
Archive of Numerical Software
vol. 5, no. 1, 2017, pages 95–110
DOI: 10.11588/ans.2017.1.27683

The interface for functions in the dune-functions
module

Christian Engwer1, Carsten Gräser2, Steffen Müthing3, and Oliver Sander4

1Universität Münster, Institute for Computational und Applied Mathematics,
christian.engwer@uni-muenster.de

2Freie Universität Berlin, Institut für Mathematik, graeser@mi.fu-berlin.de
3Universität Heidelberg, Institut für Wissenschaftliches Rechnen,

steffen.muething@iwr.uni-heidelberg.de
4TU Dresden, Institute for Numerical Mathematics, oliver.sander@tu-dresden.de

Received: February 5th, 2016; final revision: August 1st, 2016; published: March 6th, 2017.

Abstract: The dune-functions Dune module introduces a new programmer interface for
discrete and non-discrete functions. Unlike the previous interfaces considered in the existing
Dune modules, it is based on overloading operator(), and returning values by-value. This
makes user code much more readable, and allows the incorporation of newer C++ features such
as lambda expressions. Run-time polymorphism is implemented not by inheritance, but by type
erasure, generalizing the ideas of the std::function class from the C++11 standard library. We
describe the new interface, show its possibilities, and measure the performance impact of type
erasure and return-by-value.

1 Introduction

Ever since its early days, Dune [2, 1] has had a programmer interface for functions. This interface
was based on the class Function, which basically looked like

C++ code
1 template <class Domain, class Range>
2 class Function
3 {
4 public:
5 void evaluate(const Domain& x, Range& y) const;
6 };

and is located in the file dune/common/function.hh. This class was to serve as a model for duck
typing, i.e., any object with its interface would be called a function. A main feature was that the
result of a function evaluation was not returned as a return value. Rather, it was returned using
a by-reference argument of the evaluate method. The motivation for this design decision was
run-time efficiency. It was believed that returning objects by value would, in practice, lead to too
many unnecessary temporary objects and copying operations.

96 C. Engwer, C. Gräser, S. Müthing, O. Sander

Unfortunately, the old interface lead to user code that was difficult to read in practice. For
example, to evaluate the n-th Chebycheff polynomial T(x) = cos(n arccos(x)) using user methods
my_cos and my_arccoswould take several lines of code:

C++ code
1 double tmp1,result;
2 my_arccos.evaluate(x,tmp1);
3 my_cos.evaluate(n*tmp1, result);

Additionally, C++ compilers have implemented return-value optimization (which can return val-
ues by-value without any copying) for a long time, and these implementations have continuously
improved in quality. Today, the speed gain obtained by returning result values in a by-reference
argument is therefore not worth the clumsy syntax anymore (we demonstrate this in Section 4).
We therefore propose a new interface based on operator() and returning objects by value. With
this new syntax, the Chebycheff example takes the much more readable form

C++ code
1 double result = my_cos(n*my_arccos(x));

To implement dynamic polymorphism, the old functions interface uses virtual functions. There
is an abstract base class

C++ code
1 template <class Domain, class Range>
2 class VirtualFunction :
3 public Function<const Domain&, Range&>
4 {
5 public:
6 virtual void evaluate(const Domain& x, Range& y) const = 0;
7 };

in the file dune/common/function.hh. User functions that want to make use of run-time poly-
morphism have to derive from this base class. Calling such a function would incur a small
performance penalty [3], which may possibly be avoided by compiler devirtualization [5].

The C++ standard library, however, has opted for a different approach. Instead of deriving
different function objects from a common base class, no inheritance is used at all. Instead, any
object that implements operator() not returning void qualifies as a function by duck typing. If
a function is passed to another class, the C++ type of the function is a template parameter of the
receiving class. If the type is not known at compile time, then the dedicated wrapper class

C++ code
1 namespace std
2 {
3 template< class Range, class... Args >
4 class function<Range(Args...)>;
5 }

is used. This class uses type erasure to allow to handle function objects of different C++ types
through a common interface. There is a performance penalty for calling functions hidden within
a std::function, comparable to the penalty for calling virtual functions.

