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Abstract: This document describes a C++ -library for the generation of invariant-based models,
including first three derivatives. Using expression templates, features of C++11/14, forward au-
tomatic differentiation and modern SFINAE-techniques admits a highly efficient implementation
with a simple and intuitive interface.

1 Introduction

Efficient and robust mathematical algorithms for the solution of real-world and scientific problems
often require the computation of derivatives of complex functions. Since the manual computation
of derivatives is time-consuming and error-prone, this problem is typically solved by software.
Different strategies have been developed to solve this task. The most popular approach, finite
differences, is known to cause significant problems due to truncation errors and the difficulty to
control their accuracy for highly nonlinear problems.

For this reason several other approaches have been investigated and implemented. Besides finite
differences, the most popular strategies for the computation of derivatives are symbolic and
automatic differentiation (AD). The former computes the derivative of a function, which then can
be evaluated, whereas the latter directly computes the evaluation of the derivative.

In C++ the standard implementation technique for both symbolic and automatic differentiation is
to provide overloads for arithmetic operators and elementary functions in cmath, resp. in math.h
such that their direct evaluation can be replaced by an object that carries all information neces-
sary for the computation of derivatives. One distinguishes forward- or reverse-mode schemes.
Forward-mode schemes implement the same procedure that one typically uses for the manual
computation of derivatives. Starting from the whole function, differentiation rules are applied
recursively until we reach the point where only simple expressions, for which the derivatives are
known, must be processed. Reverse-mode schemes use a more involved strategy for the evalua-
tion of derivatives and are not of interest here1. The interested reader is referred to eg. Griewank
and Walther [2008].

An incomplete list of forward-mode schemes includes ADOLC Walther and Griewank [2012],
though with main focus on reverse-mode schemes, Sacado Heroux et al. [2005], which is part
of the Trilinos project, CoDiPack Sagebaum et al., a particularly efficient implementation of
the scientific computing group of Technische Universität Kaiserslautern, ADEPT Hogan [2014],

1For the use-cases that are of interest here, reverse-mode schemes are significantly slower than forward schemes.



170 Lars Lubkoll

FADBAD++ Bendtsen and Stauning [1996] and CppAD Bell. Other approaches use symbolic
differentiation to compute the derivative of a function. This strategy is followed in SEMT SEM,
Gil and Gutterman [1998] and in Kourounis et al. In particular the latter seems to be interesting.
Unfortunately the article was never published and the used code is not publicly available2.
For further references the interested reader is referred to Kourounis et al. and the website
www.autodiff.org.

Despite the large number of available AD-libraries FunG3 provides some unique features. First
it is not tied to a specific type of variable. Instead it provides a small and flexible interface that
admits to work with general vector space elements. In particular FunG admits the computation of
directional derivatives with respect to matrices and provides all functionality for invariant-based
models, i.e. models that describe physical processes in terms of matrix invariants. This type of
model is the basis of state of the art models for hyperelastic materials, cf. Lubkoll [2015] and the
references therein. For these materials the mechanical properties are given in terms of a strain
density function W(F) that depends on the deformation gradient F ∈ R3,3. As an example we
consider a model for the description of muscle tissue from Martins et al. [1998], given through

W(F) = c
[
exp(b(ῑ1(C) − 3)) − 1

]
+ d

[
exp(a(ῑ6(C,M) − 1)2) − 1

]
,

ῑ1(C) = tr(C) det(C)−1/3, C = FTF,

ῑ6(C,M) = tr(CM2) det(C)−1/3,

where ῑ1 is called the first modified invariant and ῑ6 the third modified mixed invariant. The
latter is used to describe the anisotropic influence of the muscle fibers. The need to assemble∫

Ω
W(n)(F) dx, n = 1, . . . , 3 was the motivation for the development of FunG.

Another advantage is the runtime performance of the generated models, which is demonstrated
in Sec. 5. This has several reasons. The treatment of multiple variables is different from other
implementations and admits to avoid redundant computations. Furthermore, due to a compiler-
friendly code design, the generation of efficient code is strongly simplified. Careful profiling and
suitable optimizations yield an implementation that contains only small runtime overhead.

Eventually, all other investigated AD-implementations require the introduction of additional
types. Mostly these are containers for scalar unknowns. Only FADBAD++ does not need these
wrappers, though it requires to use a particular container for the implementation of the function
for which we want to compute the unknown. In this respect FunG requires less setup code for
using it. For the above introduced model of muscle tissue we can simply write:

C++ code
1 using namespace FunG;
2 // for given type Matrix
3 // initialize the structural tensor M
4 auto M = LinearAlgebra::unitMatrix<Matrix>();
5 // initialize the deformation gradient F
6 auto F = LinearAlgebra::unitMatrix<Matrix>();
7 // generate relationship between strain and deformation gradient
8 auto C = LinearAlgebra::strainTensor(F);
9 // generate the relationship between strain and energy density

10 auto W = c*( exp( b*( mi1(C) - 3 ) ) - 1 )
11 + d*( exp( a*pow<2>( mi6(C,M) - 1 ) ) - 1 );

Here mi1 and mi6 denote the first modified invariant ῑ1(F), resp. the third modified mixed
invariant ῑ6(F,M) and the function strainTensor(F) generates the strain tensor C = FTF.

2A preprint of the paper is available at www.researchgate.net/profile/Michael_Saunders2/publications.
3The name FunG is both an abbreviation for Function Generation and a tribute to Yuan-Cheng Fung one of the founders

of modern biomechanics.
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While FunG has several unique features it also lacks some functionality provided by other AD-
implementations. In particular it currently does not provide reverse-mode automatic differenti-
ation. Due to its generic approach it also lacks full jacobian computation, which would require
the introduction of new customized data structures, i.e. for higher order tensors. This strongly
opposes one of the principal ideas behind FunG, namely providing an abstraction layer that still
allows each user to use his own, possibly optimized, data structures4.

