
Archive of Numerical Software
vol. 5, no. 1, 2017, pages 193–216
DOI: 10.11588/ans.2017.1.27720

Extending DUNE: The dune-xtmodules

Tobias Leibner1, René Milk∗1, and Felix Schindler1

1Institute for Computational and Applied Mathematics, University of Münster, Orleans-Ring
10, D-48149 Münster

Received: February 6th, 2016; final revision: October 11th, 2016; published: March 6th, 2017.

Abstract: We present our effort to extend and complement the core modules of the Distributed
and Unified Numerics Environment DUNE (http://dune-project.org) by a well tested and
structured collection of utilities and concepts. We describe key elements of our four modules
dune-xt-common, dune-xt-grid, dune-xt-la and dune-xt-functions, which aim at further
enabling the programming of generic algorithms within DUNE as well as adding an extra layer of
usability and convenience.

1 Introduction

Over the past decades, numerical approximations of solutions of partial differential equations
(PDEs) have become increasingly important throughout almost all areas of the natural sciences.
At the same time, research efforts in the field of numerical analysis, computer science and
approximation theory have led to adaptive algorithms to produce such approximations in an
efficient and accurate manner: by now, for a large variety of PDEs advanced approximation
techniques are available, such as wavelet methods [27], spectral methods [14], radial basis functions
[8] and in particular grid-based discretization techniques such as Finite Volume and continuous or
discontinuous Galerkin methods [10].

Focusing on the latter class, there exist a variety of open source and freely available PDE software
frameworks with a strong scientific background, such as deal.ii [2], DUNE [4, 3], Feel++ [26],
FreeFem++ [16], Fenics [20] and libMesh [19]. We consider the C++-based Distributed and Unified
Numerics Environment (DUNE), which consists of the core modules dune-common, dune-geometry,
dune-grid, dune-istl [6, 7] and dune-localfunctions1, complemented by the discretization
frameworks dune-fem [9, 12], dune-gdt2 and dune-pdelab [5].

DUNE yields highly efficient programs, is fairly well documented and has a large developer and
user base with a strong background in numerical analysis and scientific computing. However,
since it is mainly targeted at researchers and centered around code efficiency, it has a steep learning
curve and lacks some convenience features. In addition, despite enabling flexible numerical

∗The author gratefully acknowledges funding by the DFG SPP 1648 “Software for Exascale Computing”
under contract OH 98/5-1.

1All available under http://dune-project.org.
2https://github.com/dune-community/dune-gdt

http://dune-project.org
http://dune-project.org
https://github.com/dune-community/dune-gdt


194 Leibner, Milk, Schindler

schemes and providing an exceptionally powerful and generic grid concept, it does not allow for
generic algorithms at all times, as detailed further below. To remedy this situation we propose a
family of DUNE extension modules.

This paper is organized as follows: Section 2 gives a brief overview of dune-xt and presents our
testing framework which is used in all modules. The remaining sections each give an in-depth
discussion of one of the DUNE modules which make up dune-xt.

2 The dune-xt project

The dune-xt project aims to provide an extra layer of usability and convenience to existing
DUNE modules and at the same time to enable programming of generic algorithms, in particular
in the context of discretization frameworks. It consists of the four modules dune-xt-common,
dune-xt-grid, dune-xt-la and dune-xt-functions (which we refer to as dune-xt), which are
detailed throughout this paper.

We complement our discussion with extensive code listings and examples, which are not necessarily
meant to be directly usable (for instance, we shall omit the main() in C++ code and frequently drop
the Dune:: namespace qualifier to improve readability). In addition we provide references to code
locations, where “dune/foo/bar.hh” denotes the location of a file within the dune-foomodule and
“dune/xt/foo/bar.hh” denotes the location of a file within the dune-xt-foomodule. However, we
do not provide individual references for elements of the C++ standard template library, which are
prefixed by std::.3

Since the main goal of dune-xt is to provide a solid infrastructure, it does not ship examples for
the usage of all of its parts. Thus, we often refer to the generic discretization toolbox dune-gdt4

for examples and motivation.

2.1 Code availability

The dune-xtmodules are open source software and freely available on GitHub: https://github.
com/dune-community/.5 They are mainly developed by T. Leibner, R. Milk and F. Schindler with
contributions from A. Buhr, S. Girke, S. Kaulmann, B. Verfürth and K. Weber, amounting to roughly
43.000 lines of code at the time of writing. All modules are dual licensed under a BSD 2-Clause
License6 or any GPL-2.0+ License7 with linking exception8, thus being license-compatible to
DUNE. We refer to the supplementary material, which contains a snapshot of the dune-xt-super9

module which bundles together all required dependencies and the dune-xtmodules described in
this paper.

2.2 Testing

Testing code and exposing it to as many different circumstances as possible is an extremely
important part of software development, especially given the templated nature of DUNE and the
large amount of provided grid managers. In order to actually take a burden off the developer, tests
have to be executed automatically in a reliable manner on each published code change, should
be carried out in as many different configurations as possible, and reports of test failure have
to be delivered to the developer responsible for the change. In this section we describe the test
procedure that is used in dune-xt.

3We refer to http://en.cppreference.com/ instead.
4https://github.com/dune-community/dune-gdt
5See Section 2.2 on why we cannot make use of https://gitlab.dune-project.org/.
6http://opensource.org/licenses/BSD-2-Clause
7http://opensource.org/licenses/gpl-license
8http://www.dune-project.org/license.html
9https://github.com/dune-community/dune-xt-super

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017

https://github.com/dune-community/
https://github.com/dune-community/
http://en.cppreference.com/
https://github.com/dune-community/dune-gdt
https://gitlab.dune-project.org/
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/gpl-license
http://www.dune-project.org/license.html
https://github.com/dune-community/dune-xt-super


Extending DUNE: dune-xt 195

For testing, we use the Google C++ Testing Framework10 (Gtest) in combination with the DUNE
module dune-testtools11, introduced in [18]. Further, we use Travis CI12 to automatically run
tests on each push to the code repository.

Gtest is a testing library for C++ code of the xUnit family [22]. It provides assertion macros that
make it very easy to write tests. Assertions can be non-fatal, such that the test will continue to run
and output failure information if an assertion fails. This allows for the detection of several faults
in one test cycle. Gtest uses fixtures, “recipies” for parametrization, setup and teardown of tests,
to make tests run independently of each other. Fixture classes allow to use the same configuration
for several different tests and to share code between tests, minimizing the effort needed for writing
and maintaining tests. Still, objects for each test are created only for that specific test and not
shared between tests, which prevents hard-to-reproduce failures due to interacting tests.

We often want to run the same test for several related (template) classes. For this purpose,
Gtest supports type parameterized test fixtures. The desired types have to be collected in the
testing::Types struct and passed to a test macro that automatically runs the test for all types.
However, constructing a large Types struct with permutations or products of type tuples is
inconvenient. Moreover, Gtest currently only supports up to 50 types per test13 which is frequently
exceeded in dune-xt. Consider the following class from dune-xt-functions, which represents a
scalar-, vector-, or matrix-valued constant function f : Rd

→ Rr×c

C++ code
1 template <class E, class D, size_t d, class R, size_t r, size_t rC>
2 class ConstantFunction;

and suppose we want to test the ConstantFunction class for all combinations of dimensions d, r, rC
∈ {1, 2, 3} and domain and range field types D, R ∈ {float, double}. This adds up to 22

· 33 = 108
different specialized ConstantFunction classes that would have to be manually written in the test
code. Each time we want to add another field type or higher dimensions, a lot of specializations
have to be manually added. In addition, macros are necessary to circumvent the 50 types limit of
Gtest complicating the test code even more.