The dune-functions module [4] picks up these ideas and extends them. The class template
std::functionworks nicely for functions that support only pointwise evaluation. However, in a
finite element context, a few additional features are needed. First of all, functions frequently need
to supply derivatives as well. Also, for functions defined on a finite element grid, there is typically
no single coordinate system of the domain space. Function evaluation in global coordinates is
possible, but expensive; such functions are usually evaluated in local coordinates of a given

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

Functions in dune-functions 97

GridViewFunction

Di erentiableFunction

LocalFunction

GridView

Elementbinds to

Function

Function object

is ais a

is a

is a

Figure 1: Diagram of the various function interfaces

element. dune-functions solves this by introducing LocalFunction objects, which can be bound
to grid elements. When bound to a particular element, they behave just like a std::function,
but using the local coordinate system of that element.

The paper is structured as follows. The main building blocks for the proposed function interfaces,
viz. function objects, concept checks, and type erasure, are introduced in Section 2. Those
techniques are then applied to implement the extended interfaces for differentiable functions and
grid functions in Section 3. Finally, we present comparative measurements for the current and the
proposed interface in Section 4. The results demonstrate that the increased simplicity, flexibility,
and expressiveness do not have a negative performance impact.

2 Building blocks for function interfaces

The programmer interface for global functions is given as a set of model classes. These form a
conceptual hierarchy (shown in Figure 1), even though no inheritance is involved at all. Imple-
mentors of the interface need to write classes that have all the methods and behavior specified by
the model classes. This approach results in flexible code. Concept checking is used to produce
readable error messages. The following sections explain the individual ideas in detail.

2.1 Function objects and functions

The C++ language proposes a standard way to implement functions. A language construct is
called a function object if it is an ordinary function, a function pointer, or an object (or reference
to an object) of a class providing an operator(). In the following we will adopt the common
convention to call the latter a functor. In the following we will denote a function object as function
if such a call does not return void. In other words, a function foo is anything that can appear in
an expression of the form

C++ code
1 auto y = foo(x);

for an argument x of suitable type. Examples of such constructs are free functions

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017

98 C. Engwer, C. Gräser, S. Müthing, O. Sander

C++ code
1 double sinSquared(double x)
2 {
3 return std::sin(x) * std::sin(x);
4 }

lambda expressions

C++ code
1 auto sinSquaredLambda = [](double x){return std::sin(x) * std::sin(x); };

functors

C++ code
1 struct SinSquared
2 {
3 double operator()(double x)
4 {
5 return std::sin(x) * std::sin(x);
6 }
7 };

and other things like bind expressions.

All three examples are functions in the above given sense, i.e., they can be called:

C++ code
1 double a = sinSquared(3.14); // free function
2 double b = sinSquaredLambda(3.14); // lambda expression
3 SinSquared sinSquaredObject;
4 double c = sinSquaredObject(3.14); // functor

Argument and return value do not have to be double at all, any type is possible. They can be
scalar or vector types, floating point or integer, and even more exotic data like matrices, tensors,
and strings.

To pass a function as an argument to a C++ method, the type of that argument must be explicitly
stated in the signature of the called method, or it must be a template parameter.

C++ code
1 template <typename F>
2 foo(F&& f)
3 {
4 std::cout << "Value of f(42): " << f(42) << std::endl;
5 }

Any of the example functions from above can be used as an argument of the method foo:

C++ code
1 foo(sinSquared); // call with a free function
2 foo(sinSquaredLambda); // call with a lambda expression
3 foo(sinSquaredObject); // call with a functor

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

Functions in dune-functions 99

2.2 Concept checks

The calls to F are fast, because the function calls can be inlined. On the other hand, it is not clear
from the interface of foo what the signature of F should be. What’s worse is that if a function
object type with the wrong signature is passed, the compiler error will not occur at the call to foo
but only where F is used, which may be less helpful. To prevent this, dune-functions provides
light-weight concept checks for the concepts it introduces. For example, the following alternative
implementation of foo checks whether F is indeed a function in the sense given above

C++ code
1 template<class F>
2 void foo(F&& f)
3 {
4 using namespace Dune;
5 using namespace Dune::Functions;
6
7 // Get a nice compiler error for inappropriate F
8 static_assert(models<Concept::Function<Range(Domain)>, F>(),
9 "Type does not model function concept");