To keep the presentation concise we will mainly restrict the discussion to scalar variables. Ex-
tensions for matrices are discussed where necessary. The implementation strictly follows the
underlying mathematical structure. This is explained in Sec. 2. Then provided mathematical
functions, such as common trigonometric functions and matrix invariants, are shortly introduced
in Sec. 3. In Sec. 4 we will discuss different optimization strategies that are implemented in FunG,
using two invariant-based models as examples. Then, in Sec. 5, the performance of FunG is
compared with several automatic differentiation (AD) libraries. In Sec. 6 examples that illustrate
several features of FunG are given. This paper ends with a short summary of the attained results
(Sec. 7) and instructions for downloading and installing the library (Sec. 8).

2 Concepts

We begin by introducing the main concepts and techniques that are necessary for an efficient and
generic implementation. For this first the interfaces for functions and variables are introduced.
Then we discuss the heart of FunG, the implementations of elementary differentiation rules.

2.1 Functions in FunG

In FunG every nullary callable is treated as a constant function. Non-constant functions addi-
tionally provide a function update to change the point of evaluation x ∈ X, where X denotes
some vector space. Optionally up to the first three directional derivatives may be specified. The
interface for functions is summarized in the following list:

• Evaluate f (x), where x has been assigned before:

C++ code
1 template <class Arg>
2 const auto& operator()() const;

• Set the point of evaluation x for general arguments (for non-constant functions):

C++ code
1 template <class Arg>
2 void update(const Arg& x);

• Evaluate the first directional derivative f ′(x)δx (for non-constant functions):

C++ code
1 template <class Arg>
2 auto d1(const Arg& dx) const;

• Evaluate the second directional derivative f ′′(x)(δx, δy) (for non-linear functions):

C++ code
1 template <class ArgX, class ArgY>
2 auto d2(const ArgX& dx, const ArgY& dy) const;

4While not providing this functionality in a generic setting it is straightforward to write the corresponding assembly-
loop using FunG.
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• Evaluate the third directional derivative f ′′′(x)(δx, δy, δz) (for non-linear, non-quadratic
functions):

C++ code
1 template <class ArgX, class ArgY, class ArgZ>
2 auto d3(const ArgX& dx, const ArgY& dy, const ArgZ& dz) const;

Derivatives that are not implemented are interpreted as functions that always return zero. This
design decision has significant advantages during code generation, see Sec. 4.2. However, it is
not very convenient to use a function that may or may not provide certain member functions.
Thus it is advisable to always use a finalized version of the generated function, i.e. instead of the
generated function f, better use the result of finalize(f). The call to finalize adds all undefined
derivatives and, depending on the generated function, may perform some simplifications of the
interface. This is explained in see Sec. 6. 5

2.2 Function arguments in FunG

In the last section an interface for functions on vector spaces was presented. Therefore function
arguments should at least satisfy the requirements of a vector space element, they should be
scalable and sumable. For non-scalar variables additional operations should be supported, such as
matrix-matrix- or matrix-vector-multiplication. As example consider the matrix-valued example
in the introduction, where scalability, sumability and matrix-matrix-multiplication is required for
the function arguments.

In the following subsections the required interfaces for the classical function arguments scalars,
vectors and matrices are summarized. Other vector space elements are possible, but must be
provided by the user together with corresponding functions.

2.2.1 General interface. The following requirements hold for all variables that are to be used
with FunG:

• one of the following operations must be valid for variables v,w of type V:

C++ code
1 v += w;
2 V x = v + w;

If only the first alternative is available, then FunG will generate an implementation of the
free summation operator.

• one of the following operations must be valid for a of arithmetic type A 6:

C++ code
1 v *= a;
2 V w = a*v;

If only the first alternative is available, then FunG will generate an implementation of the
free multiplication operator.

5Currently no derivatives or order higher than the third are implemented. This is due to two reasons. First, for solving
optimization problems typically no more than the first two or three derivatives are required. Secondly, derivatives of
arbitrary order require to additionally pass the order as template argument. Together with the increasing number of
template and function arguments this leads to signatures that are sufficiently hard to read to justify the introduction of a
proxy object to increase readability. This in turn leads to a less intuitive syntax.

6Here “arithmetic” is used in the sense that std::is_arithmetic<A>::value == true.
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These operations are not only available for built-in arithmetic types, but at least one of the
alternatives is implemented in most C++ matrix libraries, such as Eigen (Guennebaud and Jacob
[2010]), Dune-ISTL (Blatt and Bastian [2007]) or Armadillo (Sanderson [2010]).

2.2.2 Extended interface. For matrices and vectors additional functionality is required. Since
vectors are treated analogously, the discussion is restricted to matrices. For these the additional
requirements are:

• access to entries,

• access to the number of rows and

• access to the number of columns.

For all cases there exist free template functions that provide access to the desired quantity via
traits classes. For accessing matrix entries there is:

C++ code
1 template <class Matrix, class Index,
2 class = std::enable_if_t<std::is_integral<Index>::value> >
3 decltype(auto) at( Matrix&& A, Index i, Index j )
4 {
5 return AccessEntryOfMatrix<Matrix>::apply( A, i, j );
6 }

Currently, FunG supports the most popular ways of accessing matrix entries, via:

A[i][j] or A(i,j).

Using the SFINAE7-technique of Sec. 2.4 it is easy to choose the correct implementation at compile
time 8.

Regarding the access of the number of rows, resp. columns, matrices of constant size and of
dynamic size are distinguished. For constant size matrices access to the number of rows and
columns at compile time enables loop-unfolding optimizations for the C++-compiler. To exploit
this fact, slightly different interfaces are provided for matrices of constant and dynamic size.

