Archive of Numerical Software
vol. 5, no. 1, 2017, pages 151-168
DOI: 10.11588/ans.2017.1.27447

System testing in scientific numerical software
frameworks using the example of DUNE

Dominic Kempf! and Timo Koch?

linterdisciplinary Center for Scientific Computing, Heidelberg University
2Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart

Received: January 31st, 2016; final revision: July 16th, 2016; published: March 6th, 2017.

Abstract: We present dune-testtools, a collection of tools for system testing in scientific
software using the example of the Distributed Unified Numerics Environment (Dunk). Testing
is acknowledged as indispensible support for scientific software development and assurance of
software quality to produce trustworthy simulation results. Most of the time, testing in software
frameworks developed at research facilities is restricted to either unit testing or simple benchmark
programs. However, in a modern numerical software framework, the number of possible feature
combinations constituting a program is vast. System testing, meaning testing within a possible
end user environment also emulating variability, is necessary to assess software quality and
reproducibility of numerical results. We provide an easy-to-use interface taking workload off
developers and administrators in open-source scientific numerical software framework projects.
In our approach, the large number of possible combinations is reduced using the scientific expert
knowledge of developers to identify the practically relevant combinations. Our approach to
system testing is designed to be integrated in the workflow of a research software developing
scientist.

1 Introduction

Numerical software is nowadays an integral part of research at universities and other research
facilities particularly considering natural sciences, engineering, and mathematics. Therefore, the
quality of such software directly affects the effectiveness of research and the quality of research
findings.

Often however, scientists develop and write research software themselves without advanced
knowledge of or little experience in programming. The research may require to modify, develop,
and understand the code in depth, ruling out using well-tested commercial software that may
already exist. Also, time available for thoroughly testing software quality is limited. The situation
may improve for researchers when joining their efforts to develop so-called numerical software
frameworks. Frameworks provide features, i.e. software components, commonly used in the
research area of interest. Thus, scientists profit from code reuse. What was already written by
others does not have to be written again; what is already written can be further improved. Among
the larger numerical software frameworks for solving partial differential equations, we mention

152 Archive Editors

Dune [Bastian et al., 2008, 2011], FEniCS [Logg et al., 2012], and deal.Il [Bangerth et al., 2016, 2007]
as examples.

As many scientists rely on the same code, software quality becomes increasingly important in
such software frameworks. Testing software quality is a vital process when developing and
distributing software. Much theory and also practical guidance has been elaborated by the
software engineering community. We mention [Myers et al., 2011] and [Burnstein, 2006] as well-
written text books on software testing. Understandably, the focus lies on commercial software
development models where testing is already an established process and software testers are
suggested to be as many as developers themselves [Burnstein, 2006, p. 34]. In contrast, in
numerical software framework projects, developing, testing, and research are usually conducted
by the same persons. The developer is often focused on producing results rather than making
the software reliable, maintainable, and usable for others. This means little time is available
for testing. This paper focuses on quality measures and testing tools tailored for the numerical
software community in universities and other research facilities.

In Section 2, the authors introduce quality measures important for numerical software frame-
works. The challenges distinct to assuring quality in such frameworks are summarized. Section 3
introduces dune-testtools as the proposed approach to tackle the difficulties testing numerical
software frameworks more thoroughly. The example of DuNE as such a framework is introduced
revealing the importance, difficulties, and the current lack of system testing. Section 4 and 5
explain the implementation and user interface of dune-testtools in detail. Read Section 6 to
know how to get to our code. Finally, Section 7 gives an outlook to the authors” future concerns
regarding the continuous integration of testing into the software framework development process
at research facilities.

2 Quality and testing quality of numerical software frameworks

Numerical software frameworks differ vastly from software products considered in the software
engineering community. One main difference, for example, is the small number of developers in
numerical software frameworks that are also tester and scientist in personal union. Frameworks
have by purpose a very large variability and combinability of features that makes them hard to
test as a whole. We will therefore elaborate on our definition of software quality for numerical
frameworks before proceeding with our approach.

2.1 Defining quality for numerical software frameworks

The IEEE Standard Glossary of Software Engineering Terminology [IEEE, 1990] provides a com-
pact definition of software quality as “[t]he degree to which a system, component, or process meets
specified requirements ... [and] user needs or expectations”. First, we therefore attempt to define
typical quality characteristics expected from numerical software frameworks.

e Correctly implemented code: the code is expected to be implemented correctly with respect
to syntax and functionality of features. It includes e.g. that the source code compiles with
all compilers satisfying the communicated minimum requirements. Implementation cor-
rectness also includes runtime criteria like the absence of memory leaks and race conditions
and proper error handling (e.g. through the use of exceptions).

e Numerically correct algorithms: the implemented algorithms should function as intended,
namely reproduce results expected from theory. Often, there are well-known mathematical
properties of an implemented algorithm that have to be satisfied.

o Trustworthy results: models and simulations built with the numerical software framework
should produce trustworthy results, in the sense of correctly modeling what experiments or
experts predict. Note that this is not solely a task for the framework but also for the scientist
to use it as intended.

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

System testing in DuNE 153

e Good documentation, maintainability, testabilty: a high coverage of code documentation
facilitates code reusage and also testing.

e Flexibility: in order to have many possibilities of combining features, the implementa-
tion and interfaces need to be designed with a certain level of abstraction. This is a key
competence of numerical software frameworks.

o Sufficient performance and scalability.

2.2 Testing quality for numerical software frameworks

Testing is the process of determining how well these quality characteristics apply to a numerical
software framework. In the scientific context, this process is often formalized in terms of veri-
fication and validation, e.g. [Oberkampf et al., 2002, Kelly and Sanders, 2008]. Hook and Kelly
[2009] also consider what they call “code scrutinization”, i.e. finding faults related to wrongly
implemented code, among the testing processes. They further argue that in the scientific context
it is usually not possible to determine whether a numerical software is correct because exhaustive
testing is impossible due to the large number of possible program realizations. It is rather the
goal to determine whether the software is trustworthy.