10
11 std::cout << "Value of f(42): " << f(42) << std::endl;
12 }

If foo is instantiated with a type that is not a function, say, an int, then a readable error message
is produced. For example, for the code

C++ code
1 foo(1); // The integer 1 is not a function object

GCC-4.9.2 prints the error message (file paths and line numbers removed)

1 In instantiation of ’void foo(F&&) [with F = int]’:
2 required from here
3 error: static assertion failed: Type does not model function concept
4 static_assert(models<Function<Range(Domain)>, F>(),
5 ^

The provided concept checking facility is based on a list of expressions that a type must support
to model a concept. The implementation is based on the techniques proposed by E. Niebler
[8] and implemented in the range-v3 library [7]. While the dune-common module provides
the general concept checking facility including the models() function that allows to check if
a type models a concept, the definitions of the function concepts discussed in this paper are
contained in the dune-functionsmodule. This includes the concept Function<Range(Domain)>
for simple functions as introduced above, as well as DifferentiableFunction<Range(Domain)>,
GridViewFunction<Range(Domain), GridView>, and LocalFunction<Range(Domain),
LocalContext> for the extended function interfaces discussed in Section 3.

2.3 Type erasure and std::function

Sometimes, the precise type of a function is not known at compile-time but selected depending on
run-time information. This behavior is commonly referred to as dynamic dispatch. The classic way
to implement this uses inheritance and the virtual keyword: All classes implementing functions
must inherit from a common base class, and a pointer to this class is then passed around instead
of the function itself.

This approach has a few disadvantages. For example, all functors must live on the heap, and
a heap allocation is needed for each function construction. Secondly, in a derived class, the
return value of operator()must match the return value used in the base class (weaker rules hold

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017

100 C. Engwer, C. Gräser, S. Müthing, O. Sander

for pointer or reference types, which are not of interest to us, though). However, it is frequently
convenient to also allow return values that are convertible to the return value of the base class. This
is not possible in C++. As a third disadvantage, interfaces can only be implemented intrusively,
and having one class implement more than a single interface is quite complicated.

The C++ standard library has therefore chosen type erasure over inheritance to implement run-
time polymorphism. Starting with C++11, the standard library contains a class [6, 20.8.11]

C++ code
1 namespace std
2 {
3 template< class Range, class... Args >
4 class function<Range(Args...)>
5 }

that wraps all functions that map a type Domain to a type (convertible to) Range behind a single
C++ type. A much simplified implementation looks like the following:

C++ code
1 template<class Range, class Domain>
2 struct function<Range(Domain)>
3 {
4 template<class F>
5 function(F&& f) :
6 f_(new FunctionWrapper<Range<Domain>, F>(f))
7 {}
8
9 Range operator() (Domain x) const

10 {
11 return f_->operator()(x);
12 }
13
14 FunctionWrapperBase<Range<Domain>>* f_;
15 };

The classes FunctionWrapper and FunctionWrapperBase look like this:

C++ code
1 template<class Range, class Domain>
2 struct FunctionWrapperBase<Range(Domain)>
3 {
4 virtual Range operator() (Domain x) const=0;
5 };
6
7 template<class Range, class Domain, class F>
8 struct FunctionWrapper<Range(Domain), F> :
9 public FunctionWrapperBase<Range(Domain)>

10 {
11 FunctionWrapper(const F& f) : f_(f) {}
12
13 virtual Range operator() (Domain x) const
14 {
15 return f_(x);
16 }
17
18 F f_;
19 };

Given two types Domain and Range, any function object that accepts a Domain as argument and
returns something convertible to Range can be stored in a std::function<Range(Domain)>. For
example, reusing the three implementations of sin2(x) from Section 2.1, one can write

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

Functions in dune-functions 101

C++ code
1 std::function<double(double)> polymorphicF;
2 polymorphicF = sinSquared; // assign a free function
3 polymorphicF = sinSquaredLambda; // assign a lambda expression
4 polymorphicF = SinSquared(); // assign a functor
5 double a = polymorphicF(3.14); // evaluate

Note how different C++ constructs are all assigned to the same object. One can even use

C++ code
1 polymorphicF = [](double x) -> int { return floor(x); };
2 // okay: int can be converted to double

but not

C++ code
1 polymorphicF = [](double x) -> std::complex<double>
2 { return std::complex<double>(x,0); };
3 // error: std::complex<double> cannot be converted to double

Looking at the implementation of std::function, one can see that virtual functions are used
internally, but it is completely hidden to the outside. The copy constructor accepts any type as
argument. In a full implementation the same is true for the move constructor, and the copy
and move assignment operators. For each function type F, an object of type FunctionWrapper
<Range(Domain),F> is constructed, which inherits from the abstract base class
FunctionWrapperBase<Range(Domain)>.