2.2.2.1 Matrices of constant size. For constant size matrices the following free template func-
tions admit access to the number of rows resp. columns:

C++ code
1 template <class Matrix>
2 constexpr auto rows()
3 {
4 return NumberOfRows<Matrix>::value;
5 }
6
7 template <class Matrix>
8 constexpr auto cols()
9 {

10 return NumberOfColumns<Matrix>::value;
11 }

Matrices of constant size often take the numbers of rows and columns as template parameters. If
template matrix types can be specified with one of the patterns

7Substitution Failure Is Not An Error.
8In case that both ways of accessing entries are supported, square brackets are used.
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C++ code
1 using M1 = MyMatrix<nRows,nCols>
2 // or
3 using M2 = MyMatrix<Scalar,nRows,nCols>

then FunG will automatically detect the number of rows and columns. Else you need to provide
a specialization of the template classes NumberOfRows and NumberOfColumns. To illustrate usage
we consider the implementation of the scalar product (A,B) :=

∑
i, j Ai jBi j:

C++ code
1 template <class Matrix>
2 auto scalarProduct(const Matrix& A, const Matrix& B)
3 {
4 using Index = decltype( rows<Matrix>() );
5
6 auto result = decltype( at(A,0,0) )(0);
7 for( Index i = 0 ; i < rows<Matrix>() ; ++i )
8 for( Index j = 0 ; j < cols<Matrix>() ; ++j )
9 result += at(A,i,j) * at(B,i,j);

10
11 return result;
12 }

2.2.2.2 Matrices of dynamic size. For matrices of dynamic size the following free template
functions admit access to the number of rows resp. columns:

C++ code
1 template <class Matrix>
2 auto rows(const Matrix& A)
3 {
4 return DynamicNumberOfRows<Matrix>::apply( A );
5 }
6
7 template <class Matrix>
8 auto cols(const Matrix& A)
9 {

10 return DynamicNumberOfColumns<Matrix>::apply( A );
11 }

Currently, there is support for

• access via public member variables n_rows and n_cols (as used in Armadillo),

• access via public member functions rows() and cols().

For other signatures suitable specializations of the template classes DynamicNumberOfRows and
DynamicNumberOfColumnsmust be provided. Again, we illustrate usage with the implementation
of the scalar product (A,B) :=

∑
i, j Ai jBi j:

C++ code
1 template <class Matrix>
2 auto scalarProduct(const Matrix& A, const Matrix& B)
3 {
4 assert( rows(A) == rows(B) && cols(A) == cols(B) );
5 using Index = decltype( rows(A) );
6
7 auto result = decltype( at(A,0,0) )(0);
8 for( Index i = 0 ; i < rows(A) ; ++i )
9 for( Index j = 0 ; j < cols(B) ; ++j )

10 result += at(A,i,j) * at(B,i,j);
11
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12 return result;
13 }

2.2.3 Usage of non-built-in arithmetic types. FunG admits the usage of user-defined arith-
metic types. For this a suitable specialization of the template class IsArithmetic must be pro-
vided:

C++ code
1 template <>
2 struct IsArithmetic< UserDefinedScalarType >
3 : std::true_type
4 {};

2.2.4 Working with expression templates in matrix libraries. In some matrix-libraries, such
as Eigen (cf. Guennebaud and Jacob [2010]), mathematical operations are implemented with ex-
pression templates that delay the actual computation until the next assignment. This may interfere
with generic implementations that use automatic type deduction. To avoid these problems in
FunG, a suitable specialization of the template class Decay must be provided. This is illustrated
for the Eigen-library, where expression-templates provide the underlying matrix- or vector-type
with the nested type PlainObject.

C++ code
1 // Default case (identity).
2 template < class F, class = void >
3 struct Decay
4 {
5 using type = F;
6 };
7
8 // Underlying type for expression templates of the Eigen library.
9 template < class F >

10 struct Decay< F, void_t< Checks::TryNestedType_PlainObject<F> > >
11 {
12 using type = typename F::PlainObject;
13 };

2.2.5 Multiple variables To work with multiple variables FunG provides a special template
class to associate an id with a variable:

C++ code
1 template <class Type, int id>
2 class Variable;

This class is a function in the sense of 2.1. If derivatives are computed with respect to id, then
this class behaves like a linear function, else like a constant function. This association of ids with
variables at compile time has two advantages. First, it admits the generation of highly efficient
code. This is explained in sec 4.2. Secondly, this approach does not require any additional storage
for id.

We can use automatic type deduction to simplify the creation of a new variable:

C++ code
1 // create variable of type Variable <std::decay_t<decltype(x)>,0>
2 auto v0 = variable<0>(x)

For the template argument Type any type that satisfies the interface for variables is admissible,
see 2.2. For problems that only depend on one variable the template class Variable is not required.

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017
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2.3 Mathematical operations

Having defined requirements on functions and their arguments we now turn to the question how
to build up complex functions from elementary ones. Exemplarily, we consider

h(x) = exp(sin(x)) + exp(x) log(x) = ( f0 ◦ f1)(x) + f0(x) f2(x), (1)

with f0(x) = exp(x), f1(x) = sin(x) and f2(x) = log(x). The representation of h as combination of
more elementary functions can be represented in a tree structure. This is illustrated in Fig. 1:

+

◦

f0 f1(x)

∗

f0(x) f2(x)

Figure 1: Tree structure associated with h(x) = exp(sin(x)) + exp(x) log(x) = ( f0 ◦ f1)(x) + f0(x) f2(x).

The leafs are functions and all other nodes represent a mathematical operation. Then, the differ-
entiation process can be described by a small set of operations that generate a new tree. These
operations are equivalents of mathematical differentiation rules:

• the sum rule,
( f (x) + g(x))′ = f ′(x) + g′(x)

replaces the child nodes with its derivatives:

+

f (x) g(x)

δ
δx

+

f ′(x) g′(x)

Figure 2: Tree transform associated with the sum rule.