The process of code scrutinization directly corresponds to assuring correctly implemented code.
Code scrutinization is a process early in the development phase and can be supported by com-
plementing features with simple test programs. Verification of numerical code and its algorithms
is the process of testing the algorithms for cases where the outcome is well-known. For example,
for a simplified PDE and specific boundary and initial conditions there often exists an analytical
solution that the numerical solution should converge to when refining the space and time dis-
cretization; it is also well-known that a Newton-Raphson scheme converges in one iteration for
linear problems. In the examples, the numerical solution and the number of iterations are output
parameters of a test and can be automatically checked against the reference values. Validation of
a program or model is the process of analyzing the program output with expert knowledge or
in comparison with experimental data. The scientist might know that in an experimental setup
corresponding to the simulation setup the oil pumping rate lies between 4 and 5 kg/s. If the
numerical model suits the experimental setup the code can be validated using the experimental
parameter range. This can also be done automatically within a testing framework. The result
should not change if the code makes use of different but also suitable discretization scheme or
a different linear solver. Code scrutinization, verfication, and validation are processes suited
for determining if the program produces trustworthy results. All three processes are outcome
motivated, in the sense that they only evaluate results of a simulation program.

However, in the context of numerical frameworks, reusability, stability, and combinability play
a key role assuring software quality. Testing variability and combinability can be viewed as the
repetition of the above introduced processes for many possible realizations of programs and many
possbile user configurations of those programs using features of a numerical software framework.
Again, exhaustive testing is practically impossible.

2.3 Levels of testing

Burnstein [2006] decribes a need to categorize testing in four levels — unit testing, integration
testing, system testing, and acceptance testing. Unit testing tests “a single component” [Burnstein,
2006, p. 133]. Unit testing is often available for numerical software frameworks and is good
practice to write unit tests alongside every new feature.

Integration testing combines several components into working units. Integration testing can
rarely be found in numerical software frameworks. If a certain interface is of great importance
in a framework, sometimes interface checks are offered qualifying as integration testing. As the

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

154 Archive Editors

modules in a modular framework are considered mostly independent, intermodular integration
testing is often not sensible.

System testing, testing the combinations of features from several modules in a working numerical
program, tests a fully working end user scenario in contrast to integration testing. System testing
is not commonly employed in numerical software frameworks to the authors” knowledge. An
exception are so-called tutorial, demo, or test programs testing specific simple setups with an
educational intention. Sometimes framework include a suite of benchmarks which qualify as
tests in the sense of verification and validation but generally do not test variability and feature
combination. However, the vast combinatoric possibilities of a numerical framework require
more comprehensive testing of module interdependencies in order to assure the reliablilty and
generality of the framework. We will therefore have a focus on system testing subsequently.

Finally, acceptance testing is “formal testing conducted to enable a user ... to determine whether to
accept a system or component”, according to the IEEE Standard Glossary of Software Engineering
Terminology [IEEE, 1990]. In numerical software frameworks with an open-source development
model, acceptance testing is constantly ongoing through the user community and feedback is
commonly issued via mailing lists and issue trackers.

2.4 Regression testing

The code basis in open source numerical software frameworks is constantly under development
and improvement. Those changes can be tracked by the testing suite by means of so-called
regression testing. Burnstein defines that “regression testing is . . . the retesting of software that occurs
when changes are made to ensure that the new version of the software has retained the capabilities of the old
version and that no new defects have been introduced due to the changes.” [Burnstein, 2006, p. 176]. For
regression testing, the output of a numerical code is compared to a reference output created when
the software was considered correct. Regression tests are possible on all four levels. Particularly,
performing regression tests on a system test level has the ability to reveal if code changes might
be an improvement in one configuration while being harmful for another.

2.5 System testing

System testing can be considered the most important testing level for a numerical framework,
as the framework by design should allow arbitrary combination of modular blocks. In unit and
integration testing, developers usually write tests covering their own code. In system testing
however, code maintained by multiple developers is combined, revealing the bugs and corner
cases the upstream developers have not thought of.

One approach to system testing within the software engineering community is to formalize
software variability through Software Product Line Engineering (SPLE) [Pohl et al., 2005]. In
SPLE, a variability model descibing thoroughly all possible configurations of the software is set up.
Configurations usually vary in characteristic properties called variation points. Possible values of
a variation point are called variants. A variability model for a complex software usually features
a complex structure of constraints between variants.

Using SPLE in the context of a numerical framework for PDEs (Dune) has already been in-
vestigated by Remmel et al. [2011] and Remmel [2014]. She states some of the fundamental
inherent problems with SPLE for scientific frameworks: Determining a variability model for all
the scientific applications is not possible due to the unlimited variability the mathematical input
provides. Instead, SPLE is applied to model variability within the framework for a fixed math-
ematical model. This limited variability model and its constraints can only be determined with
the knowledge of the developer.

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

System testing in DuNE 155

3 dune-testtools - A practical approach to integration and system test-
ing in numerical software frameworks

This section will describe our approach to system testing of a numerical software framework. As
our development is driven by the DuNE project as an example framework, we briefly introduce
those properties of DunE that influenced the design process.

