Zimmermann, 2002]. We follow the cohesion–tension theory [Tyree, 1997], where the water
flow through the root system is governed by the pressure gradient caused by the transpiration
rate of the plant above the soil. We assume only vertical flow and no gravity. This leads to a
Darcy’s law analogy [Doussan et al., 1998]

qx = −Kx
dψx

dz
,

where qx is the water flux in the xylem tubes, ψx is the xylem water potential, and Kx is the axial
conductance of one root segment.

Water can enter the roots at any point on the xylem tube surfaces, which leads to a volume source
term for the one-dimensional network model. For simplicity, we model a single membrane only
for the entire pathway of water from soil into the roots. With this assumption, and neglecting
osmotic processes, radial water flow qr into one root segment is defined as

qr = KrAr(ψS − ψx),

where Kr is the radial conductivity, i.e., the conductivity of series of tissues from root surface
to the xylem. The number Ar B 2πrl is the soil–root interface area. The water potential ψS at
the soil–root interface must be provided. One option is to couple the root system to a Richards
equation based soil water flow simulation [Javaux et al., 2008], but for simplicity we simply take
ψS as a known value.

The continuity equation leads to
− div(qx(px)) = S(px) (8)

with a solution-dependent source

S(px) = KrAr(ψS − ψx),

where qx is the only unknown variable. This modeling approach neglects the influence of solutes
on water flow, as well as the capacitive effect of the roots, because the amount of water stored in
roots is generally small compared to transpiration requirements.

Equation (8) is discretized in space with standard cell-centered finite volumes, piecewise linear
one-dimensional grid elements and implemented using the external Dune discretization module
DuMux [Flemisch et al., 2011], and the FoamGrid grid manager. Flux calculations over edges and
branching points of the root network are implemented just as in our previous example.

So far, we have assumed a root network that does not alter its geometry over time. Several
algorithms were developed to describe root growth (e.g., [Pagès et al., 2004, Somma et al., 1998,
Leitner et al., 2010]). These models define root growth either by a fractal description, or more
generically depending on plant specific parameters (root elongation, growth direction, branching
density) and surrounding soil properties (soil moisture, soil strength, temperature, nutrients).
For simplicity, we model root growth here as an (almost) completely random process. New root
branches occur at random time steps and with a small gravity effect only, which makes the roots
tend to point downwards. Existing branches grow at the branch tip at random times and without
changing directions.
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Our example simulation starts with a simple root grid which consist of one vertical root branch
discretized with eight elements (root segments) and no lateral branches (Figure 10). We choose
radial and axial conductivity values from [Doussan et al., 1998]. The surrounding relative soil
pressure is set to ψS = −2.9429 · 10−2 J

m3 , and the Dirichlet boundary value at the root collar is set
to ψxD = −1.2 · 106 J

m3 . Parameters and boundary conditions do not change with time.

In every time step, new root elements are created and either added to an existing lateral branch
or to the main branch. An element-based indicator based on simulation time and random factors
decides whether a new branch is added at one of the element’s vertices. The Indicator class also
computes the coordinates of the newly inserted point that is the second vertex of the new element.
The coordinates depend again on simulation time, random factors, and the branch orientation in
R3. Our growth step calculation in DuMux using FoamGrid looks as follows.

C++ code
1 template<class Indicator>
2 void growGrid(Indicator& indicator , Variables& vars)
3 {
4 // (1) calculate indicator for each element
5 indicator.calculateIndicator();
6
7 // (2) insert elements according to the computed indicator
8 insertElements(indicator);
9

10 // (3) Put variables in a persistent map
11 storeVariables(vars);
12
13 // (4) Grow grid
14 grid->grow();
15
16 // (5) Resize and (re-)construction of variables
17 vars.resize(foamGridLeafView.size(0));
18 reconstructsVariables(vars);
19
20 // (6) delete isNew markers in grid
21 grid->postGrow();
22 }

The vars container contains all primary variables and spatial parameters defined on the root
segments. The Indicator class is a template parameter that can be easily exchanged, to allow
different root growth algorithms. In Step (2), the new elements are inserted. New root segments
must be connected to the old grid. The implementation of the insertElements method could
looks as follows:

C++ code
1 template<class Indicator>
2 void insertElements(const Indicator& indicator)
3 {
4 // iterate over all grid elements (root segments)
5 for (const auto& element : elements(foamGridLeafView))
6 {
7 // find elements that will get a new neighbor
8 if (indicator.willGrow(element))
9 {

10 // get the new elements vertices from the indicator
11 std::size_t vIdx0 =

grid->insertVertex(indicator.getNewVertexCoordinates(element));
12 // get index of the existing element vertex the new element will be connected to
13 std::size_t vIdx1 = indicator.getConnectedVertex(element);
14 // insert new element with the two vertex indices
15 grid->insertElement(element.type(), {vIdx0, vIdx1});
16 }
17 }
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Figure 10: Growth of a root system, shown in a lateral (top) and an axial (bottom) view. The color
represents the pressure inside the roots.

18 }

The primary variables and spatial parameters of our physical problem are stored in Step (3),
before the actual growth step (4). We update the sizes of the variables and parameter vectors
since the total number of degrees of freedom has changed due to the growth step (5). In addition,
values for the new elements have to be computed. In our case, new root segments inherit the
primary variables and the spatial parameters from its preceding neighbor element. Root tips,
in particular new root tips, are always assigned Neumann no-flow boundary conditions. At the
end, the postGrow method is called, which deletes the isNew markers (Step (6)).

Figure 10 shows the root network and the pressure distribution inside the roots for several time
steps. The total root water uptake (transpiration demand) of the plant, defined by the Dirichlet
boundary condition, does not change during the growing period. Thus, the pressure inside the
plant changes since the water uptake of the plant is distributed to more and more roots segments.
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