• the product rule,
( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x)

generates a more complex tree:

∗

f (x) g(x)

δ
δx

+

∗

f ′(x) g(x)

∗

f (x) g′(x)

Figure 3: Tree transform associated with the product rule.
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• and the chain rule,
f (g(x))′ = f ′(g(x))g′(x)

yields:

◦

f g(x)

δ
δx

◦

◦

f ′ g(x)

g′(x)

Figure 4: Tree transform associated with the chain rule.

With the given transformation rules it is easy to get the derivative of an arbitrary complex function
by traversing its tree representation from top to bottom and repeatedly applying the differentiation
rules. For the derivative of the function h, defined at the start of this subsection, we get:

+

◦

◦

f ′0 f1(x)

f ′1(x)

+

∗

f ′0(x) f2(x)

∗

f0(x) f ′2(x)

Figure 5: Example tree structure corresponding to h′(x).

2.3.0.1 Expression templates. We can easily evaluate the derivative h′(x) by traversing the
generated tree. However, setting up such a tree structure and traversing it adds significant
overhead that will slow down computations significantly. The classical technique for avoiding
this overhead is based on expression-templates, cf. Veldhuizen [1995], and used in most AD-
implementations, cf. eg. Hogan [2014], Walther and Griewank [2012], Sagebaum et al., Bendtsen
and Stauning [1996], Heroux et al. [2005].

Expression-templates provide an abstraction layer that separates the interface for, i.e. mathemati-
cal, operations from its implementation. With this abstraction the evaluation of the tree structures
can be performed at compile time.

In the context of FunG, simplified versions of the mathematical operators take the forms:

C++ code
1 template <class F, class G,
2 /* static concept checking */>
3 auto operator+(const F& f, const G& g) {
4 return MathematicalOperations::Sum<F,G>(f,g);
5 }

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017
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C++ code
1 template <class F, class G,
2 /* static concept checking */>
3 auto operator*(const F& f, const G& g) {
4 return MathematicalOperations::Product<F,G>(f,g);
5 }

The template classes Sum and Product hide the actual implementation of the mathematical oper-
ations and provide the corresponding differentiation rules. Additionally there exist implementa-
tions of operator- based on operator+.

For the chain rule an overload of the function call operator is required. This overload must be
added to each function that is used within FunG (at least if the chain rule is used). This can be
done by using the CRTP9-based class Chainer:

C++ code
1 template <class Function>
2 struct Chainer
3 {
4 // provide function call operator
5 decltype(auto) operator()() const noexcept
6 {
7 return static_cast<const Function*>(this)->d0();
8 }
9

10 // support chain rule
11 template <class OtherFunction ,
12 /* static concept checks */>
13 auto operator()(const OtherFunction& g)
14 {
15 return MathematicalOperations::Chain<Function,OtherFunction>
16 (*static_cast<const Function*>(this),g);
17 }
18
19 ...
20 };

To avoid explicitly importing the overloads of Chainer to the derived class this class should no
more define the function call operator. Instead it should define a function d0with same signature
as the function call operator would have.

Assume that we already have defined a class Cos satisfying the function interface but not yet the
chain rule. Then the easiest way to add support for the chain rule is to change it from

C++ code
1 class Cos {
2 ...
3 double operator() const noexcept;
4 ...
5 };

to

C++ code
1 #include ‘‘fung/util/chainer.hh’’
2
3 class Cos : public Chainer<Cos> {
4 ...
5 double d0() const noexcept;
6 ...
7 };

9Curiously Recurring Template Pattern.
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As example we consider the function h given at the beginning of this section. In FunG we can
write

C++ code
1 auto x = variable<0>(1.); // point of evaluation
2 auto fun = finalize( exp(sin(x)) + exp(x)*log(x) );

to generate an object of type

C++ code
1 Sum<
2 Chain<Exp,Sin>,
3 Product<Exp,Log>
4 >

This class contains all relevant information to generate the derivatives of fun. Thus the tree
structures described in the beginning of this section are generated and resolved at compile time.
Since all type-information is provided to the compiler most function calls will be eliminated when
resolving these trees. This approach allows to avoid almost all implementation-related runtime
overhead.

2.4 SFINAE and void_t

In FunG SFINAE-techniques based on void_t, cf. Brown [2014], are heavily used. void_t is a
template alias that is equivalent to void for all valid template arguments10:

C++ code
1 template <class...>
2 using void_t = void;

This alias matches any well-formed type into the predicable type void. In the context of FunG,
this allows to verify interfaces at compile-time, provide a flexible interface to matrix and vector
implementations as well as to remove redundant code paths from the evaluation of derivatives.

This is illustrated for the case of the first derivative in FunG, i.e. the case that we want to know if
objects of type T provide a member function d1, taking one argument of type Arg. We can try to
access this member function in an unevaluated context via

C++ code
1 template <class T, class Arg>
2 using TryMemFn_d1 =
3 decltype( std::declval<T>().d1(std::declval<Arg>()) );

This alias can be used to define a meta-function as follows:

C++ code
1 // Default case, no suitable member function d1.
2 template <class T, class Arg, class=void>
3 struct HasMemFn_d1
4 : std::false_type
5 {};
6
7 // Specialization for the case that a suitable member function d1 exists.
8 template <class T, class Arg>
9 struct HasMemFn_d1< T , Arg , void_t< TryMemFn_d1<T,Arg> > >

10 : std::true_type
11 {};

10This implementation of void_t does not directly work with gcc-x, x<5. For these compiler versions another level of
indirection must be added.
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This meta-function can be used to choose different code paths at compile time. Alternatively one
can use the same technique as in the specialization of HasMemFn_d1 to directly use SFINAE for the
choice of implementations.