Dung, the Distributed Unified Numerics Environment, is an open source modular numerical
software framework developed at more than 10 universities in Europe [Bastian et al., 2011]. It has
a highly modular structure where currently five modules are core modules and as such mandatory
for most applications. Built upon these core modules exist discretization modules like dune-pdelab
(fast prototyping of new discretizations [Bastian et al., 2010]) and domain-specific application
frameworks like DuMu* (flow and transport processes in porous media [Flemisch et al., 2011]).
Users will typically write their codes in form of application modules depending on the above. All
those modules may further depend on external and third-party libraries. The modular structure
of DuNE is managed by a CMake-based buildsystem. One of the design principles of Dune is the
definition of stable interfaces for common simulation components. The most famous example of
this generic approach is the grid interface in dune-grid that allows to easily switch the underlying
grid implementation of a code. Such a generic programming approach offers great opportunities
for easily setting up system tests.

Dune’s open source workflow includes a group of core developers that have direct write access to
the core repositories. Non-core developers contribute through merge requests. All users report
issues through issue trackers and mailing lists. Most participants including the core developers
develop DunE next to their scientific research activity. As a consequence, the resources available
for maintenance of the software are limited. Extensive testing has proven to suffer badly from
this lack of resources in the past. To the authors’ knowledge, the majority of DunE developers
work on Unix-like systems in a commandline-centered fashion and there is little to no usage of
IDEs in the DuNE community.

From the above description of the DunE project, the authors conclude the following requirements
for a sustainable testing environment for modular software frameworks.

e Any solution for testing needs to integrate well into the existing modular structure of DuNE.

o To lower the entry barrier to a minimum, new workflows should integrate well with existing
ones (no additional tools, IDEs etc.).

o Writing a new system test should be an easy and quick procedure.

As pointed out by Remmel et al. [2011] in the context of SPLE, the variability of framework-based
scientific applications is twofold. On the one hand, there is the variability in the mathematical
model serving as input data to the framework. On the other hand, given the output of the
framework for a fixed mathematical model (an executable), there is variability in the configuration
of the simulation run. See Figure 1 for an illustration.

The variability model for all scientific applications is too large to determine due to the infinite
nature of the mathematical variation points. Only considering the variability model for a fixed
mathematical input model also bears problems, as the variability model will still become very
large. This results from the fact that the number of variation points for scientific software such as
Dune is high and the variability model is the combinatoric product of these variants. Therefore,
a strategy to reduce the amount of test cases for system testing while assuring sufficiently high
coverage is needed.

We base our approach on the idea, that the entire DUNE user base needs to be involved in the
quality assurance process. This is important for the following reasons.

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

156 Archive Editors

[Framework]

[Model input J [Application }
program
Simulation Simulation
Tapist Result

Figure 1: A simulation is set up in two stages. Firstly, a mathematical model is selected and
the necessary features for implementing this model are chosen from the features offered by the
numerical framework. Secondly, the application program is configured by the simulation input
being compile time or runtime parameters. Both stages are objected to a large variability.

e The entirety of system tests should cover all the application areas of Dune. Those are
however defined by the users putting efforts into applying DuNE to new areas. In other
words, the only sensible sampling of the variability model that includes the mathematical
models is to use those samples that DuNE users are actively working on.

e A system test is best written by the expert in the field, who is the user working on the
exact problem. Also, defining a reasonably large sample of the variability model for a given
model is only possible with good scientific knowledge of the problem. For instance, the
choice of linear solver and/or preconditioner for a PDE problem cannot be done a priori.

e Reusing user code for system tests can result in a mutual benefit for user and framework.
On the one hand, the user contributes samples to the framework’s test suite that increase
the coverage of the variability model. On the other hand, the user gets an automated testing
workflow for his or her code, increasing the quality and reproducibility of the code and the
scientific work and results.

To sum it up: instead of providing a full variability model, we carefully choose a set of system
tests that try to cover as many use cases of the DuNE project as possible. For a given system test,
we again do not provide the full variability of the framework, but instead go for samples carefully
selected by the user. These samples should cover all of the configurations relevant to the problem.
The system tests in their entirety should aim for a full coverage of relevant variant combinations
of the framework.

Considering tools for test evaluation, we heavily rely on regression testing. In a steadily changing
code base, it is of particular importance to track regressions in a system testing context. We store
reference files, created when the code was considered correct, i.e. usually around the time of
a new version release, under version control. We mention the recently introduced large file
storage concept of Git [Git-1fs webpage] as solution to the problem of storing large files under
version control. Keeping reference files over a longer period of time eliminates the chance for
slow regression and reduces the testing effort in comparison to using ad-hoc before and after
comparisons whenever the code base is changed.

We provide an implementation of the above presented concepts in the form of the Dune module
dune-testtools. Having the implementation as a Dune module integrates it easily into the
modular structure of the DuNE project. dune-testtools only provides means to define system
tests independently of the system the test will be run on. dune-testtools contains a Python
package dune.testtools which does the heavy lifting of the implementation. Furthermore,

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

—_

_

System testing in DuNE 157

it features CMake code for the buildsystem integration and some C++ helper classes. The
following Sections 4 and 5 elaborate on how dune-testtools implements feature modeling and
test evaluation, respectively.

4 Feature modeling in dune-testtools

As mentioned previously, our approach relies heavily on the application developers to define
the variability model for their use cases. To reduce entry barriers to writing system tests to a
minimum, we try to integrate our approach as deeply as possible into the existing workflow of
Dune developers. As a consequence, we completely avoid external tools, but instead work with
what we identified as the integral parts of a simulation code:

e A C++ source file that runs the simulation,
e an ini file (i.e. a parameter file) that allows to configure the simulation run, and

o little CMake code to define executable and tests.

The C++ source file is only to a limited extent suitable for modelling variability. Code will get
duplicated too often. It will look cluttered and as a consequence it will not be maintainable.
However, we consider maintainability one of the crucial factors for the success of the quality
assurance process. We therefore decided to use the ini file for modelling variability by extending
its syntax to what we call meta ini files. Instead of just one configuration, meta ini files describe
a set of combinations and therefore serve as a domain specific language for modelling the vari-
ability model for our system tests. Meta ini files are expanded into a set of normal ini files in a
preprocessing step.