Considering the implementation of std::function as described here, one may not expect any
run-time gains for type erasure over virtual methods. While std::function itself does not
have any virtual methods, each call to operator() does get routed through a virtual function.
Additionally, each call to the copy constructor or assignment operator invokes a heap allocation.
The virtual function call is the price for run-time polymorphism. It can only be avoided in some
cases using smart compiler devirtualization.

To alleviate the cost of the heap allocation, std::function implements a technique called small
object optimization. In addition to the pointer to FunctionWrapper, a std::function stores a
small amount of raw memory. If the function is small enough to fit into this memory, it is stored
there. Only in the case that more memory is needed, a heap allocation is performed. Small object
optimization is therefore a trade-off between run-time and space requirements. std::function
needs more memory with it, but is faster for small objects.

Small object optimization is not restricted to type erasure, and can in principle be used wherever
heap allocations are involved. However, with an inheritance approach this nontrivial optimiza-
tion would have to be exposed to the user code, while all its details are hidden from the user in a
type erasure context.

While we rely on std::function as a type erasure class for global functions, this is not sufficient to
represent extended function interfaces as discussed below. To this end dune-functions provides
utility functionality to implement new type erasure classes with minimal effort, hiding, e.g., the
details of small objects optimization. This can be used to implement type erasure for extended
function interfaces that go beyond the ones provided by dune-functions. Since these utilities are
not function-specific, they can also support the implementation of type-erased interfaces in other
contexts. Similar functionality is, e.g., provided by the poly library (which is part of the Adobe
Source Libraries [9]), and the boost type erasure library [10].

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017

102 C. Engwer, C. Gräser, S. Müthing, O. Sander

3 Extended function interfaces

The techniques discussed until now allow to model functions

f : D→ R (1)

between a domain D and a range R by interfaces using either static or dynamic dispatch. In
addition to this, numerical applications often require to model further properties of a function
like differentiability or the fact that it is naturally defined locally on grid elements. In this section
we describe how this is achieved in the dune-functionsmodule using the techniques described
above.

3.1 Differentiable functions

The extension of the concept for a function (1) to a differentiable function requires to also provide
access to its derivative

D f : D→ L(D,R) (2)

where, in the simplest case, L(D,R) is the set of linear maps from the affine hull ofD to R.

Example 1. For a function f : Rn
→ Rm the derivative D f maps each vector x ∈ D = Rn to a linear

map D f (x) from D = Rn to R = Rm. Since we can identify any linear map M : Rn
→ Rm with a

matrix M ∈ Rm×n such that the value M(y) of M at y ∈ Rn is given by the matrix vector product
M(y) = My ∈ Rm we have identified L(D,R) with Rm×n. Hence D f is itself a function mapping
vectors from Rn to matrices from Rm×n. Notice that D f (x) ∈ Rm×n is commonly referred to as the
Jacobian matrix of f at x.

To provide access to derivatives, the dune-functionsmodule extends the ideas from the previous
section in a natural way. A C++ construct is a differentiable function if, in addition to having
operator() as described above, there is a free method derivative that returns a function that
implements the derivative. The typical way to do this will be a friend function as illustrated in
the class template Polynomial:

C++ code
1 template<class K>
2 class Polynomial
3 {
4 public:
5
6 Polynomial() = default;
7 Polynomial(const Polynomial& other) = default;
8 Polynomial(Polynomial&& other) = default;
9