2.5 Error handling

Debugging errors in strongly templatedC++ code is often not easy due to the hard-to-read compiler
output. Two ways of providing meaningful error messages are provided. Using the technique
described in the last section, we can check satisfaction of the required interfaces and consistency of
the defined function at compile time. Using static_assertmeaningful compiler error messages
are provided.

Sometimes things may go wrong because of the concatenation f ◦ g of two functions, where
ran(g) * dom( f ). If f is implemented with the help of functions from cmath, then one can inspect
the corresponding error flag. Alternatively one may define the macro FUNG_ENABLE_EXCEPTIONS.
If defined, it enables an OutOfDomainException that is thrown as soon as a function argument
leaves the admissible domain.

3 Provided functions

Mny functions that are contained in cmath, as well as matrix invariants and an implementation
of the strain tensor are provided in FunG.

3.1 Functions from cmath

The functions in cmath are contained in namespace std. Though, in the C++11-standard it is
allowed that the implementation just forwards to the C math library in math.h, wherein the
functions and macros are part of the global namespace. This practice is followed in most stl-
implementations. For this reason it is not possible to provide the same signature for built-in
arithmetic types.

A common strategy to solve this problem in AD-implementations is the introduction of a special
variable, such as adouble in ADOL-C. In FunG the template class Variable can be used for this
purpose. For problems that only depend on one variable, it is also admissible to directly use
custom types11. To avoid ambiguity for functions that are contained in cmath the first letter of the
function name must be changed to uppercase:

C++ code
1 auto f = Sin(1.) // uppercase to avoid ambiguity
2 auto g = sin( variable<0>(1.) ) // no ambiguity

An overview on the currently available scalar functions is given in Table 1.

3.2 Invariants

Since physical models should be independent of the position of the observer they are formulated
in terms of invariants, such as det(A), tr(A) or cof(A). In FunG, optimized implementations of
the determinant12, the trace and the cofactors are provided for both, matrices of constant and
dynamic size. Based on these, implementations of different invariants are provided. These are
summarized in table 2.

The first and third invariant, the trace and determinant of a matrix A ∈ Rn,n, can also be accessed
via trace(A) resp. det(A). Another important quantity in invariant-based modeling is the strain

11In this case the post-processing through finalize yields a simpler interface, cf. Sec. 6.
12The determinant is implemented for matrices A ∈ Rn,n, n = 2, 3.
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Table 1: Available scalar functions in FunG.

Formula Code Code (built-in arithmetic)
xn/m pow<n,m>(x) Pow<n,m>(x)
√

x sqrt(x) Sqrt(x)
3
√

x cbrt(x) Cbrt(x)
3√

x2 cbrt2(x) Cbrt2(x)
2x exp2(x) Exp2(x)

exp(x) exp(x) Exp(x)
log(x) log10(x) Log10(x)

log2(x) log2(x) Log2(x)
ln(x) ln(x) LN(x)

sin(x) sin(x) Sin(x)
cos(x) cos(x) Cos(x)
tan(x) tan(x) Tan(x)

arcsin(x) asin(x) ASin(x)
arccos(x) acos(x) ACos(x)

Table 2: Available invariants in FunG.

Invariant Formula Code
ι1(A) = tr(A) i1(A)
ι2(A) = tr(cof(A)) i2(A)
ι3(A) = det(A) i3(A)

ι4(A,M) = tr(AM) i4(A,M)
ι5(A,M) = tr(AM2) i5(A,M)
ι6(A,M) = tr(A2M) i6(A,M)
ῑ1(A) = tr(A) det(A)−1/3 mi1(A)
ῑ2(A) = tr(cof(A)) det(A)−2/3 mi2(A)

ῑ4(A,M) = tr(M,A) det(A)−1/3 mi4(A,M)
ῑ5(A,M) = tr(AM2) det(A)−1/3 mi5(A,M)
ῑ6(A,M) = tr(A2M) det(A)−2/3 mi6(A,M)

tensor C = FTF for F ∈ Rn,n. An efficient implementation, that exploits symmetry, can be accessed
via:

C++ code
1 auto C = strainTensor(F);

4 Performance optimization

FunG was developed with focus on integrands that are evaluated in finite-element assembly
procedures. Thus performance is important. In this section the three most relevant optimization
strategies are shortly presented. Two examples from biomechanics are used to illustrate their
effects. The first is a compressible version of the muscle model which has been shown in the

c© by the authors, 2017 Archive of Numerical Software 5(1), 2017



182 Lars Lubkoll

introduction:

W(F) = c
[
exp(b(ῑ1(C) − 3)) − 1

]
+ d

[
exp(a(ῑ6(C,M) − 1)2) − 1

]
+

e det(C) +
f
2

log(det(C)),

ῑ1 = tr(C) det(C)−1/3, C = FTF,

ῑ6 = tr(CM2) det(C)−1/3,

where a, b, c, d, e and f are material parameters. In FunG this can be implemented as follows:

C++ code
1 // for given MatrixType
2 // initialize the structural tensor M
3 auto M = LinearAlgebra::unitMatrix<Matrix>();
4 // initialize the deformation gradient F
5 auto F = LinearAlgebra::unitMatrix<Matrix>();
6
7 auto model = c*( exp( b*( mi1(F) - 3 ) ) - 1 )
8 + d*( exp( a*pow<2>( mi6(F,M) - 1 ) ) - 1 )
9 + e*det(F) + f/2*log(det(F));

10
11 // generate strain tensor
12 auto C = strainTensor(F);
13 // generate material model W(C)
14 auto W = model( C );

In the above model mi1 and mi6 denote the first modified invariant ῑ1(F), resp. the third modified
mixed invariant ῑ6(F,M) and the function strainTensor(F) generates the strain tensor C = FTF.