4.1 Extending ini files

Normal Dune-style ini files contain key/value pairs, which are separated by an equal sign (=).
Keys can be grouped by sections which may either be defined explicitly by bracing its name with
square brackets, or implicitly by using dots in key names. Sections may be nested to arbitrary
depth.

In meta ini files, we introduce commands which can be applied to key/value pairs with a Unix-
style pipe (I). The most important command is the command, as it provides the mechanism
to describe sets of configurations. The values of keys that have the command applied are
expected to be comma-separated lists. Those lists are split and the list of configurations is updated
to hold the product of all possible values. The following example yields a total of 6 configurations
describing all the combinations of values for theta and timestep.

Meta ini Code

theta = 0.5, 1.0 |
timestep = 0.1, 1.0, 10.0 |

Sometimes, you may not want to generate the product of possible values, but instead couple
multiple key expansions. You can do that by providing an argument to the command. All

commands with the same argument, will be expanded together. The expansion process
when having commands with the same argument but a differing number of comma sepa-
rated values is semantically not well-defined and therefore produces an error. The next example
yields 2 configurations and does a refinement in space and time simultaneously.

Meta ini Code

gridlevel =1, 2 | refinement
timestep = 1.0, 0.5 | refinement

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

[V)

W N

158

Archive Editors

Expansion with and without argument may be combined arbitrarily. The following example

combines the two above examples for a total of 4 configurations.

Meta ini Code
theta = 0.5, 1.0 |
gridlevel =1, 2 | refinement
timestep = 1.0, 0.5 | refinement

Sometimes, you will want to define a key’s value depending on the value of another key, where
that other key has the command applied. You may do so by writing the keyname in curly
brackets into the values. See the following example, where an output naming scheme is controlled

through this mechanism.

Meta ini Code
dimension = 2, 3 |
boundarycondition = dirichlet, neumann |
outputfile = {boundarycondition}_{dimension}d.output

The curly bracket syntax may even be used in a nested way and provides a powerful tool for the

meta ini language.

With the command as shown above, a set of configurations needs to have a product
structure in order to be described by a meta ini file. To overcome this limitation, the

command has been introduced. It allows to define a boolean condition using curly brackets. If
that condition evaluates to True in Python, the entire configuration is removed from the set of
configurations. Because the command does not operate on a key/value pair by definition,
it is instead applied to the condition directly in a separate line of the ini file. In the following
example, the grid levels that are not suitable for three-dimensional simulations are discarded. It
yields a total of 8 configurations, 5 of which are for the two-dimensional and 3 of which are for

the three-dimensional case.

Meta ini Code
dimension = 2, 3 |
gridlevel = 1, 2, 3, 4, 5 |
{dimension} == 3 and {gridlevel} > 3 |

Once the set of generated configurations starts to grow, it is helpful to control the naming scheme
of the generated ini files. We use the special key __name for that. You may define it according to
your needs using the curly bracket syntax. If your definition does not result in unique names,
consecutive numbering will be appended to your naming scheme. The __name key is optional and

not defining it will result in consecutively numbered ini files.

So far, we have only considered the and the command. There are some more
commands implemented which we only mention briefly here and refer to the documentation of

dune-testtools for further reading.

. makes the values to the given key unique throughout the set of configurations,
useful for unique names like output filenames. The __name mechanism uses this command

internally.

o allows to perform simple arithmetic operations on keys

] and transform strings to their lower-, uppercase representations, respectively.

Note that the meta ini syntax uses some characters for defining its own syntax. These are

e {and }in values for key-dependent resolution,

Archive of Numerical Software 5(1), 2017

© by the authors, 2017

—_

U= WIN -

System testing in DuNE 159

e | in values for piping commands,

e , in comma separated value lists when using the command.

If you want to use those characters as part of a value, you need to escape either by a preceding
backslash or by embracing quotes.

4.2 Static and dynamic variations

So far, we have introduced meta ini files as a way of expressing the variability model for simulation
codes. Each variation point is represented by a key which has the command applied.
However, one of the biggest challenges with the variability model of simulation environments
such as Dune is the fact that many common variation points deal with compile-time variants.
Unfortunately, not all variation points describe static variations and treating dynamic variations
as static ones will result in a waste of resources. We will therefore describe in this section, how
to extend the concept of meta ini files by the ability to describe static and dynamic variations in a
mixed fashion.

We introduce a special group in the meta ini file called __static. Any key/value pairs in the
__static section are to be passed as C preprocessor variables to the simulation executable. To that
end, the expansion process and the buildsystem need to be interleaved. We will not cover the
details of this interface from CMake to Python here. Instead, we describe the CMake API from
dune-testtools in detail in Section 4.3. Here, we restrict ourselves to describe how to add static
variations to meta ini files. See the following minimal example that defines the grid type as a
variation point.

Meta ini Code

[__static]
GRIDTYPE = Dune::YaspGrid<2>, Dune::UGGrid<2> |

When used with the macros described in Section 4.3, CMake will parse this meta ini file at configure
time and generate executables from the static section. In analogy to the __name mechanism, you
can control the naming scheme of the executables by defining the key __exec_suffix with the curly
bracket syntax. The suffix will be made unique and be appended to the target basename given to
CMake.

To correctly set up executables and tests for a system test with both static and dynamic variations,
CMake needs to determine the correct number of static variants and the correct number of dynamic
variations per executable. While the first one is easily done by filtering the __static section from
the set of configurations, the latter bears some problems. We implicitly implied until now that any
non-__static key defined a dynamic variation. However, when writing more sophisticated meta
ini files, you might want to define some auxiliary keys not defining dynamic variations. Take
the following advanced example where auxiliary keys are used to define a polynomial degree
depending on the grid.