To circumvent these problems, we use the dune-testtools module which provides tools for
system testing in DUNE. Among other features, dune-testtools makes it easy to create tests
with dynamic and static variations. The configuration is done by providing a meta ini file that
contains the possible variations (see Listing 1).

Code Listing 1: Meta ini file for test configuration
1 d = 1, 2, 3 | expand
2 r = 1, 2, 3 | expand
3 rC = 1, 2, 3 | expand
4 D = float, double | expand
5 R = float, double | expand
6 grid = SomeGridImplementation <{D}, {d}> | expand
7 E = {grid}::Codim<0>::Entity
8
9 [__static]

10 FUNCTIONTYPE = ConstantFunction <{E}, {D}, {d}, {R}, {r}, {rC}>

The expand command tells dune-testtools to create all possible values of the corresponding key,
the curved brackets make dune-testtools paste the content of the embraced variable. FUNCTIONTYPE
can be used like a preprocessor define in the associated C++ test code. Provided the meta ini file and
the C++ test file, dune-testtools creates 108 executables which each test a single specialization of

10https://github.com/google/googletest
11https://gitlab.dune-project.org/quality/dune-testtools
12https://travis-ci.org/
13https://github.com/google/googletest/blob/master/googletest/include/gtest/internal/
gtest-type-util.h
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Figure 1: Travis integration with Github gives visual feedback for automatic tests (failing: left,
succeeding: right), in particular to keep the workload for library developers at a minimum when
handling code changes and contributions.

ConstantFunction. Adding another field type or higher dimensions is as simple as adding it to the
meta ini file without modifying the test code at all. In addition, dynamic variations, i.e. parameters
that are provided at runtime and not at compile time, can easily be added in a similar way, see [18].

Besides the reduced code complexity, this setup also makes it easier to debug tests as one can see
at a glance which types are failing and debug only the associated tests. Creating an executable
per tested type instead of testing all types in one executable using the Types struct greatly reduces
memory consumption during compilation. As a downside we see increased total compile times.
Depending on the available build infrastructure this can be offset by the greater available parallelism
in building the test, resulting in more but smaller binaries.

Writing the tests is only the first step. Even the most comprehensive test suite is useless without
getting regularly executed. We therefore continuously test each module on every update of the
module’s code repository using the Travis CI infrastructure (Travis)14, whose use is free of charge
for open source projects. Relying on Google’s Compute Engine15 and following the setup specified
in the module’s .travis.yml file Travis provides us with a highly flexible environment to run our
test suites in. Using Travis’ “build matrix“16 feature our test suites are run with a diverse setup of
available DUNE modules, from the minimal set of hard dependencies specified in each dune.module
file to the full set of suggested ones, as well as different compilers (currently gcc 4.9 and 5.3 and
clang 3.7). Travis offers tight integration with Github17 pull requests (see Figure 1) and branches,
each of which gets automatically tested whenever new commits get added, with visual on-page
and email feedback. This is one of the main reasons why we host our modules on Github. In our
opinion the prompt and automatic feedback on the validity of code contributions, with reasonably
high coverage, is of enormous value to the development process.

3 The dune-xt-common module

Just like dune-common, we provide a common infrastructure in dune-xt-common with minimal
dependencies, which is used throughout the other modules.

3.1 Improved handling of dense containers

dune-common contains the FieldVector18 and FieldMatrix19 classes, which model small dense vectors
and matrices of fixed size (in particular used for coordinates, affine reference maps and function
evaluations). These containers are implemented to provide maximum performance, but lack some
convenience features. In particular the lack of certain operators and contructors make it difficult

14https://travis-ci.org/dune-community
15https://cloud.google.com/compute/
16https://docs.travis-ci.com/user/customizing-the-build/#Build-Matrix
17https://github.com
18dune/common/fvector.hh
19dune/common/fmatrix.hh
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to write generic code. Consider, for instance, a generic string conversion utility (assuming T is a
matrix type):

C++ code
1 template <class T>
2 static inline T from_string(const std::string ss,
3 const size_t rows = 0,
4 const size_t cols = 0)
5 {
6 T result(rows, cols); // <- does not compile for FieldMatrix
7 // ... fill result from ss
8 return result;
9 }

The above example does compile if T is a DynamicMatrix20, but not if T is a FieldMatrix, which makes
it extremely difficult to write generic code. And while it is clear that constructing a FieldMatrix of
fixed size M×N is not sensible for other values of rows and cols, the construction in line 6 should be
possible for rows = M and cols = N (throwing an appropriate exception otherwise).

In order to allow for generic algorithms we provide templated VectorAbstraction and Matrix-
Abstraction classes in dune/xt/common/{matrix,vector}.hh (along with specialization for all sensible
vector and matrix classes), which allow for generic creation of and access to matrices and vectors.
Additionally, we provide is_vector and is_matrix traits, which allow to rewrite the above example:

C++ code
1 #include <dune/xt/common/matrix.hh>
2 #include <dune/xt/common/type_traits.hh>
3
4 using namespace Dune::XT::Common;
5
6 template <class T>
7 static inline typename std::enable_if<is_matrix<T>::value, T>::value
8 from_string(const std::string ss, const size_t rows = 0, const size_t cols = 0)
9 {

10 auto result = MatrixAbstraction<T>::create(rows, cols);
11 // ... fill result from ss using MatrixAbstraction < T >::set_entry(...)
12 return result;
13 }

It is thus possible to use from_stringwith matrices of different type:

C++ code
1 #include <dune/common/fmatrix.hh>
2 #include <dune/common/dynmatrix.hh>
3
4 auto fmat = from_string<Dune::FieldMatrix<double, 2, 2>>("[1. 2.; 3. 4.]");
5 auto dmat = from_string<Dune::DynamicMatrix<double>>( "[1. 2.; 3. 4.]");

In particular, one can use it with any custom matrix implementation by providing a specialization
of MatrixAbstractionwithin the user code:

C++ code
1 class CustomMatrix { /* user provided matrix implementation */ };
2
3 struct MatrixAbstraction<CustomMatrix> { /* implement specialization */ };
4
5 auto cmat = from_string<CustomMatrix>("[1. 2.; 3. 4.]");

20dune/common/dynmatrix.hh
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Based on these abstractions we provide many generic implementations in dune-xt. For instance,
we provide an extension of the FloatCmp21 mechanism from dune-common (see Section 3.4) for any
combination of vectors (which allows for the same syntax as its counterpart in dune-common, see
Section 3.4):

C++ code
1 #include <dune/common/dynvector.hh>
2 #include <dune/xt/common/float_cmp.hh>
3
4 std::vector< double > svector({1., 1.});
5 Dune::DynamicVector< double > dvector(2, 1.);
6
7 Dune::XT::Common::FloatCmp::eq(svector, dvector);

3.2 Improved string handling and Configuration

As already hinted at above, we provide the string conversion utilities

C++ code
1 template< class T >
2 static inline T from_string(const std::string ss,
3 const size_t size = 0, const size_t cols = 0);
4
5 template< class T >
6 static inline std::string to_string(const T& ss);

in dune/xt/common/string.hh. These can be used with any basic type as well as with all matrices and
vectors supported by the abstractions from Section 3.1. We use standard notation for vectors ("[1
2]") and matrices ("[1 2; 3 4]"), see the previous paragraph for examples. The from_string function
takes optional arguments which determine the size of the resulting container (for containers of
dynamic size), where 0 means automatic detection (the default).