The second is a compressible model for adipose tissue from Sommer et al. [2013]:

W(F) = cCells(ι1 − 3) +
k1

k2
exp(k2(κι1 + (1 − 3κ) ∗ ι4)2

− 1)+

e det(C) +
f
2

log(det(C)),

ι1 = tr(C), C = FTF,
ι4 = tr(CM),

where c, k1, k2, κ are material parameters. Its implementation in FunG is given through

C++ code
1 // for given MatrixType
2 // initialize the structural tensor M
3 auto M = LinearAlgebra::unitMatrix<Matrix>();
4 // initialize the deformation gradient F
5 auto F = LinearAlgebra::unitMatrix<Matrix>();
6
7 auto model = c*( i1(F) - 3 )
8 + d*( exp( a*pow<2>( mi6(F,M) - 1 ) ) - 1 )
9 + e*det(F) + f/2*log(det(F));

10
11 // generate strain tensor
12 auto C = strainTensor(F);
13 // generate material model W(C)
14 auto W = model( C );

In the following all computations are performed on an ASUS UX32V, 4xi7-3517 1.90 GHz, 10 GiB
DDR3-RAM 1600 MHz under Kubuntu 16.04. The code was compiled with gcc 5.3.1 and addi-
tional compiler flag -std=c++1y. Constant-size matrices of Eigen, version 3.2.0, see Guennebaud
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and Jacob [2010] are used. For each described optimization technique the average computation
time for the evaluation of single member functions will be given, where the average is computed
over 107 evaluations at varying points of evaluation. No numbers are given for the evaluation of
the function value. This is due to the fact that the related computations are fully performed in the
update-function, see Sec. 4.1. Thus the function call operator only has to access the cached value.
Recall that the performance of FunG is, to large parts, a consequence of compiler-friendly code
design. Thus all measurements are strongly dependent on the used compiler.

4.1 Caching

The most efficient strategy to reduce the computation time in automatic differentiation is caching.
This is mainly due to two reasons. First, caching intermediate results that are expensive to
compute pays off. This does not only include caching of the results of iterative computations
such as sqrt(x), sin(x) or exp(x), but also the direct evaluation of every function in its update-
function. This avoids repeated evaluation in expressions such as

( f (x) ∗ g(x) ∗ h(x))′ = f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x),

where each function value is used twice. Secondly this admits to reduce the number, and often
also the size, of temporary variables. Both effects help avoiding expensive cache misses. The
influence on performance is illustrated in table 3.

adipose tissue muscle tissue

caching update d1 d2 d3 update d1 d2 d3

with 260 ns 44 ns 159 ns 490 ns 473 ns 62 ns 305 ns 1752 ns

without 270 ns 190 ns 714 ns 3090 ns 473 ns 353 ns 1673 ns 11907 ns

ratio 0.96 0.23 0.22 0.16 01.00 0.18 0.18 0.15

Table 3: Average computation time with and without caching.

4.2 Elimination of zeros

One of the disadvantages of automatic differentiation is the fact that for higher-order, possibly
mixed, derivatives significant computation time can be spend with the computation of zeros. In
most cases the compiler is not able to remove these redundant operations. Thus it pays off to
implement a mechanism that eliminate these branches.

The essential idea is to not implement functions that always return zero (such as the second
derivative of a linear function). Using the technique described in Sec. 2.4 it is straightforward to
provide suitable optimizations for the mathematical operations described in Sec. 2.3 13.

The impact on performance is illustrated in table 4. For the update- and the d1-function the
observed differences are negligible. This is to be expected since no operation can be eliminated
from the first and only few from the latter. For higher derivatives the elimination of zeros becomes
more and more relevant.

13This design decision also enables efficient treatment of multiple variables and mixed derivatives.
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adipose tissue muscle tissue

zeros update d1 d2 d3 update d1 d2 d3

with 260 ns 44 ns 159 ns 490 ns 473 ns 62 ns 305 ns 1752 ns

without 267 ns 42 ns 192 ns 835 ns 477 ns 60 ns 362 ns 2333 ns

ratio 0.97 1.05 0.83 0.59 0.99 1.03 0.84 0.75

Table 4: Average computation times with and without elimination of zeros.

4.3 Compiler flags

FunG largely consists of template classes, functions and aliases. Thus one of the prerequisites
for the generation of efficient code is that the compiler must inline most of the function calls. In
particular significantly larger amounts of code than in the “average” C++-code must be inlined.
In invariant-based models, where also loops over matrix entries must be unfolded, significant
performance increases can often be observed after adjusting the following compiler parameters:

• early-inlining-insns=5000

• max-inline-insns-auto=3000

• inline-unit-growth=100

For more details, see Stallman and the GCC Developer Community [2015], Alexandrescu [2014].
The influence of these adjustments is illustrated in table 5.

adipose tissue muscle tissue

flags update d1 d2 d3 update d1 d2 d3

with 210 ns 3 ns 75 ns 166 ns 400 ns 3 ns 246 ns 1369 ns

without 260 ns 44 ns 159 ns 490 ns 473 ns 62 ns 305 ns 1752 ns

ratio 0.81 0.07 0.47 0.34 0.85 0.05 0.81 0.78

Table 5: Average computation times with and without additional compiler flags.

Note that there is no golden rule for choosing compiler parameters. Its effects strongly differ be-
tween compilers and compiler versions. Moreover, when compiled together with an application,
where FunG typically only is a small part, other parts of the code may influence the way the
compiler optimizes the code. The latter effect can be avoided by compiling function definitions
separately.