10 Polynomial(std::initializer_list<double> coefficients) :
11 coefficients_(coefficients) {}
12
13 Polynomial(std::vector<K>&& coefficients) :
14 coefficients_(std::move(coefficients)) {}
15
16 Polynomial(const std::vector<K>& coefficients) :
17 coefficients_(coefficients) {}
18
19 const std::vector<K>& coefficients() const
20 { return coefficients_; }
21
22 K operator() (const K& x) const
23 {
24 auto y = K(0);
25 for (size_t i=0; i<coefficients_.size(); ++i)
26 y += coefficients_[i] * std::pow(x, i);
27 return y;

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

Functions in dune-functions 103

28 }
29
30 friend Polynomial derivative(const Polynomial& p)
31 {
32 std::vector<K> dpCoefficients(p.coefficients().size()-1);
33 for (size_t i=1; i<p.coefficients_.size(); ++i)
34 dpCoefficients[i-1] = p.coefficients()[i]*i;
35 return Polynomial(std::move(dpCoefficients));
36 }
37
38 private:
39 std::vector<K> coefficients_;
40 };

To use this class, write

C++ code
1 auto f = Polynomial<double>({1, 2, 3});
2 double a = f(3.14);
3 double b = derivative(f)(3.14);

Note, however, that the derivativemethod may be expensive, because it needs to compute the
entire derivative function. It is therefore usually preferable to call it only once and to store the
derivative function separately.

C++ code
1 auto df = derivative(f);
2 double b = df(3.14);

Functions supporting these operations are described by Concept::DifferentiableFunction,
provided in the dune-functionsmodule.

When combining differentiable functions and dynamic polymorphism, the std::function class
cannot be used as is, because it does not provide access to the derivative method. However, it
can serve as inspiration for more general type erasure wrappers. The dune-functions module
provides the class

C++ code
1 template<class Signature ,
2 template<class> class DerivativeTraits=DefaultDerivativeTraits ,
3 size_t bufferSize=56>
4 class DifferentiableFunction;

in the file dune/functions/common/differentiablefunction.hh. Partially, it is a reimplemen-
tation of std::function. The first template argument of DifferentiableFunction is equivalent
to the template argument Range(Args...) of std::function, and DifferentiableFunction
implements a method

C++ code
1 Range operator() (const Domain& x) const;

This method works essentially like the one in std::function, despite the fact that its argument
type is fixed to const Domain& instead of Domain, because arguments of a “mathematical function”
are always immutable. Besides this, it also implements a free method

C++ code
1 friend DerivativeInterface derivative(const DifferentiableFunction& t);

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017

104 C. Engwer, C. Gräser, S. Müthing, O. Sander

that wraps the corresponding method of the function implementation. It allows to call the
derivativemethod for objects whose precise type is determined only at run-time:

C++ code
1 DifferentiableFunction<double(double)> polymorphicF;
2 polymorphicF = Polynomial<double>({1, 2, 3});
3 double a = polymorphicF(3.14);
4 auto polymorphicDF = derivative(polymorphicF);
5 double b = polymorphicDF(3.14);

While the domain of a derivative is D, the same as the one of the original function, its range
is L(D,R). Unfortunately, it is not feasible to always infer the best C++ type for objects from
L(D,R). To deal with this, dune-functions offers the DerivativeTraits mechanism that maps
the signature of a function to the range type of its derivative. The line

C++ code
1 using DerivativeRange = DerivativeTraits<Range(Domain)>::Range;

shows how to access the type that should be used to represent elements of L(D,R). The template
DefaultDerivativeTraits is specialized for common combinations of Dune matrix and vector
types, and provides reasonable defaults for the derivative ranges. However, it is also possible
to change this by passing a custom DerivativeTraits template to the interface classes, e.g., to
allow optimized application-specific matrix and vector types or use suitable representations for
other or generalized derivative concepts.

Currently the design of DifferentiableFunction differs from std:function in that it only
considers a single argument, but this can be vector valued.

3.2 GridView functions and local functions

A very important class of functions in any finite element application are discrete functions, i.e.,
functions that are defined piecewisely with respect to a given grid. Here, a grid covering a domain
D is a decomposition into a set of subdomains in the sense that

D =
⋃
e∈G

e.