Based on these string conversion utilities, we provide an extension of dune-common’s Parameter-
Tree22 in dune/xt/common/configuration.hh: the Configuration class. The Configuration is derived from
ParameterTree and can thus be used in all places where a ParameterTree is expected. While it also adds
an additional layer of checks (in particular regarding provided defaults), report and serialization
facilities, one of its main features is to allow the user to extract any type that is supported by
the string conversion facilities. Given a sample configuration file in .ini format (for example the
default configuration required to create a cubic grid using the factory methods discussed below),

Code Listing 2: Contents of the cube_gridprovider_default_config() in dune-xt-grid
1 type = xt.grid.gridprovider.cube
2 lower_left = [0 0 0 0]
3 upper_right = [1 1 1 1]
4 num_elements = [8 8 8 8]
5 num_refinements = 0
6 overlap = [1 1 1 1]

we can query the resulting Configuration object config for the types supported by the ParameterTree,

C++ code
1 auto num_refinements = config.get<int>("num_refinements");

as well as for all types supported by our string conversion utilities (including custom matrix and
vector types as explained in the previous paragraph):

21dune/common/float_cmp.hh
22dune/common/parametertree.hh
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C++ code
1 auto lower_left = config.get<FieldVector<double, dimDomain>>("lower_left");

The above is valid for all 0 ≤ dimDomain≤ 4, due to the automatic size detection of from_string.

3.3 Timings

Getting information about how long certain portions of an application take to run is crucial
to guide optimization efforts. It can also be useful to estimate the entire loop execution time
from the first couple of loops and of course for benchmarking parts of or an entire application
for different parameters. Mature and generally simple to use tools exist, both commercial (e.g.,
Intel VTune23, Allinea Map24) and free (e.g., Vagrind/Callgrind25, Oprofile26), that allow very
fine-grained performance analysis of a given code, down to function or even instruction level. It is
however very hard or impossible to measure custom, arbitrary sections of code with these tools
and to present those measurements in an easily understood format. The dune-common module
provides a straightforward implementation of a Timer27 class that relies on std::system_clock to
measure expired walltime. This is enough for simple needs, but we extend on this concept with
the Timings and related classes in dune/xt/common/timings.hh, because measuring user and system
time can be greatly insightful and having a centralized managing facility with its own output
capabilities is much easier for the user. The global Timings instance keeps a map of named sections
and associated TimingData objects. The user can start/stop sections manually or use a guard object
to start a timing at object construction and stop it when the guard object goes out of scope:

Code Listing 3: Timing example
1 using namespace Dune::XT::Common;
2 timings().start("sec");
3 for (auto i : value_range(5)) {
4 ScopedTiming scoped_timing("sec.inner");
5 busywait(i * 200);
6 }
7 timings().stop("sec");
8 busywait(1000);
9 auto file = make_ofstream("example.csv");

10 timings().output_all_measures(*file);

Internally TimingData expands on Timer by measuring wall, system and user time between start and
stop concurrently using a boost::timer::cpu_timer28. Timings has a couple of output_* functions that
all write data in the Comma Separated Values (CSV) format and which distinguish themselves
from one another in which measures are produced and whether averages, minima and maxima
are calculated over MPI-ranks. We chose the CSV format for our output because it enables post
processing and analysis by a wide variety of tools, e.g. Pandas [21] or matplotlib [17].

Code Listing 4: example.csv
1 threads,ranks,sec_avg_usr ,sec_max_usr ,sec_avg_wall ,sec_max_wall ,

sec_avg_sys ,sec_max_sys ,sec.inner_avg_usr ,sec.inner_max_usr ,
sec.inner_avg_wall ,sec.inner_max_wall ,sec.inner_avg_sys , sec.inner_max_sys

2 8,1,2050,2050,2050,2050,0,0,2050,2050,2050,2050,0,0

23https://software.intel.com/en-us/intel-vtune-amplifier-xe
24http://www.allinea.com/products/map
25http://valgrind.org/info/tools.html#callgrind
26http://oprofile.sourceforge.net/
27dune/common/timer.hh
28http://www.boost.org/doc/libs/1_58_0/libs/timer/doc/cpu_timers.html#Class-cpu_timer
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3.4 Extending Float Comparison

Floating point operations are not always exact, so using operator== to compare primitive floating
point types may yield unwanted results. To avoid this problem, dune-common provides functions eq,
ne, gt, lt, ge and le in the namespace Dune::FloatCmp to approximately compare floating point numbers.
There are three variants of approximate comparisons (absolute, relativeWeak and relativeStrong)
implemented in dune-common. The absolute compare style checks two floating point numbers a
and b for equality by

|a − b| ≤ εabs,

where εabs is a specified tolerance parameter. This works well for numbers that are neither too
small nor too large, but two numbers with absolute values lesser than εabs will always be specified
as equal while for large numbers the gap between two adjacent floats may become greater than
εabs rendering the result the same as with ==. The compare styles relativeWeak

|a − b| ≤ εrel max(|a| , |b|)

and relativeStrong
|a − b| ≤ εrel min(|a| , |b|)

use a tolerance parameter that is scaled with the numbers and thus are suitable for a wide
range of numbers. However, problems occur if one of the numbers is zero. Thus, we provide a
fourth compare style numpy in dune/xt/common/float_cmp.hh that is equivalent to the implementation
in numpy.isclose29. Here, both an absolute tolerance εabs and a relative tolerance εrel are chosen and
the numbers a, b are considered equal if

|a − b| ≤ εabs + εrel |b| .

This allows for an absolute comparison (with a sufficiently small εabs) near 0 and a relative
comparison elsewhere and is thus the default compare style in dune-xt-common. Note that this
comparison is not symmetric with respect to a, b, so XT::Common::FloatCmp::eq(a,b)may not be the
same as XT::Common::FloatCmp::eq(b,a) in some cases. The absolute, relativeWeak and relativeStrong
compare styles are also supported by dune-xt-common and can be chosen by providing a template
parameter to the comparison functions.

Often we rather want to compare vectors of floating point numbers instead of scalar values. This
could be done by looping over the components of the vectors and comparing them one by one,
which is inconvenient for the user. dune-xt-common has built-in support for vector comparisons, i.e.
one can compare any two vectors as long as there are VectorAbstractions (see Section 3.1) available
for both vector types. In particular, std::complex and vectors containing std::complex values are
supported.

4 The dune-xt-gridmodule

The dune-xt-gridmodule builds on dune-grid and dune-xt-common to provide powerful con-
cepts to improve performance (such as the EntityInlevelSearch and the Walker) or to allow for generic
algorithms (such as the GridProvider).

4.1 Searching the grid

A typical task within a PDE solver is to prolong discrete function data from one discrete function
space onto another one (that is usually associated with a finer grid). Without a direct, one-to-
one identification mapping of degrees of freedom (DoF) available (think of different discrete
functions stemming from dune-fem and dune-pdelab), this requires identifying those entities in
the source space where the source function should be evaluated in quadrature points defined

29http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.isclose.html
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with respect to the range space. With the EntityInlevelSearch we provide a means to that end in
dune/xt/grid/search.hh for arbitrary grids, as long as the range grid covers a subset of the physical
domain of the source grid.