Meta ini Code
grid = yasp, ug | grid
deg_yasp = 2
deg_ug = 2, 3 |
[__static]
GRIDTYPE = Dune::YaspGrid<2>, Dune::UGGrid<2> | grid
DEGREE = {deg_{grid}}

The example would produce a total of four test from two executables. Two of these tests would
effectively be equivalent as they are using Dune: : YaspGrid<2> as their grid type and only differ
in the unused value deg_ug. To overcome this limitation, we have to mark the keys deg_yasp and
deg_ug as auxiliary keys by putting them into the __local group. The following corrected example
produces the desired amount of three tests.

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

NONU = WN =

N =

N —

160 Archive Editors

Meta ini Code
grid = yasp, ug | grid
[__locall]
deg_yasp = 2
deg_ug = 2, 3 |
[__static]
GRIDTYPE = Dune::YaspGrid<2>, Dune::UGGrid<2> | grid
DEGREE = {__local.deg_{grid}}

The keys in the __local group are expanded and they are available for curly bracket syntax
resolution. However, at the end of the expansion process, the __local section is removed from
the generated configurations and the set of configurations is shrunk by eliminating duplicate
configurations.

Using the meta ini mechanism to have CMake automatically add targets bears another problem
if you are used to guard the addition of executables in CMake with if-clauses that depend on
configure checks for external packages. Consider the above example in a situation, where the
external dependency UG was not found on the system. In that case, the executable should not
even be added in the buildsystem. Such guards need to be defined in the meta ini file through
the command , which similar to the command does not operate on a key/value
pair but on a single value. This value is evaluated in CMake at configure time and the executable
is not added, if it evaluated to FALSE. The above example can be fixed as follows. TRUE is used as a
non-operational guard variable here, as Dune: : YaspGrid is always available.

Meta ini Code

[__static]
GRID = Dune::YaspGrid<2>, Dune::UGGrid<2> | grid
TRUE, HAVE_UG | grid |

CMake provides a very useful mechanism to attach metadata to tests in the form of so called labels.
Tests can have an arbitrary amount of labels attached and labels do not have any semantics by
themselves. The testing driver ctest can be used with regular expressions on test labels. Being
able to define labels in meta ini files allows us to define different priority groups. This can be done
through the command which, as , operates on a Python Boolean expression. It takes
the label to be applied as the first argument. Similar to the command, you may provide
an arbitrary identifier as the second parameter. Labels with the same identifier will override
previously defined labels with the same identifier. Consider the following example where all
tests have the weekLY label applied, but one labeled n1cuTLY. Note how True is used to set the
default label wegkLY for all configurations.

Meta ini Code
model =1, 2, 3, 4, 5 |
True | WEEKLY PRIORITY
{model} == 3 | NIGHTLY PRIORITY

Writing system tests with dune-testtools, you might experience that a generic coding style within
the C++ source file is very beneficial. You will often define types for simulation components
in the meta ini file. If all possible variants for a given static variation point fulfill the same
interface or concept, you can do that with a single codepath and thus achieve maintainability.
We have identified this need and try to provide tools for the most common tasks either through
dune-testtools or through contribution to the DunE core modules. This currently includes

e the IniGridFactory from dune-testtools, which allows to create grids from a section in
an ini file. It provides specializations for the most important DunE grids.

e The ongoing project [dune-istl GitLab] of providing fully dynamic, ini file-based solver and
preconditioner setup in dune-istl.

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

System testing in DuNE 161

Meta Ini File
+ Source File

Figure 2: Expansion procedure for the macro dune_add_system_test

4.3 Incorporation into the build system

One of the core principles of dune-testtools is to provide a powerful buildsystem API to the
user, not requiring any specific CMake knowledge on the user side. The interface to add a system
test with both static and dynamic variations is the following CMake macro.

CMake Code

dune_add_system_test (SOURCE src
BASENAME base
INIFILE ini
TARGETS output
[SCRIPT script])

Writing such a block into a CMakeLists.txt file will trigger the following procedure, which is
illustrated by Figure 2.

e The given INIFILE will be expanded into the current build directory.

o CMake will add executables that are built from the given sourck with a naming scheme
based on the given BaSENAME with appended __exec_suffix. A list of the generated executables
is exported to the variable given to TARGETS. You may use this to alter targets by adding flags
etc. We recommend using the dune_enable_all packages feature from dune-common though,
to minimize problems arising from the necessity to add specific flags to the generated
executables.

o Tests will be added to the ctest testing suite for all dynamic variants. The executables are
expected to take an ini file as their first and only command line argument.

The scripT parameter will be explained in detail later on, as it allows you to attach testing tools to
your system tests.

dune-testtools also provides CMake macros to use meta ini files outside of the context of testing.
These can be useful for setting up reproducible numerical studies. We do not describe these here,
but instead refer to the buildsystem documentation of dune-testtools.

5 Verification and validation with dune-testtools

A test of a numerical code will usually run a small sample problem and return some data. The test
suite then needs to determine whether the test passed or failed. The criterium for success of a test
is directly related to quality measures the test is supposed to verify. To avoid rewriting the testing
code in all tests” executables, dune-testtools implements testing methods as wrapper scripts.
Wrapper scripts in dune-testtools are Python scripts controlling pre-processing, execution of

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

—_

—_

162 Archive Editors

the program, and post-processing. The wrapper scripts decide whether a test passed or not.
It supplies useful information to the developer in case it did not. The wrapper scripts are
meant to be customized writing few lines of Python code, although dune-testtools already
provides many useful wrappers. The wrappers are configured by the meta ini file in the section

wrapper.<wrapperscriptname>.

The wrapper script for a system test is defined through the above introduced CMake macro
dune_add_system_test by setting the SCRIPT parameter. As of the writing of this article, dune-
testtools contained the wrapper SCI‘iptS dune_execute.py, dune_execute_parallel.py,
dune_outputtreecompare.py, dune_vtkcompare.py, dune_convergencetest.py. These wrappers are described
in more detail in this section.