The subdomains e ∈ G are called grid elements or cells of the grid. In many applications with
Ω ⊂ Rd those elements are disjoint, open, nonempty d-dimensional polyhedra, possibly with
curved boundaries. In Dune terminology, the k-dimensional faces of those polyhedra are called
grid entities of codimension d − k. Hence the elements are the entities of codimension 0 while
vertices, edges, and facets of those polyhedra are grid entities of codimension k = d, k = d−1, and
k = 1, respectively. For each element e ∈ G we assume that there is a so-called reference element ê
and a bijective parametrization Φe : ê→ e. We call ξ ∈ ê the local coordinate of x ∈ Dwith respect
to an element e ∈ G if x ∈ e and Φe(ξ) = x.

For a given grid G on D a function f : D → R is called a discrete function if it has a natural
piecewise definition with respect to the decomposition. Such functions are typically too expensive
to evaluate in global coordinates, e.g., at points x ∈ Ddirectly. Luckily this is hardly ever necessary.
Instead one often knows an element e and local coordinates ξ ∈ ê of x with respect to e that allow
to evaluate f (x) = f (Φe(ξ)) cheaply. Formally, this means that we have localized versions

fe = f ◦Φe : ê→ R, e is element of the grid.

To support this kind of function evaluation, Dune has provided interfaces in the style of

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

Functions in dune-functions 105

C++ code
1 void evaluateLocal(Codim<0>::Entity element,
2 const LocalCoordinates& x,
3 Range& y);

Given an element element and a local coordinate x, such a method would evaluate the function at
the given position, and return the result in the third argument y. This approach is currently used,
e.g., in the grid function interfaces of the discretization modules dune-pdelab and dune-fufem.

There are several disadvantages to this approach. First, we have argued earlier that return-by-
value is preferable to return-by-reference. Hence, an obvious improvement would be to use

C++ code
1 Range operator()(Codim<0>::Entity element, cost LocalCoordinates& x);

instead of the evaluateLocal method. However, there is a second disadvantage. In a typical
access pattern in a finite element implementation, a function evaluation on a given element is
likely to be followed by evaluations on the same element. For example, think of a quadrature
loop that evaluates a coefficient function at all quadrature points of a given element. Function
evaluation in local coordinates of an element can involve some setup code that depends on the
element but not on the local coordinate x. This could be, e.g., pre-fetching of those coefficient
vector entries that are needed to evaluate a finite element function on the given element, or
retrieving the associated shape functions.

In the approaches described so far in this section, this setup code is executed again and again
for each evaluation on the same element. To avoid this we propose the following usage pattern
instead:

C++ code
1 auto localF = localFunction(f);
2 localF.bind(element);
3 auto y = localF(xLocal); // evaluate f in element-local coordinates

Here we first obtain a local function, which represents the restriction of f to a single element. This
function is then bound to a specific element using the method

C++ code
1 void bind(Codim<0>::Entity element);

This is the place for the function to perform any required setup procedures. Afterwards the local
function can be evaluated using the interface described above, but now using local coordinates
with respect to the element that the local function is bound to. The same localized function object
can be used for other elements by calling bind with a different argument. Functions supporting
these operations are called grid view functions, and described by Concept::GridViewFunction
The local functions are described by Concept::LocalFunction. Both concepts are provided in
the dune-functionsmodule.

Since functions in a finite element context are usually at least piecewise differentiable, grid view
functions as well as local functions provid the full interface of differentiable functions as outlined
in Section 3.1. To completely grasp the semantics of the interface, observe that strictly speaking
localization does not commute with taking the derivative. Formally, a localized version of the
derivative is given by

(D f)e : ê→ L(D,R), (D f)e = (D f) ◦Φe. (3)

In contrast, the derivative of a localized function is given by

D(fe) : ê→ L(ê,R), D(fe) = ((D f) ◦Φe) ·DΦe.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017

106 C. Engwer, C. Gräser, S. Müthing, O. Sander

However, in the dune-functions implementation, the derivative of a local function does by
convention always return values in global coordinates. Hence, the functions dfe1 and dfe2 obtained
by

C++ code
1 auto df = derivative(f);
2 auto dfe1 = localFunction(df);
3 dfe1.bind(element);
4
5 auto fe = localFunction(f);
6 fe.bind(element);
7 auto dfe2 = derivative(fe);

both behave the same, implementing (D f)e as in (3). This is motivated by the fact that D(fe) is hardly
ever used in applications, whereas (D f)e is needed frequently. To express this mild inconsistency
in the interface, a local function uses a special DerivativeTraits implementation that forwards
the derivative range to the one of the corresponding global function.