C++ code
1 template <class GridViewType , int codim = 0>
2 class EntityInlevelSearch : public EntitySearchBase<GridViewType>
3 {
4 // not all types shown
5 public:
6 EntityInlevelSearch(const GridViewType& gridview)
7 : gridview_(gridview)
8 , it_last_(gridview_.template begin<codim>())
9 {}

10
11 template <class PointContainerType>
12 EntityVectorType operator()(const PointContainerType& points);
13
14 private:
15 const GridViewType gridview_;
16 IteratorType it_last_;
17 };

It is modeled after the HierarchicSearch30 in dune-grid, with the extension that instead of finding
one Entity for one point at a time we allow searching for a sequence of points (via operator())
and return a sequence of entities accordingly. As another improvement the implementation
remembers the last search position on the source grid across search calls. This greatly improves
the performance over the naive implementation of restarting the search for every operator() in case
of equivalent grids.

4.2 Providing generic access to grid views and grid parts

There exists an unfortunate disagreement between dune-grid and dune-fem, whether grid views
or grid parts are to be used to model a collection of grid elements, which makes it hard to implement
generic algorithms. Think of some code which needs to create a LevelGridView or LevelGridPart,
depending on the further use for a discrete function space implemented via dune-pdelab or
dune-fem:

C++ code
1 #include <dune/fem/gridpart/levelgridpart.hh>
2
3 template <class GridType>
4 void create_level(GridType& grid, const int lv) {
5 // either ?
6 auto level_view = grid.levelGridView(lv);
7 // or ?
8 Dune::Fem::LevelGridPart<GridType> level_part(grid, lv);
9 // ...

10 }

In dune/xt/grid/gridprovider.hhwe thus provide the GridProvider, the purpose of which is to hold a
the grid object and to allow for a generic creation of grid views and grid parts to ultimately allow
for generic code despite the above mentioned disagreement:

C++ code
1 template <class GridType>
2 class GridProvider
3 {
4 // not all methods and types shown ...

30dune/grid/utility/hierarchicsearch.hh
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5 public:
6 std::shared_ptr<GridType>& grid_ptr();
7 GridType& grid();
8
9 template <Layers layer_type , Backends backend>

10 typename Layer<layer_type , backend>::Type layer(const int lv = 0);
11 };

Together with the Layers and Backends enum classes31, this allows to write generic code by passing a
grid provider along with the required tag:

C++ code
1 #include <dune/xt/grid/provider.hh>
2
3 using namespace Dune::XT::Grid;
4
5 template <class GridType , Backends backend>
6 void create_level(GridProvider<GridType>& grid_provider , const int lv) {
7 auto level_part_or_view = grid_provider.layer<Layers::level, backend>(lv);
8 // ...
9 }

We provide several factory methods to create a GridProvider (for instance make_cube_grid, which
creates grids of rectangular domains and make_dgf_grid and make_gmsh_grid, which either create grids
from the respective definition file). In addition, we provide a means to select a factory at runtime
using the GridProviderFactory struct, given the type of the grid G and a Configuration object config (for
instance using the default one for make_cube_grid, see Listing 2),

C++ code
1 #include <dune/xt/gridprovider.hh>
2
3 #using namespace Dune::XT::Grid;
4
5 auto grid_provider = GridProviderFactory<G>::create("xt.grid.gridprovider.cube",
6 config);

which is particularly useful in conjunction with configuration files or Python bindings.

4.3 Identification of domain boundaries

PDE solvers need to prescribe the solution’s behaviour on the boundary of the computational
domain. In general, there may exist a large number of different boundary conditions in any given
problem, and therefore any PDE solver needs to provide a way to identify parts of that domain
boundary and categorize them. Unfortunately, dune-grid does not provide such a mechanism.

This problem is tackled in dune-pdelab, for instance, by deriving from Dune::TypeTree::LeafNode32

and implementing the following methods:

C++ code
1 virtual bool isDirichlet(const IntersectionGeometryType& intersection_geometry ,
2 const FieldVector<D, d - 1>& coord) const;
3
4 virtual bool isNeumann(const IntersectionGeometryType& intersection_geometry ,
5 const FieldVector<D, d - 1>& coord) const;

31dune/xt/grid/layers.hh
32dune/typetree/leafnode.hh
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This approach is however limited to the boundary types defined in dune-pdelab and the user has
no means to extend this approach to other boundary type (one cannot just add a isCustomBoundary()
method to the interface).

We therefore propose a more flexible mechanism that is based on mapping the boundary category
to types derived from BoundaryType33.

C++ code
1 class BoundaryType
2 {
3 protected:
4 virtual std::string id() const = 0;
5
6 public:
7 virtual bool operator==(const BoundaryType& other) const
8 {
9 return id() == other.id();

10 }
11 };
12
13 class DirichletBoundary : public BoundaryType
14 {
15 protected:
16 virtual std::string id() const override final
17 {
18 return "dirichlet boundary";
19 }
20 };
21
22 class NeumannBoundary : public BoundaryType { /*...*/};
23
24 class RobinBoundary : public BoundaryType { /*...*/};

For a given grid view (and its type of intersection), access to the type of the boundary is granted
by the BoundaryInfo class concept

C++ code
1 template <class IntersectionType>
2 class BoundaryInfo
3 {
4 public:
5 virtual BoundaryType& type(const IntersectionType& intersection) const = 0;
6 };

based on which a PDE solver library (such as dune-gdt) can provide generic algorithms which act
only on parts of the domain boundary by checking

C++ code
1 if (boundary_info.type(intersection) == DirichletBoundary()) {
2 // ...
3 } else if (boundary_info.type(intersection) == NeumannBoundary()) {
4 // ....
5 } else
6 // ...

In addition, this concept can be easily extended by the user by simply deriving from BoundaryType.
As implementations of the BoundaryInfo concept, we currently provide:

• AllDirichlet and AllNeumann, the purpose of which is self-explanatory.

33dune/xt/grid/boundaryinfo/types.hh
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• NormalBased, which allows to identify boundary intersections by the direction of their outward
pointing normal.

In order to allow for problem definition classes to define domain boundaries independently of
the type of the grid, we also provide the BoundaryInfoFactory. User classes can hold a complete
description of one of the boundary infos from above in a Configuration instance. Given the type of
the grid (and thus the type of an intersection), one is then able to create an instance of one of the
implementations of the BoundaryInfo concept of correct type, as required:

C++ code
1 #include <dune/grid/yaspgrid.hh>
2 #include <dune/grid/sgrid.hh>
3 #include <dune/xt/common/configuration.hh>
4 #include <dune/xt/grid/boundaryinfo.hh>
5
6 using namespace Dune::XT::Common;
7 using namespace Dune::XT::Grid;
8
9 class Problem

10 {
11 public:
12 Configuration boundary_info_cfg()
13 {
14 Configuration config;
15 config["type"] = "xt.grid.boundaryinfo.normalbased";
16 config["default"] = "dirichlet";
17 config["neumann.0"] = "[ 1. 0.]";
18 config["neumann.1"] = "[-1. 0.]";
19 return config;
20 }
21 };
22
23 typedef typename Dune::YaspGrid<2>::LeafIntersection YI;
24 typedef typename Dune::SGrid<2, 2>::LeafIntersection SI;
25
26 Problem problem;
27 auto boundary_info_y = BoundaryInfoFactory<YI>::create(problem.boundary_info_cfg());
28 auto boundary_info_s = BoundaryInfoFactory<SI>::create(problem.boundary_info_cfg());

The type of boundary_info_y, for instance, is std::unique_ptr<BoundaryInfo<YI>>. Given a rectangular
domain inR2, it models a Neumann boundary left and right and a Dirichlet boundary everywhere
else.