5.1 Simple execution wrappers

The default wrapper dune_execute.py is used whenever the ScrRIPT parameter is omitted in CMake.
It runs the executable and forwards the return code.

The wrapper dune_execute_parallel.py runs the executable in parallel and forwards the return code.
The wrapper would be defined in the CMake macro as follows.

CMake Code

dune_add_system_test (...
SCRIPT dune_execute_parallel.py)

The number of processors for the parallel run can then be specified in the meta ini file.

Meta ini Code

[wrapper.execute_parallel]
numprocessors = 4

The MPI implementation is automatically detected by the build system and information on it is
passed to the wrapper script.

5.2 Regression tests

Assume we have a reference program output produced when the state of the program was
considered correct. Regression testing compares the output of the software’s current state to this
reference output, as introduced in Section 2.4. A very common output of numerical simulation
is a computational result in a VIU format [VTK] file, e.g. a discrete solution on an unstructured
grid. dune-testtools provides the wrapper script dune_vtkcompare.py for regression testing VIU
output.

Technical difficulties comparing such unstructured grid files include that the data is commonly
given in single precision floating point numbers which need to be compared with a certain
tolerance value (fuzzy comparison). A further problem inherent to floating point numbers is the
comparison of numbers that are physically zero but suffer from numerical noise. Finally, different
grid managers might use different ordering of vertices or cells.

The wrapper script dune_vtkcompare.py offers solutions to tackle these problems. To this end, before
comparing the data, both files are sorted by ascending vertex coordinates. Then, different sets
of parameters are sorted by their name attribute, because the parameter order in VTU files is
mutable. Floating point numbers are first compared by means of an absolute comparison, i.e.
two single precision floating point numbers a and b are considered equal if the absolute value of
their difference is smaller than the machine epsilon scaled with the magnitude of the parameter,
i.e. if [a—b| <= e-max (P). Herein, P denotes the set of absolute parameter values given in the VTU
file. The machine epsilon for IEEE 754 single precision floating point numbers is € ~ 1.19 - 1077,
according to the definition of Goldberg [1991].

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

NG WN -

N —

O 0N ONUTHWN -

System testing in DuNE 163

If 2 and b are not equal, the script relaxes the criterium and compares relatively. The two floating
point numbers are considered being close enough if |a — b| <= 6 - max(|al, |b]), where 6 is the
threshold for the largest acceptable deviation. The relative criterium is necessary as a numerical
code introduces rounding errors for every floating point computation. The errors can easily sum
up to relatively large errors.

If a data set is physically zero, e.g. the z-component of the velocity in a simulation was fixed to
zero but the actual number is subjected to computations with rounding errors, the result can be
an array of numbers very close to zero considered as numerical noise. In a case like that, two
numbers v,; = 1.5-1072! and v,; = 1.2 - 107!8 are considered zero but will fail both the absolute
and relative criterium. For these cases the scripts provides a zero threshold per parameter under
which a parameter will be considered zero and thus be exempted from comparison.

Following the above mentioned concepts, the wrapper script dune_vtkcompare.py can be configured
via the meta ini file as follows.

Meta ini Code
[wrapper.vtkcompare]
name = my_vtkfile
reference = path_to_reference_file
extension = vtu
relative = le-2
absolute = 1.2e-7 # set to machine epsilon of used floating point format

zeroThreshold.velocity = le-18

name and reference are mandatory parameters denoting the file to be compared and the reference
file, respectively. The path name is relative to the build directory of the test and the path reference is
relative to the source directory. extension specifies the file extensions of the files to be compared and
defaults to vtu. The parameters relative and absolute define the thresholds for relative and absolute
floating point comparison. Note that the absolute threshold will be scaled to the magnitude of
the data to compare. They default to 6 = 1072 and € = 1.2 - 1077, respectively. The zero threshold
can be set for every parameter in the VTU file by name (velocity in the above example).

The wrapper script dune_outputtreecompare.py does regression testing with arbitrary user data,
where the ini file format is used for the output. dune-testtools provides a C++ class
Dune: :OutputTree that facilitates writing data to ini files. It inherits from dune-common’s
Dune: :ParameterTree and adds some convenience methods for writing out data. The following
code shows how to instantiate a Dune: : QutputTree and fill it with data.

C++ code

Dune: :OQutputTree outputTree("out.ini");
// execute code yielding a variable numIterations
outputTree.set("Iterations"”, numIterations);

Upon destruction, the contents of the Dune: : QutputTree will be automatically dumped to a file.
The wrapper script comparing ini files can be configured as follows via the test’s meta ini file.

Meta ini Code

[wrapper.outputtreecompare]
name = myoutputfile
reference = path_to_reference_file
extension = out
type = fuzzy
= DebugInfo
relative = le-2
absolute = 1.5e-7
zeroThreshold.norm = 1le-18

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

—_
OO OO UT WN —

—
N =

W N

Tl WN =

164 Archive Editors

Most options work as explained above for the VTU file comparison. The parameter type specifies
whether the files are compared exact (not recommended when floating point numbers are in-
volved) or a fuzzy comparison is preferred. When comparing fuzzy, every value in the ini file that
is convertible to a floating point number will be compared as such using the absolute and relative
thresholds specified. A key only written for e.g. debugging purposes that is not required to
equal the reference file can be excluded by specifying the key that takes a space separated
list as value. Multiple such output data can be compared in a single test. For configuring the
comparison differently for multiple files the following scheme applies.