Again, type erasure classes allow to use grid view and local functions in a polymorphic way. The
class

C++ code
1 template<class Signature ,
2 class GridView ,
3 template<class> class DerivativeTraits=DefaultDerivativeTraits ,
4 size_t bufferSize=56>
5 class GridViewFunction;

stores any function that models the GridViewFunction concept with given signature and grid
view type. Similarly, functions modeling the LocalFunction concept can be stored in the class

C++ code
1 template<class Signature ,
2 class Element,
3 template<class> class DerivativeTraits=DefaultDerivativeTraits ,
4 size_t bufferSize=56>
5 class LocalFunction;

These type erasure classes can be used in combination:

C++ code
1 GridViewFunction<double(GlobalCoordinate), GridView> polymorphicF;
2 polymorphicF = f;
3 auto polymorphicLocalF = localFunction(polymorphicF);
4 polymorphicLocalF.bind(element);
5 LocalCoordinate xLocal = ... ;
6 auto y = polymorphicLocalF(xLocal);

Notice that, as described above, the DerivativeTraits used in polymorphicLocalF are not the
same as the ones used by polymorphicF. Instead, they are a special implementation forwarding
to the global derivative range even for the domain type LocalCoordinate.

4 Performance measurements

In this last chapter we investigate how the interface design for functions in Dune influences the
run-time efficiency. Two particular design choices are expected to be critical regarding execution
speed: (i) returning the results of function evaluations by value involves temporary objects and
copying unless the compiler is smart enough to remove those using return-value-optimization.
In the old interface, such copying could not occur by construction, (ii) using type erasure instead

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

Functions in dune-functions 107

of virtual functions for dynamic polymorphism. While there are fewer reasons to believe that this
may cause changes in execution time, it is still worthwhile to check empirically.

As a benchmark we have implemented a small C++ program that computes the integral

I(f) B
∫ 1

0
f (x) dx

for different integrands, using a standard composite mid-point rule. We chose this problem
because it is very simple, but still an actual numerical algorithm. More importantly, most of the
time is spent evaluating the integrand function. Finally, hardly any main memory is needed, and
hence memory bandwidth limitations will not influence the measurements. We have deliberately
omitted tests for derivatives and piecewise functions. As these use return-by-value and type
erasure in much the same way as function evaluation does, we do not expect much additional
information from such additional tests.

The example code is a pure C++11 implementation with no reference to Dune. The relevant inter-
faces from Dune are so short that it was considered preferable to copy them into the benchmark
code to allow easier building. The code is available in a single file attached to this pdf document,
via the icon in the margin.

To check the influence of return types with different size we used integrands of the form

f : R→ RN, f (x)i = x + i − 1, i = 1, . . . ,N,

for various sizes N. This special choice was made to keep the computational work done inside
of the function to a minimum while avoiding compiler optimizations that replace the function
call by a compile-time expression. The test was performed with n = b108/Nc subintervals for the
composite mid-point rule leading to n function evaluations, such that the timings are directly
comparable for different values of N.

For the test we implemented four variants of function evaluation:

(a) Return-by-value with static dispatch using plain operator(),

(b) Return via reference with static dispatch using evaluate(),

(c) Return-by-value with dynamic dispatch using std::function::operator(),

(d) Return via reference with dynamic dispatch using VirtualFunction::evaluate(), as in
the introduction.

The test was performed with N = 1, . . . , 16 components for the function range, using double
to implement the components. We used GCC-4.9.2 and Clang-3.6 as compilers, as provided by
the Linux distribution Ubuntu 15.04. To avoid cache effects and to eliminate outliers we did a
warm-up run before each measured test run and selected the minimum of four subsequent runs
for all presented values.