4.4 Periodic Gridviews

Periodic boundary conditions are frequently used to model an infinite domain. To apply periodic
boundary conditions in the context of Finite Volume methods, intersections on the periodic
boundary have to be linked to the intersection on the opposite side of the (finite) grid. For Finite
Element methods, the indices of connected degrees of freedom (DoFs) on the boundary have
to be identified and suitable constraints applied. In any case, the implementation can be quite
time-consuming and cumbersome if there is no support from the underlying grid manager.

Support for periodic boundary conditions in DUNE is varying from grid to grid. YaspGrid supports
periodic boundaries using the parallel DUNE grid interface which requires the user to run a parallel
program. Several grid managers including dune-alugrid [1] and SPGrid [25] support periodicity
by gluing together edges of the unit cube [25]. While this allows to obtain the neighboring entity
of an intersection on the periodic boundary, DoFs still have to be modified by hand.

Regarding the uneven support for periodic boundary conditions in DUNE, we provide the
PeriodicGridView class in dune/xt/grid/periodic_gridview.hh which is derived from a given arbitrary
Dune::GridView. As long as the GridView models an axis-parallel hyperrectangle with conforming
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faces, it is enough to replace a GridView by the corresponding PeriodicGridView in existing code to
apply periodic boundary conditions (see Listing 5). This is internally achieved by replacing the
IndexSet and iterators and the corresponding methods (begin, end, ibegin, iend, size and indexSet) of
the GridView by periodic variants, utilizing the search capabilities from Section 4.1. The remaining
methods are forwarded to the underlying GridView. Periodic directions can be specified by supplying
a std::bitset (see Listing 5). By default, all directions are made periodic.

Code Listing 5: Usage of PeriodicGridView
1 using namespace Dune::XT::Grid;
2 GridViewType grid_view = grid.leafGridView();
3 std::bitset<3> periodic_directions(std::string("100")); // periodic in z-direction
4 PeriodicGridView<GridViewType> periodic_grid_view(grid_view , periodic_directions);
5 // use periodic_grid_view from here on to apply periodic boundary conditions ...

The PeriodicIntersectionIterator that can be obtained by the ibegin and iend methods returns a
PeriodicIntersection when dereferenced. The PeriodicIntersection behaves exactly like the non-
periodic Intersection except that it returns neighbor()== true and an outside() entity on the periodic
boundary. The outside() entity is the entity adjacent to the periodically equivalent intersection, i.e.,
the intersection at the same position on the opposite side of the domain. The indexSet()method
returns a PeriodicIndexSet which assigns the same index to entities that are periodically equivalent.
Hence, the PeriodicIndexSet is usually smaller than the corresponding IndexSet. The begin and end
methods of PeriodicGridView return a PeriodicIteratorwhich visits only one of several periodically
equivalent entities.

Note that there existed a similar but independently developed class PeriodicGridPart in dune-fem
that contained a periodic index set but no periodic intersections. Unfortunately, the PeriodicGridPart
was removed in the dune-fem release 1.2..

4.5 Walking the grid

Since we are considering grid-based numerical methods, we frequently need to iterate over the
elements t ∈ τh of a grid view. In order to minimize the amount of required grid iterations, we
want to be able to carry out N operations on each grid element, as opposed to walking the entire
grid N times. We thus provide in dune/xt/grid/walker.hh the templated Walker class, working with
any GridView (from dune-grid) or GridPart (from dune-fem):

C++ code
1 template <class GridViewType>
2 class Walker
3 {
4 // not all methods and types shown ...
5 public:
6 void add(Functor::Codim0<GridViewType>& functor/*, ... */);
7 void add(Functor::Codim1<GridViewType>& functor/*, ... */);
8 void add(Functor::Codim0And1<GridViewType>& functor/*, ... */);
9

10 void walk(const bool use_tbb = false);
11 };

The user can add an arbitrary amount of functors to the Walker, all of which are then locally executed
on each grid element. Each functor is derived from one of the virtual interfaces Functor::Codim0,
Functor::Codim1 or Functor::Codim0And1, for instance

C++ code
1 template <class GridViewType>
2 class Codim0
3 {
4 public:
5 typedef typename XT::Grid::Entity<GridViewType>::Type EntityType;
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6
7 virtual void prepare() {}
8 virtual void apply_local(const EntityType& entity) = 0;
9 virtual void finalize() {}

10 };

where prepare (and finalize) are called before (and after) iterating over the grid, while apply_local
is called on each entity of the grid. The user might note here the usage of traits from
dune/grid/{entity,intersection}.hh to extract required information from a GridView or GridPart in
a generic way. Each add method of the Walker accepts an additional argument which allows to
select the elements and faces the functor will be applied on. For instance, in the context of a
discontinuous Galerkin discretization in dune-gdt we want to apply local coupling operators on
all inner faces of the grid and local boundary operators on all Dirichlet faces of the grid. Presuming
we were given suitable implementations of these local operators as functors and a BoundaryInfo
object in the sense of the previous paragraph, the following would realize just that:

C++ code
1 #include <dune/xt/grid/walker.hh>
2
3 using namespace Dune::XT::Grid;
4
5 Walker<GV> walker(grid_view);
6 walker.add(coupling_operator , new ApplyOn::InnerIntersectionsPrimally<GV>());
7 walker.add(boundary_operator , new ApplyOn::DirichletIntersections<GV>(boundary_info));
8 // add more, if required...
9 walker.walk()

The use of the new keyword will not create memory leaks here as the pointer is wrapped into a
std::unique_ptr in the addmethod of the walker. Note that the walkmethod allows to switch between
a serial and a shared memory parallel iteration over the grid, at runtime (via the use_tbb switch).
In particular, the user only has to provide implementations of the functors and need not deal with
any parallelization issues (or different types of grid walkers, depending on the parallelization
paradigm).

5 The dune-xt-lamodule

As discussed (Section 3.1), dune-common provides small dense vectors and matrices which are,
e.g., used for coordinates. In addition, any PDE solver requires large vectors and (usually sparse)
matrices to represent assembled functionals and operators stemming from the underlying PDE.
Linear algebra containers are a performance critical aspect of any discretization framework and
one usually does not want to bet on a single horse: there exists external backends which are well
suited for serial and shared memory parallel computations (such as EIGEN[15]) while others are
more suited for distributed memory parallel computations (such as dune-istl). Neither is fitting
for every purpose and we thus require a means to exchange the implementation of matrices and
vectors depending on the circumstances. This calls for abstract interfaces for containers and linear
solvers, which we provide within the dune-xt-lamodule.