Meta ini Code

[wrapper.outputtreecompare]

name = myoutputfilel myoutputfile2

reference = path_to_reference_filel path_to_reference_file2
extension = out out

[wrapper.outputtreecompare.myoutputfilel]
type = exact
= DebugInfo

[wrapper.outputtreecompare.myoutputfile2]
type = fuzzy
zeroThreshold.norm = le-18

5.3 More involved test wrappers

Several quality measures of numerical software can only be tested with more involved tests often
requiring several runs of the same executable. A before mentioned method to verify an algorithm
for e.g. a discretization scheme solving a PDE is a convergence study. The grid is refined several
times and a rate of convergence can be computed. The rate is inherent to the scheme and should
not change when the code base changes. dune_convergencetest.py implements a test wrapper for
convergence tests. It does require the program to compute an error, e.g. with respect to a known
analytical solution. The key in the meta ini file that defines the samples for the convergence test

has to marked with the command, which is a special form of the command.
Meta ini Code
[grid]
refinement = 0, 1, 2, 3, 4 |

The above example defines a test conducting a grid convergence study. The convergence test
wrapper can be configured via the same meta ini file.

Meta ini Code

[wrapper.]
expectedrate = 2.0
absolutedifference = 0.1

The test runs the executable once for every level of refinement. It then computes the convergence
rate automatically and compares it to the expected one. In the above example the test would fail if
the computed rate differs by more than 0.1 from 2. To compute the rates correctly we make some
assumptions on how the data is dumped by the program. The following dummy code snippet
taken from dune-testtools outlines such a test using DuNEe.

C++ code

#include <dune/testtools/outputtree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/common/parametertree.hh>

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

System testing in DuNE 165

// read the given ini file
Dune: :ParameterTree params;
Dune: :ParameterTreeParser::readINITree(argv[1l], params);

// get refinement level
auto refinement = params.get<int>("grid.refinement");
// ... and refine the grid accordingly

// construct an output tree with the ini tree
Dune: :OutputTree outputTree(params);

// do simulation and compute an error norm and hmax
// output convergence data

outputTree.setConvergenceData(norm, hmax);
return 0;

Lines 7-9 read the expanded ini file associated with the run into a Dune: :ParameterTree object.
A Dune: :OutputTree can be constructed from the input ini file to avoid specifying its filename
redundantly. Line 21 shows how to use a convenience method of the Dune: :OutputTree class to
easily dump a computed error norm and the global maximum grid element diameter to file.

Other more involved testing methods are e.g. scalability tests where a program is run with
different numbers of processors and a speed-up per additional processor can be observed. Perfor-
mance tests measure the runtime of a certain program. Code changes should usually not increase
runtime (this might be a necessary evil of another advantage), whereas a decreased runtime is
considered an improvement. The latter tests are architecture dependent and can only be executed
in comparison to a reference state obtained on the same machine. A possible scenario would be
to run such tests before and after a change to the code base. Such tests can be automated when
using appropriate version control systems. Scalability and performance testing will appear in
future releases of dune-testtools.

5.4 Writing new test wrappers

The existing test wrappers can be customized easily with little knowledge of Python. For example,
the parallel wrapper could be combined with the wrapper comparing output data, to test if the
output from a parallel program run is equal to that of a sequential execution. If you want to write a
wrapper from scratch, check the Python module dune. testtools.wrapper.argumentparser for
a list of information that CMake forwards to the wrapper scripts. Following dune-testtools’s
style of configuring test wrappers avoids confusion.

6 Code Availability and Portability

The code presented in this paper is available freely under a BSD license. You find an overview of
the quality assurance related projects of the authors under

https://gitlab.dune-project.org/groups/quality

Note, that dune-testtools also requires the module dune-python, which is also available under
the same URL. dune-python is a buildsystem extension to dune-common that unifies the ways of
distribution and installation of DuneE modules and Python packages. The centerpiece of dune-
python is a Python virtualenv, a tool setting up a system-independent environment for running
Python code. It is automatically set up at configure time in the build directory. dune-python is
designed to be used by any other Dune module distributing Python code.

As can be expected from a project on quality assurance, we have taken measures to ensure the
quality of our code. Extensive unit testing is done for Python and C++ code and as well for

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

https://gitlab.dune-project.org/groups/quality

166 Archive Editors

CMake code through configure time unit tests. We do provide comprehensive documentation,
which can be built by typing make doc in the toplevel build directory. In dune-testtools, you find
the result in the (build directory) subdirectory doc/sphinx/html.

The methods presented in this paper are - though tailored for it - not limited to usage with the
Dune project. The Python package dune.testtools, which contains the code for both meta
ini expansion and testing tools is completely general and does not contain any DuNE specifics.
The interface between the Python package and the projects buildsystem, however, needs to be
rewritten in order to use it with a different numerical code.

7 Outlook - an open-source workflow for automated system testing in
numerical software frameworks developed at research facilities

The module dune-testtools presented in this paper is only a first step towards an automated
system testing workflow. It provides convenient, buildsystem integrated tools to define low di-
mensional samples of the high dimensional variability model of simulation codes based on Dune.
Furthermore, it provides tools to verify and validate results for the numerical solution of partial
differential equations specifically. All these tools focus on the definition of tests independent of
the environment that the tests are to be run in. The system tests defined with dune-testtools
may be run on any local machine by running ctest in the build directory.

In future work we will target the infrastructure for automating the execution of system tests. This
includes the following tasks:

e A buildbot [Buildbot webpage] based build server setup
e Using docker [Docker webpage] containers to model heterogeneous userlands

e Integrating buildbot into a merge-request based development model

8 Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for financial support of
the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University
of Stuttgart, as well as the Ministry of Science, Research and the Arts, Baden-Wiirttemberg,
Germany.