5 Comparison with AD-libraries

To give a first idea of the performance of FunG it is compared with several AD-libraries. For this,
we consider the forward mode AD-schemes of

• ADOLC, version 2.6.1, see Walther and Griewank [2012],

• Adept, version 1.1, see Hogan [2014],

• CoDiPack, version 1.2.1, see Sagebaum et al.,
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• CppAD, github, master branch from 01/23/2016, see Bell,

• FADBAD++, version 2.1, see Bendtsen and Stauning [1996] and

• Sacado, version 12.4.2 of Trilinos, see Heroux et al. [2005].

Again the computations are performed on an ASUS UX32V, 4xi7-3517 1.90 GHz, 10 GiB DDR3-
RAM 1600 MHz under Kubuntu 16.04. The code was compiled with gcc 5.3.1 and additional
compiler flag -std=c++1y.

Since not all investigated libraries support higher derivatives only the first derivative is consid-
ered. Moreover, the following examples are restricted to scalar variables. The reason is that
matrix-valued variables are not directly supported by the other libraries 14.

In tables 6-8 computation times for different functions are compared with the best manual imple-
mentation that the author was able to provide for both, the function value and the first derivative.
Ratios are given with respect to this manual implementation. Since not all libraries support
the separate evaluation of function value and derivative the average evaluation time of both
quantities is measured over 107 evaluations with different function arguments.

• The first example is
f0(x) = x3/2 + sin(

√
x).

This function can also be written as f0 = g ◦ h, where g(x) = x3 + sin(x) and h(x) =
√

x.
The latter implementation only requires one evaluation of

√
x. In table 6 the corresponding

average computation time is given under FunG (opt). From the same table we see that
a straight-forward implementation of f0 in FunG is about 10% slower, since

√
x must be

evaluated twice.

Manual FunG (opt) FunG CoDiPack Sacado FADBAD Adept ADOLC CppAD

60 ns 60 ns 65 ns 65 ns 68 ns 222 ns 304 ns 401 ns 926 ns

1.00 1.00 1.08 1.08 1.13 3.70 5.07 6.68 15.4

Table 6: Comparison of the average computation time for the evaluation of function value and
derivative for f0(x) = x3/2 + sin(

√
x). Ratios are given with respect to the manual implementation.

As illustrated in table 6, FunG achieves the same performance as the optimized manual
implementation. Without the above introduced reformulation of f0 FunG provides the
same performance as CoDiPack. Sacado is slighly slower in this example. Despite the fact
that f0 is a very simple function the remaining libraries, FADBAD++, Adept, ADOLC and
CppAD are already significantly slower. These differences will be even more pronounced
in the following examples.

• The next example is

f1(x) = 1 + x(1 + x(1 + x(1 + x)))

( =

4∑
i=0

xi)

This example only consists of simple and cheap operations. In particular nothing has to
be computed iteratively. As illustrated in table 7, both FunG and CoDiPack achieve the
same performance as the optimized manual implementation. All other implementations
are significantly slower.

14In case that vector-valued variables are supported one could work with vectorized matrices.
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Manual FunG CoDiPack Sacado FADBAD Adept ADOLC CppAD

1.7 ns 1.7 ns 1.7 ns 4.0 ns 13.9 ns 45.8 ns 336 ns 558 ns

1.00 1.00 1.00 2.35 8.18 26.9 198 328

Table 7: Comparison of the average computation time for the evaluation of function value and
derivative for f1(x) = 1 + x(1 + x(1 + x(1 + x))). Ratios are given with respect to the manual
implementation.

• The last example is given through

f2(x, y, z) = xyz.

This demonstrates the effect of multiple variables15.

Manual FunG CoDiPack FADBAD Sacado Adept ADOLC CppAD

1.7 ns 1.7 ns 2.0 ns 8.1 ns 40 ns 48 ns 877 ns 1781 ns

1.00 1.00 1.18 4.76 23.5 28.2 515 1047

Table 8: Comparison of the average computation time for the evaluation of function value and
derivative for f2(x, y, z) = xyz. Ratios are given with respect to the manual implementation.

As illustrated in table 8 FunG achieves the same performance as the optimized manual
implementation. Only the forward-scheme of CoDiPack, which is 18% slower, provides
roughly comparable performance. The large differences with respect to the other examined
libraries is partly a consequence of the elimination strategy of Sec. 4.2.

6 Examples

We provide some examples that illustrate different features and how to use FunG. In Sec. 6.1
a model for adipose tissue is described. It illustrates the generation of invariant-based models
without usage of the template class Variable. In Sec. 6.2 a model with different variables of
different types is generated. Eventually, a model of nonlinear heat transfer is described. Such
models depend on the state and the gradient of the heat distribution. How this is realized in
FunG is demonstrated Sec. 6.3.

6.1 A model for adipose tissue

We begin with the model for adipose tissue of Sommer et al. [2013], which was already used in
Sec. 4. It is assumed that the number of rows/columns of the used matrices can be deduced at
compile time. Here cCells, k1, k2, κ denote material parameters, F is the deformation gradient and M
is a structural tensor describing the fiber directions of the interlobular septa 16. The functions i1
and i4 implement the first invariant ι1(F) = tr(F), resp. the first mixed invariant ι4(F,M) = tr(FM).

15The compared libraries provide different ways of computing derivatives in vector mode. Adept computes the adjoint
with respect to the Euclidean scalar product, CppAD computes the gradient and all others directly compute the directional
derivatives. Since all three approaches require the computation of the same values, the author considers these slightly
differing approaches worthy to compare.