5.1 Generic linear algebra containers

We chose a combination of static and dynamic inheritance for these interfaces, allowing for
virtual function calls that act on the whole container (such as scal) while using the “Curiously
recurring template patterns” (CRTP, see [11]) paradigm for methods that are called frequently
(such as access to individual elements in loops), allowing the compiler to optimize performance
critical calls (for instance by inlining). We provide a thread-safe helper class CRTPInterface in
dune/xt/common/crtp.hh along with thread-safe CHECK_...macros for debugging, as the tools provided
in dune/common/bartonnackmanifcheck.hhmay not work properly in a shared memory parallel program.
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All matrices and vectors are derived from ContainerInterface34:

C++ code
1 template <class Traits, class ScalarType = typename Traits::ScalarType>
2 class ContainerInterface
3 : public CRTPInterface<ContainerInterface<Traits, ScalarType>, Traits>
4 {
5 // not all methods and types shown ...
6 public:
7 typedef typename Traits::derived_type derived_type;
8
9 // Sample CRTP implementation:

10 inline void scal(const ScalarType& alpha)
11 {
12 // as_imp() from CRTPInterface performs a static_cast into derived_type.
13 // Thus, scal() of the derived class is called.
14 CHECK_AND_CALL_CRTP(this->as_imp().scal(alpha));
15 }
16 inline void axpy(const ScalarType& alpha, const derived_type& xx);
17 inline derived_type copy() const;
18
19 // Default implementation:
20 // could be overriden by any derived class.
21 virtual derived_type& operator*=(const ScalarType& alpha)
22 {
23 scal(alpha);
24 return this->as_imp();
25 }
26 };

The ContainerInterface enforces just enough functionality to assemble a linear combination of
matrices or vectors, which is frequently required in the context of model reduction (compare [24]).
Given an affine decomposition of a parametric matrix or vector B, we need to assemble

∑Q−1
q=0 θqBq

for given component containers Bq and scalar coefficients θq. The following generic code will
work for any matrix or vector type C derived from ContainerInterface:35

1 #include <dune/xt/la/container/container-interface.hh>
2
3 using namespace Dune::XT::LA;
4
5 template <class C>
6 typename std::enable_if<is_container<C>::value, C>::type
7 assemble_lincomb(const std::vector<C>& components ,
8 const std::vector<double>& coefficients)
9 {

10 auto result = components[0].copy();
11 result *= coefficients[0];
12 for (size_t qq = 1; qq < components.size(); ++qq)
13 result.axpy(coefficients[qq], components[qq]);
14 return result;
15 }

All containers in dune-xt-la are implemented with “copy-on-write” (COW) [23, 190-194]. Im-
plementing data sharing among entities with data duplication only occurring if an entity tries
to modify the referenced data is a well established and common technique in Computer Science.
This pattern (also sometimes denoted as “lazy copy”) typically incurs minimal runtime overhead
for the required reference counting for the great benefit of being able to pass around copies of
an entity without immediate expensive memory copies. Since all container implementations in
dune-xt-la are proxy classes that forward operations to the respective backend instances, we

34dune/xt/la/container/container-interface.hh
35Note the use of the is_container traits in line 6 that we provide in dune/la/container/container-interface.hh.

Together with std::enable_if, this checks that C is derived from ContainerInterface at compile time.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



208 Leibner, Milk, Schindler

insert the COW logic into the backend call, which is then used throughout the class to access the
backend (in addition to allowing the user to directly access the underlying backend):

C++ code
1 BackendType& backend()
2 {
3 ensure_uniqueness();
4 return *backend_;
5 }

The backend_ is simply a std::shared_ptr<BackendType> on which the ensure_uniqueness method can
query the current status by a call to unique and perform the deep copy, if required. Note that due
to COW and move semantics for all matrices and vectors in dune-xt-la, the only deep copy in
Listing 5.1 is actually done in line 11 (neither in line 10 nor in line 14)

Based on ContainerInterface we provide the VectorInterface36 for dense vectors and the Matrix-
Interface37 for dense and sparse matrices. Each derived vector class has to implement the methods
size, add_to_entry, set_entry and get_entry_ref, which allow to access and change individual entries of
the vector. The interface provides default implementations for all relevant mathematical operators,
support for range-based for loops and many useful methods, such as dot, mean, standard_deviation
and l2_norm, just to name a few.

Each derived matrix class has to implement rows, cols, add_to_entry, set_entry and get_entry to allow
for access to individual entries, mv for matrix/vector multiplication and clear_row, clear_col, unit_row
and unit_col, which are required in the context of solving PDEs with Dirichlet Constraints or
pure Neumann problems. Every matrix implementation (even a dense one) is constructible from
the same type of sparsity pattern (which we provide in dune/xt/la/container/pattern.hh) and the
access methods ..._entry are only required to work on entries that are contained in the pattern.
The interface provides several mathematical operators, norms and a means to obtained a pruned
matrix (where all entries close to zero are removed from the pattern).

We also provide several vector and matrix implementations:

• The CommonDenseVector and CommonDenseMatrix in dune/xt/la/container/common.hh, based on the
DynamicVector and DynamicMatrix from dune-common. These are always available.

• The EigenDenseVector, EigenMappedDenseVector, EigenDenseMatrix and EigenRowMajorSparseMatrix in
dune/xt/la/container/eigen.hh, based on the EIGEN package (if available). The EigenMappedDense-
Vector allows to wrap an existing double* array and the EigenRowMajorSparseMatrix allows to
wrap existing matrices in standard CSR format, which allows to wrap other container
implementation (for instance in the context of Python bindings).

• The IstlDenseVector and IstlRowMajorSparseMatrix in dune/xt/la/container/istl.hh, based on
dune-istl (if available).

To allow for generic algorithms we also provide the Backends enum class along with the default_
backend, default_sparse_backend and default_dense_backend defines (which are set depending on the
build configuration). These can be used in other libraries and user code to obtain suitable containers
independently of the current build configuration.

Consider, for instance, an L2 projection of a function f : Ω → R onto a discontinuous Galerkin
discrete function space defined on a grid view τh modeling Ω. Given local basis functions ϕt

i ,

36dune/xt/la/container/vector-interface.hh
37dune/xt/la/container/matrix-interface.hh
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0 ≤ i < I of such a space on each entity t ∈ τh, the local DoF vector f t
h ∈ R

I of the projected discrete
function is given as the solution of the linear system

L2t
· f t

h = lth, with
(
L2t)

i, j
:=

∫
t
ϕt

iϕ
t
j and

(
lth
)

i
:=

∫
t

fϕt
i . (1)

The problem of assembling and solving (1) is a typical situation within any PDE solver. In
dune-gdt, for instance, (1) is roughly assembled as follows, given a local basis and an appropriate
quadrature:

C++ code
1 #include <dune/xt/la/container.hh>
2
3 using namespace Dune::XT::LA;
4
5 typedef typename Container<double, default_dense_backend>::MatrixType LocalMatrixType;
6 typedef typename Container<double, default_dense_backend>::VectorType LocalVectorType;
7
8 // ... on each grid element
9 LocalMatrixType local_matrix(local_basis.size(), local_basis.size(), 0.);

10 LocalVectorType local_vector(local_basis.size(), 0.);
11 LocalVectorType local_DoFs(local_basis.size(), 0.);
12
13 // ... at each quadrature point, given evauations of the local basis as basis_values
14 // and of the source function as source_value
15 for (size_t ii = 0; ii < local_basis.size(); ++ii) {
16 local_vector[ii] += integration_element * quadrature_weight
17 * (source_value * basis_values[ii]);
18 for (size_t jj = 0; jj < local_basis.size(); ++jj) {
19 local_matrix.add_to_entry(ii, jj,
20 integration_element * quadrature_weight
21 * (basis_values[ii] * basis_values[jj]));
22 }
23 }

Note that we neither have to manually specify the correctly matching matrix and vector types nor
to include the correct headers (which depend on the current build configuration). The Container
traits together with any of the default_... defines always yields appropriate available types (lines
1, 5, 6).

5.2 Runtime selectable solvers

In order to determine the local DoF vector in the above example, we need to solve the algebraic
problem: find local_DoFs, such that

local_matrix · local_DoFs = local_vector.