Figure 2.A shows the execution time in milliseconds over N when compiling with GCC-4.9 and
the compiler options -std=c++11 -O3 -funroll-loops. One can observe that the execution time
is the same for variants (a) and (b) and all values of N. We conclude that for static dispatch there is
no run-time overhead when using return-by-value, or, more precisely, that the compiler is able to
optimize away any overhead. Comparing the dynamic dispatch variants (c) and (d) we see that
for small values of N there is an overhead for return-by-value with type erasure compared to the
classic approach using inheritance and virtual functions. This is somewhat surprising since pure
return-by-value does not impose an overhead, and dynamic dispatch happens for both variants.

Guessing that the compiler is not able to optimize the nested function calls in the type erasure
interface class std::function to full extent, we repeated the tests using profile guided optimization.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017

C. Engwer, C. Gräser, S. Müthing, and O. Sander
Benchmark code for the functions interface

108 C. Engwer, C. Gräser, S. Müthing, O. Sander

A
:G

C
C

0 2 4 6 8 10 12 14 16
range vector size N

0

50

100

150

200

250

300

350

m
s

operator()
evaluate()
std::function
virtual evaluate()

B:
G

C
C
+

pg
o

0 2 4 6 8 10 12 14 16
range vector size N

0

50

100

150

200

250

300

350

m
s

operator()
evaluate()
std::function
virtual evaluate()

C
:C

la
ng

0 2 4 6 8 10 12 14 16
range vector size N

0

50

100

150

200

250

300

350

m
s

operator()
evaluate()
std::function
virtual evaluate()

Figure 2: Timings for �108/N� function calls over varying vector size N using (A) GCC, (B) GCC
with profile-guided optimization, and (C) Clang.

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

Functions in dune-functions 109

To this end the code was first compiled using the additional option -fprofile-generate. When
running the obtained program once, it generates statistics on method calls that are used by
subsequent compilations with the additional option -fprofile-use to guide the optimizer. The
results depicted in Figure 2.B show that the compiler is now able to generate code that performs
equally well for variant (c) and (d). In fact variant (c) is sometime even slightly faster.

Finally, Figure 2.C shows results for Clang-3.6 and the compiler options -std=c++11 -O3
-funroll-loops. Again variants (a) and (b) show identical results. In contrast, variant (c)
using std::function is now clearly superior compared to variant (d). Note that we only used
general-purpose optimization options and that this result did not require fine-tuning with more
specialized compiler flags.

5 Conclusion

We have presented a new interface for functions in Dune, which is implemented in the new
dune-functionsmodule. The interface follows the ideas of function objects and std::function
from the C++ standard library, and generalises these concepts to allow for differentiable functions
and discrete grid functions. For run-time polymorphism we offer corresponding type erasure
classes similar to std::function. The performance of these new interfaces was compared to
existing interfaces in Dune. When using the optimization features of modern compilers, the
proposed new interfaces are at least as efficient as the old ones, while being much easier to read
and use.

References
[1] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and

O. Sander. A generic grid interface for adaptive and parallel scientific computing. Part II:
Implementation and tests in DUNE. Computing, 82(2–3):121–138, 2008.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander.
A generic grid interface for adaptive and parallel scientific computing. Part I: Abstract
framework. Computing, 82(2–3):103–119, 2008.

[3] K. Driesen and U. Hölzle. The direct cost of virtual function calls in C++. In Proceedings of
the 11th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’96, pages 306–323. ACM, 1996.

[4] C. Engwer, C. Gräser, S. Müthing, and O. Sander. Dune-functions module. http://www.
dune-project.org/modules/dune-functions.

[5] J. Hubička. Devirtualization in C++. online blog, http://hubicka.blogspot.de/2014/
01/devirtualization-in-c-part-1.html, 2014. (at least) seven parts, last checked on
Dec. 8. 2015.

[6] International Organization for Standardization. ISO/IEC 14882:2011 Programming Language
C++, 9 2011.

[7] E. Niebler. Range-v3 library. https://github.com/ericniebler/range-v3.

[8] E. Niebler. Concept checking in C++11. online blog, http://ericniebler.com/2013/11/
23/concept-checking-in-c11, 2013. last checked on Dec. 8. 2015.

[9] S. Parent, M. Marcus, and F. Brereton. Adobe source libraries. http://stlab.adobe.com/.

[10] S. Watanabe. Boost type erasure library. http://www.boost.org/doc/libs/release/libs/
type_erasure/.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017