16In adipose (fat) tissue anisotropic properties are mainly attributed to the interlobular septa, a network of long fibrous
collagen bundles, see. Sommer et al. [2013].
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C++ code
1 template <class Matrix>
2 auto adiposeTissueModel(double cCells, double k1, double k2,
3 double kappa, const Matrix& M, const Matrix& F,
4 int n = dim<Matrix>()) {
5 using namespace FunG;
6 using namespace FunG::LinearAlgebra;
7
8 auto aniso = kappa*i1(F) + ( 1 - 3*kappa ) * i4(F,M) - 1;
9 auto materialLaw = cCells*( i1(F) - n ) + (k1/k2) * ( exp(k2*pow<2>(aniso)) - 1 );

10
11 return finalize( materialLaw( strainTensor(F) ) );
12 }
13
14 auto f = adiposeTissueModel(cCells,k1,k2,kappa,M,F);

Observe that no specific variable is associated with the unknown F. In this case the call to
finalize yields a simplified interface. For some deformation F, the point of evaluation can be
changed via:

C++ code
1 f.update(F);

Access to function value and derivatives, with perturbations dF0, dF1, dF2, is given through:

C++ code
1 auto value = f();
2 auto firstDerivative = f.d1(dF0);
3 auto secondDerivative = f.d2(dF0,dF1);
4 auto thirdDerivative = f.d3(dF0,dF1,dF2);

Avoidance of the template class Variable enables another function that may be convenient.
Namely a call to finalize adds the additional member function:

C++ code
1 template < class Arg >
2 auto operator()( Arg&& x ) {
3 update( std::forward<Arg>( x ) );
4 return operator()();
5 }

Thus it is also possible to write

C++ code
1 auto value = f(F);

instead of

C++ code
1 f.update(F);
2 auto value = f();

6.2 An example with two variables

In this example we consider a function that takes a scalar and a matrix-valued argument:

f (x,M) =
√

x ∗ tr(M).

To generate f we use the following code:
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C++ code
1 #include ‘‘fung.hh’’
2
3 template <class Matrix>
4 auto myFunction(double initialX , const Matrix& initialM) {
5 using namespace FunG;
6 using FunG::LinearAlgebra::trace;
7
8 auto x = variable<0>(initialX);
9 auto M = variable<1>(initialM);

10
11 return finalize( sqrt(x)*trace(M) );
12 }
13 ...
14 f = myFunction(1.,M0);

Then, for scalar variables x, dx1, dx2 and matrix-valued variables M, dM we can change the point
of evaluation via:

C++ code
1 f.template update<0>(x);
2 f.template update<1>(M);

Access to the function value and its derivatives is given through:

C++ code
1 double value = f();
2 double df_dx = f.template d1<0>(dx1);
3 double df_dM = f.template d1<1>(dM);
4 double ddf_dMdx = f.template d2<1,0>(fM,dx1);
5 double dddf_dxdxdM = f.template d3<0,0,1>(dx1,dx2,dM);

6.3 A model for nonlinear heat transfer

Nonlinear partial differential equations require another feature, the possibility to use different
types associated to the same variable, such as representations of the value and gradient of a
variable. A popular example for these problems are models of nonlinear heat transfer such as the
following:

A(u,∇u) = (1 + |u|2)∇u

When computing A′(u,∇u)δu, then both u and ∇u must be taken into account. For this we need
to assign the same variable id to both value and gradient:

C++ code
1 #include ‘‘fung.hh’’
2
3 template <class Scalar, class Vector>
4 auto heatModel(const Scalar& u0, const Vector& du0) {
5 using namespace Fung;
6
7 auto u = variable<0>(u0); // state variable
8 auto du = variable<0>(du0); // gradient variable , both with id 0
9

10 return finalize( ( 1 + pow<2>(u) )*du );
11 }
12
13 auto f = heatModel(u0,du0);

To work with this kind of model arguments must be packed into tuples. Then, for a variable u
with gradient du we can change the point of evaluation via:
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C++ code
1 f.template update<0>( std::make_tuple(u,du) );

Similarly, for a perturbation v with gradient dv, we get:

C++ code
1 double value = f();
2 double df_dx = f.template d1<0>( std::make_tuple(v,dv) );
3 ...

Note that different types for v and dv are required. Thus, this does not directly work for higher
order ODE problems17.

7 Conclusion

In this paper a library for the generation of invariant-based models and complex mathematical
functions was presented. Exploiting features of C++11/14 a highly generic and still simple
implementation is provided, admitting the computation of derivatives with respect general vector
space elements, such as scalar, vector- or matrix-valued variables.

As building blocks for more complex functions FunG contains several mathematical functions
from cmath as well as a large set of principal, mixed and modified matrix invariants. Moreover an
arbitrary number – within the limits of the system architecture – of unknowns of different types
can be used.

With the help of automatic type deduction complicated template-techniques are not exposed
to users. This enables FunG to provide a small, intuitive and easily extensible interface. The
optimization strategies of Sec. 4 as well as strict application of modern C++-techniques and SOLID
principles, cf. Martin [2009], admit the generation of highly efficient code. This was demonstrated
by the examples in Sec. 5.

17For the next version, there is an extension planned that admits to directly use gradient variables of the same type as
the state.
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8 Download and installation

Both, the current stable version (1.3.2) and the master branch can be accessed from

http://lubkoll.github.io/FunG or https://github.com/lubkoll/FunG.

Aiming at high quality, re-usable code, FunG was developed using continuous integration18 and
extensive unit testing with the Google C++ test framework, cf. Sen [2010]19.

FunG is licensed under the GNU General Public License v3.0 (GPL v3). For compilation a C++-
compiler with support for the following features of C++14 are required:

• decltype(auto) and

• the type traits aliases with trailing “_t”.

For installation go to the root directory of FunG and issue the following commands20:

• mkdir build

• cd build

• cmake ..

• make install

To compile and run the unit tests issue the following commands in the build directory:

• make

• ctest (--verbose)

18https://travis-ci.org/lubkoll/FunG
19For test coverage see https://coveralls.io/github/lubkoll/FunG.
20Since FunG is header-only the make install command only copies the header files to the installation directory.
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