In addition to such small, dense problems we also require the inversion of large (sparse) system
and product matrices. For interesting large and real-world problems, however, there are few linear
solvers available which can be used as a black box (if at all). Most problems require a careful
choice and detailed configuration of the correct linear solver. We thus require access to linear
solvers which can be used in a generic way but also exchanged and configured at runtime.

In dune/xt/la/solver.hhwe provide such solvers via the Solver class:

C++ code
1 template <class MatrixType>
2 class Solver
3 {
4 // simplified variant
5 public:
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6 Solver(const MatrixType& matrix);
7
8 static std::vector<std::string> types();
9

10 static Configuration options(const std::string type = "");
11
12 template <class RhsType, class SolutionType>
13 void apply(const RhsType& rhs, SolutionType& solution) const;
14
15 template <class RhsType, class SolutionType>
16 void apply(const RhsType& rhs, SolutionType& solution,
17 const std::string& type) const;
18
19 template <class RhsType, class SolutionType>
20 void apply(const RhsType& rhs, SolutionType& solution,
21 const Configuration& options) const;
22 };

We provide specializations of the Solver class for all matrix implementations derived from
MatrixInterface (see the previous paragraph). To continue the example from the previous paragraph,
this allows to determine the local DoF vector of the L2 projection:

C++ code
1 #include <dune/xt/common/exceptions.hh>
2 #include <dune/xt/la/solver.hh>
3
4 try {
5 XT::LA::Solver<LocalMatrixType>(local_matrix).apply(local_vector , local_DoFs);
6 } catch (XT::Exceptions::linear_solver_failed& ee) {
7 DUNE_THROW(Exceptions::projection_error ,
8 "L2 projection failed because a local matrix could not be inverted!\n\n"
9 << "This was the original error: " << ee.what());

10 }

The above example shows a typical situation within the library code of dune-gdt: we need to
solve a small dense system for provided matrices and vectors of unknown type. We can do so
by instantiating a Solver and calling the black-box variant of apply (line 5). This apply variant is
default implemented by calling

C++ code
1 apply(rhs, solution, types()[0]);

where types() always returns a (non-empty) list of available linear solvers for the given matrix type,
in descending priority (meaning the first is supposed to “work best”). For instance, if local_matrix
was an EigenDenseMatrix, a call to types()would reveal the following available linear solvers:

1 {"lu.partialpiv", "qr.householder", "llt", "ldlt", "qr.colpivhouseholder",
2 "qr.fullpivhouseholder", "lu.fullpiv"}

On the other hand, if the matrix was an EigenRowMajorSparseMatrix, a call to types()would yield
1 {"bicgstab.ilut", "lu.sparse", "llt.simplicial", "ldlt.simplicial",
2 "bicgstab.diagonal", "bicgstab.identity", "qr.sparse",
3 "cg.diagonal.lower", "cg.diagonal.upper", "cg.identity.lower",
4 "cg.identity.upper"}

Given a (large sparse) system_matrix (for instance stemming from a discretized Laplace operator)
and rhs vector, we can solve the corresponding linear system using a specific solver by calling

C++ code
1 #include <dune/xt/la/solver.hh>
2

Archive of Numerical Software 5(1), 2017 c© by the authors, 2017



Extending DUNE: dune-xt 211

3 XT::LA::Solver<SystemMatrixType> linear_solver(system_matrix);
4 linear_solver.apply(rhs, solution, "ldlt.simplicial");

The above call to apply is default implemented by calling

C++ code
1 apply(rhs, solution, options(type));

where options(type) always returns a Configuration object with appropriate options for the selected
type. With type = "ldlt.simplicial", for instance, we are implicitly using the following options
(which are the default for "ldlt.simplicial"):

1 type = ldlt.simplicial
2 post_check_solves_system = 1e-5
3 check_for_inf_nan = 1
4 pre_check_symmetry = 1e-8

All implemented solvers default to checking whether the computed solution does actually solve
the linear system and provide additional sanity checks. We make extensive use of exceptions
if any check is violated, which allows to recover from undesirable situations in library code (as
shown in the example above). We also provide our own implementation of the DUNE_THROWmacro
in dune/xt/common/exceptions.hhwhich replaces the macro from dune-common and can be used with
any Dune::Exception. Apart from a different formatting (and colorized output), it also provides
information of interest in distributed memory parallel computations.

The "ldlt.simplicial" solver, for instance, does only work for symmetric matrices and we thus
check the matrix for symmetry beforehand (which can be disabled by setting "pre_check_symmetry" to
0). Each type of linear solver provides its own options, which allow the user to fine-tune the linear
solver to his needs. For instance, the iterative "bicgstab" solver with "ilut" preconditioning accepts
the following options (in addition to "post_check_solves_system" and "check_for_inf_nan", which are
always supported):

C++ code
1 #include <dune/xt/la/solver.hh>
2
3 XT::LA::Solver<SystemMatrixType> linear_solver(system_matrix);
4 auto options = linear_solver.options("bicgstab.ilut");
5
6 options["max_iter"] = 1000;
7 options["precision"] = "1e-14";
8 options["preconditioner.fill_factor"] = 10;
9 options["preconditioner.drop_tol"] = "1e-4";

10
11 linear_solver.apply(rhs, solution, options);

The actually implemented variant of Solver in dune-xt-la also takes a communicator as an optional
argument, to allow for distributed parallel linear solvers. We provide several implementations
of such parallel solvers based on dune-istl. A linear solver for IstlRowMajorSparseMatrix, for
instance, supports the following types(), most of which can be readily used in distributed parallel
environments:

C++ code
1 {
2 #if !HAVE_MPI && HAVE_SUPERLU
3 "superlu",
4 #endif
5 "bicgstab.amg.ilu0", "bicgstab.amg.ssor", "bicgstab.ilut",
6 "bicgstab.ssor", "bicgstab"
7 #if HAVE_UMFPACK
8 , "umfpack"
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9 #endif
10 }

6 The dune-xt-functionsmodule: Local and localizable functions

A correct interpretation of data functions and a correct handling of analytical and discrete functions
is an important part of every PDE solver. Given a domain Ω ⊂ Rd and a grid view τh of this domain,
one is usually not interested in considering a function f : Ω → R, but rather its local function
f t := f |t ◦ Φt with respect to a grid element t ∈ τh, where Φt : t̂→ t denotes the reference mapping
from the respective reference element t̂ to the actual element t, as provided by dune-grid.For
simplicity’s sake we only present the scalar case here, but he same concepts apply to vector- and
matrix-valued functions, as implemented in dune-xt-functions. This allows to compute integrals
in terms of quadratures from dune-geometry and shape functions from dune-localfunctions
defined on the reference elements of a grid. In addition, one is interested in “localized derivatives”
of f , for instance its localized gradient ∇t ft := ∇ f ◦Φt. While the localized gradient of a function does
not coincide with the gradient of a local function it is an important tool to preserve the structure of
an integrand, when transformed to the reference elements for integration. Using the chain rule,
we obtain for the latter ∇ f t = ∇( f ◦Φt) = (∇ f ◦Φt)∇Φt, while the following holds for the former:
∇t f t = ∇ f ◦Φt = ∇( f ◦Φt)(∇Φt)−1 = ∇ f t(∇Φt)−1.

Consider for instance the following integral arising in the weak formulation of a Laplace operator,
which is transformed to the reference element t̂, where a, ϕ and ψ denote scalar functions and
Λ2

t := |det(∇Φt⊥
∇Φt)|: ∫

t
(a∇ψ) · ∇ϕ =

∫
t̂
Λt

(
(a ◦Φt)(∇ψ ◦Φt)

)
· (∇ϕ ◦Φt).

Using the definition of a local function and a localized gradient, the above is equivalent to

. . . =

∫
t̂
Λt (at

∇tψ
t) · ∇ϕt, (2)

which nicely preserves the structure of the original integrand.

For a given grid view τh, we thus call a function localizable with respect to τh, if there exists a local
function with localized derivatives for each element of the grid view. These functions form the
discontinuous space of locally polynomial functions with varying polynomial degree,

Q(τh) :=
{

q : Ω→ R
∣∣∣ ∀t ∈ τh ∃k(t) ∈N, such that qt

∈ P̂k(t)(t)
}
,

where P̂k(t) denotes the set of polynomials q : t̂→ R of maximal order k. Note that in the context
of integration, the polynomial degree of the integrand is limited by the availability of suitable
quadratures and always finite in practical computations. Thus, even functions such as f (x) = sin(x)
can in practical computations only be represented by surrogates f ≈ f̃ ∈ Q(τh). Consequently, the
space Q(τh) presents a common space for all functions, including analytically given data functions
and, most importantly, discrete functions of any discretization framework.

This concept allows for a generic discretization framework such as dune-gdt, where all operators,
functionals, projections and prolongations are implemented in terms of localizable functions. Thus,
a Laplace operator which locally realizes (2) can be used to assemble a system or product matrix,
where ψt and ϕt are basis functions of a discrete function space, or to compute the norm of any
combination of analytical or discrete functions, in which case ψt and ϕt model the corresponding
local functions. In dune-xt-functions, we provide interfaces and implementations to realize this
concept of localizable functions and local functions (not to be confused with shape functions from
dune-localfunctions) and for the remainder of this section we discuss the realization of these
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concepts in dune-xt-functions. A similar effort has been undertaken in the dune-functions
module [13], independently of our work. Since both efforts share the same mathematical basis it is
planned to make dune-xt-functions compatible to dune-functions in future work.

Given a grid element t ∈ τh, we model a collection of (scalar-, vector- or matrix-valued) local
functions ϕt : t̂→ Rr×c, for r, c ∈N (where t̂ denotes the reference element associated with t) by
the LocalfunctionSetInterface in dune/xt/functions/interfaces.hh:

C++ code
1 template<class EntityType ,
2 class DomainFieldType , size_t dimDomain ,
3 class RangeFieldType , size_t dimRange, size_t dimRangeCols = 1>
4 class LocalfunctionSetInterface
5 {
6 // not all methods and types show ...
7 public:
8 virtual const EntityType& entity() const
9

10 virtual size_t size() const = 0;
11 virtual size_t order() const = 0;
12
13 virtual void evaluate(const DomainType& xx, std::vector<RangeType>& ret) const = 0;
14 virtual void jacobian(const DomainType& xx,
15 std::vector<JacobianRangeType>& ret) const = 0;
16 };

The template parameter EntityType models the type of the grid element t ∈ τh, the parameters
DomainFieldType and dimDomain model Rd

⊃ t while RangeFieldType, dimRange and dimRangeCols model
Rr×c.38 The resulting DomainType is a FieldVector<DomainFieldType, dimDomaim>, while RangeType and
JacobianRangeType are composed of FieldVector and FieldMatrix, depending on the dimensions. Each
set of local functions has to report its polynomial order and size. The methods evaluate and jacobian
expect vectors of size size() for ret.

Note that we use a combination of static polymorphism, to fix the type of the grid and all dimension
at compile time, and dynamic polymorphism, which allows to exchange functions of same grid
and dimensions at runtime.

By implementing all operators and functionals in terms of LocalfunctionSetInterface, a discretization
framework can realize the above claim of unified handling of analytical and discrete functions.
This is for instance the case in dune-gdt, where the local bases of discrete function spaces are
realized as implementations of LocalfunctionSetInterface. In addition, we also provide an interface
for individual local functions, which can be used by data functions and local functions of discrete
functions:

C++ code
1 template <class E, class D, size_t d, class R, size_t r, size_t rC>
2 class LocalfunctionInterface
3 : public LocalfunctionSetInterface<E, D, d, R, r, rC>
4 {
5 // not all methods and types shown ...
6 public:
7 virtual void evaluate(const DomainType& xx, RangeType& ret) const = 0;
8 virtual void jacobian(const DomainType& xx, JacobianRangeType& ret) const = 0;
9

10 virtual size_t size() const override final
11 {
12 return 1;
13 }
14 }

38As a shorthand, we write <E, D, d, R, r, rC> instead of <EntityType, DomainFieldType, dimDomain,
RangeFieldType, dimRange, dimRangeCols>.
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Alongside, we also provide the following interface for localizable functions which mostly act as
containers of local functions:

C++ code
1 template <class E, class D, size_t d, class R, size_t r, size_t rC>
2 class LocalizableFunctionInterface
3 {
4 // not all methods and types shown ...
5 public:
6 virtual std::string name() const;
7
8 virtual std::unique_ptr< LocalfunctionInterface<E, D, d, R, r, rC>>
9 local_function(const EntityType& entity) const = 0;

10 };

Based on this interface we provide visualization and convenience operators, allowing for

C++ code
1 (f - f_h).visualize(grid_view , "difference");

where fmay denote a localizable data function and f_hmight denote a discrete function, if both
are localizable with respect to the same grid_view. Expressions such as f - f_h, f + f_h or f*f_h yield
localizable functions via generically implemented local functions (if the dimensions allow it).

We also provide numerous implementations of LocalizableFunctionInterface in dune-xt-functions,
most of which can also be created using the FunctionsFactory39, given a Configuration:

• CheckerboardFunction in dune/xt/functions/checkerboard.hhmodels a piecewise constant function,
the values of which are associated with an equidistant regular partition of a domain. Sample
configuration for a function R2

→ R:
1 lower_left = [0. 0.]
2 upper_right = [1. 1.]
3 num_elements = [2 2]
4 values = [1. 2. 3. 4.]

• ConstantFunction in dune/xt/functions/constant.hhmodels a constant function. Sample configu-
ration for a function Rd

→ R2×2, for any d ∈N, mapping to the unit matrix in R2:
1 value = [1. 0.; 0. 1.]

• ExpressionFunction in dune/xt/functions/expression.hh models continuous functions, given an
expression and order at runtime (expressions for gradients can be optionally provided).
Sample configuration for f : R2

→ R2 given by (x, y) 7→ (x, sin(y)):
1 variable = x
2 order = 3
3 expression = [x[0] sin(x[1])]
4 gradient.0 = [1 0]
5 gradient.1 = [0 cos(x[1])]

Note that the user has to provide the approximation order, resulting in f being locally
approximated as a third order polynomial on each grid element.

• GlobalLambdaFunction in dune/xt/functions/global.hhmodels continuous functions by evaluating
a C++ lambda expression. Sample usage for f : R2

→ R given by (x, y) 7→ x:

C++ code
1 GlobalLambdaFunction< E, D, 2, R, 1 > f([](DomainType x){ return x[0]; },
2 1); // <- local polynomial order

39dune/xt/functions/factory.hh
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• Spe10::Model1Function in dune/xt/functions/spe10.hhmodels the permeability field of the SPE10
model1 test case, given the appropriate data file40.
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