References

W. Bangerth, R. Hartmann, and G. Kanschat. deal.Il - a General Purpose Object Oriented Finite
Element Library. ACM Trans. Math. Softw., 33(4):24/1-24/27,2007. doi: 10.1145/1268776.1268779.
URL http://dx.doi.org/10.1145/1268776.1268779

W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin,
and D. Wells. The deal.II library, version 8.4. Journal of Numerical Mathematics, 24, 2016. doi:
10.1515/jnma-2016-1045. URL http://dx.doi.org/10.1515/jnma-2016-1045.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klo6fkorn, M. Ohlberger, and O. Sander. A Generic
Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract Framework.
Computing, 82(2-3):103-119, 2008. doi: 10.1007/s00607-008-0003-x. URL http://dx.doi.org/
10.1007/s00607-008-0003-x.

P. Bastian, F. Heimann, and S. Marnach. Generic implementation of finite element methods in the
distributed and unified numerics environment (dune). Kybernetika, 46(2):294-315, 2010. URL
http://www.kybernetika.cz/content/2010/2/294/paper.pdf.

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

http://dx.doi.org/10.1145/1268776.1268779
http://dx.doi.org/10.1515/jnma-2016-1045
http://dx.doi.org/10.1007/s00607-008-0003-x
http://dx.doi.org/10.1007/s00607-008-0003-x
http://www.kybernetika.cz/content/2010/2/294/paper.pdf

System testing in DuNE 167

P. Bastian, M. Blatt, A. Dedner, C. Engwer, J. Fahlke, C. Gersbacher, C. Gréser, C. Griininger,
D. Kempf, R. Klofkorn, S. Miithing, M. Nolte, M. Ohlberger, and O. Sander. Dune Webpage,
2011. http://www.dune-project.org.

Buildbot webpage. http://buildbot.net.

I. Burnstein. Practical software testing: a process-oriented approach. Springer Science & Business
Media, 2006.

Docker webpage. https://www.docker.com/.

dune-istl GitLab. The project is developed on the branch feature/istl-ini in the dune-istl repos-
itory. See the merge request https://gitlab.dune-project.org/core/dune-istl/merge_
requests/5 for an overview what is happening. [Accessed: February 2017].

B. Flemisch, M. Darcis, K. Erbertseder, B. Faigle, A. Lauser, K. Mosthaf, S. Miithing, P. Nuske,
A. Tatomir, M. Wolff, et al. DuMu*: Dune for multi-{phase, component, scale, physics,...} flow
and transport in porous media. Advances in Water Resources, 34(9):1102-1112, 2011. doi: 10.
1016/j.advwatres.2011.03.007. URL http://dx.doi.org/10.1016/j.advwatres.2011.03.007.

Git-lfs webpage. https://git-1fs.github.com/.

David Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys (CSUR), 23(1):5-48, 1991. doi: 10.1145/103162.103163. URL http:
//dx.doi.org/10.1145/103162.103163.

D. Hook and D. Kelly. Testing for trustworthiness in scientific software. In Software Engineering
for Computational Science and Engineering, 2009. SECSE '09. ICSE Workshop on, pages 59-64,
May 2009. doi: 10.1109/SECSE.2009.5069163. URL http://dx.doi.org/10.1109/SECSE.2009.
5069163.

IEEE. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990, pages 1-
84, Dec 1990. doi: 10.1109/IEEESTD.1990.101064. URL http://dx.doi.org/10.1109/IEEESTD.
1990.101064.

D. Kelly and R. Sanders. Assessing the quality of scientific software. In First International Workshop
on Software Engineering for Computational Science and Engineering, 2008. URL http://secse08.
cs.ua.edu/Papers/Kelly.pdf.

A. Logg, K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite
Element Method. Springer, 2012. ISBN 978-3-642-23098-1. doi: 10.1007/978-3-642-23099-8. URL
http://dx.doi.org/10.1007/978-3-642-23099-8.

G.J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley & Sons, 2011.

W. Oberkampf, T. Trucano, and C. Hirsch. Verification, validation and predictive capability
in computational engineering and physics. In Hopkins University, pages 345-384, 2002. doi:
10.1115/1.1767847. URL http://dx.doi.org/10.1115/1.1767847.

K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering - Foundations, Principles,
and Techniques. Springer, 2005. ISBN 978-3-540-24372-4. doi: 10.1007/3-540-28901-1. URL
http://dx.doi.org/10.1007/3-540-28901-1.

H. Remmel. Supporting the Quality Assurance of a Scientific Framework. PhD thesis, 2014.

H. Remmel, B. Paech, C. Engwer, and P. Bastian. Supporting the Testing of Scientific Frameworks
with Software Product Line Engineering: A Proposed Approach. In Proceedings of the 4th
International Workshop on Software Engineering for Computational Science and Engineering, SECSE
11, pages 10-18, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0598-3. doi: 10.1145/
1985782.1985785. URL http://doi.acm.org/10.1145/1985782.1985785.

© by the authors, 2017 Archive of Numerical Software 5(1), 2017

http://www.dune-project.org
http://buildbot.net
https://www.docker.com/
https://gitlab.dune-project.org/core/dune-istl/merge_requests/5
https://gitlab.dune-project.org/core/dune-istl/merge_requests/5
http://dx.doi.org/10.1016/j.advwatres.2011.03.007
https://git-lfs.github.com/
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1109/SECSE.2009.5069163
http://dx.doi.org/10.1109/SECSE.2009.5069163
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://secse08.cs.ua.edu/Papers/Kelly.pdf
http://secse08.cs.ua.edu/Papers/Kelly.pdf
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1115/1.1767847
http://dx.doi.org/10.1007/3-540-28901-1
http://doi.acm.org/10.1145/1985782.1985785

168 Archive Editors

VTK. The Visualization Toolkit: File Formats. http://www.vtk.org/wp-content/uploads/2015/
04/file-formats.pdf [Accessed: February 2017].

Archive of Numerical Software 5(1), 2017 © by the authors, 2017

http://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
http://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf

