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Abstract: A complete finite element (FEM) and boundary element (BEM) computational toolbox
is presented, based on the Dune and Bem++ software packages respectively, for the efficient
independent solution on parallel/multi-threaded multi-core computers of separate finite and
boundary element systems. Each system has very different memory resource requirements, but
can be coupled together within a common computer program for solving multi-physics PDE
problems for computational sciences and engineering applications.

Examples of both direct (to a fixed-point) and indirect FEM-BEM iterative coupling, and their
performance results with increasing core/thread count, drawn from electromagnetic scattering
and fluid mechanics are presented as illustration of the wide scope of applications for this package.

1 Introduction

Finite element methods (FEM) and boundary element methods (BEM) have been around for many
years, and due to the fundamental difference in their structures have typically been used for very
different types of problem.

For unbounded computational problems, the classic example being an electromagnetic/acoustic
wave scattering off an impenetrable obstacle, where a solution is required within a region of
space (or even time) of unlimited extent, a finite element discretization of this whole region is
impractical.

By requiring just the disretization of the boundaries of computational domains, however, (and
hence the name) the boundary element method would avoid such a problem because the boundary
of such an infinite region is just the finite surface of the scattering obstacle itself – the “other”
boundary to the infinite region can be neglected provided suitable assumptions can be made
about the solution at infinity Wrobel [2002].

This capability for supporting a solution in an unmeshed region, however, gives the BEM one
of its principle drawbacks, namely that the solutions being “interpolated” in such regions are
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assumed to be linear, and this limits its application to a relatively small class of problems where
linear (or linearized) solutions are acceptable.

Finite elements, on the other hand, make no such assumptions on a solution, and thus give
great flexibility for the simulation of all kinds of non-linear behaviour, but all, of course within a
computational region of limited extent.

It should also be noted, that due to the implicitly localized nature of finite element interactions
(giving sparse system matrices), parallelization for multi-core processing is relatively easy, with
each core just computing the solution for a different physical region of the computational domain.

Because of the “dense” connections between the local values of the unknown solution at different
locations in BEM discretizations, however, parallelization of BEM is much more challenging, and
usually depends on an overall reduction in the amount of communication between these local
values during the solution process through the use of “fast” techniques which can require a huge
coding effort to implement.

Now, it is the complimentory, but very different, nature of the finite and boundary element meth-
ods which has led to the interest in their coupling together to tackle “mixed” problems Johnson
and Nedelec [1980], Stephan [2004], Costabel [1987], Mund and Stephan [1997], with specific
applications in electromagnetics Meddahi and Selgas [2003], including the wave scattering sug-
gested above Hiptmair [2003], and fluids/elasticity Brink and Stephan [2001], Gatica and Heuer
[2000], Meddahi and Sayas [2000], further references may be found in Radcliffe [2011, 2012].

These coupling schemes have typically involved the combining together of the discretizations
afforded by the two methods to form one big system matrix to be inverted, however, the disparate
but complementary nature of BEM and FEM means that the structure of this single system matrix
can be very non-uniform, making its numerical inversion problematic.

Because the FEM only considers spacially local interations between the discretized values of
the solution variables, the system matrices it creates are sparse, and the memory required for
the solution of such problems may be distributed analogously to the spacial distribution of the
variables themselves in what, following the definitions of Heroux et al. [2011], may be termed a
“Mode 1” for the programming of modern multi-node computers with more than one core per
node.

The BEM, however, at least in its traditional form, involves dense system matrices arising from
the need for all values of the discretized unknown to know about all other values in the boundary
integrals upon which the method is based.

It is for this reason that there are sparse and dense regions within the system matrix when FEM
and BEM discretizations are combined at the (more fundamental) system matrix level.

The alternative to such a coupling of the system matrices, is to somehow couple the solutions their
separate inversions would generate instead. This allows different optimized preconditioners and
solvers to be used for the FEM and BEM parts separately.

These coupling methods may be referred to as “iterative”, and as will be seen in the next section,
involve repeated solution of the separate FEM and BEM problems within each iteration to provide
a successive updating, from some initial guess, of the solution and/or its derivative, over the
common boundary between the FEM and BEM regions until the updates change nothing and the
solution is converged Lin et al. [1996].

Though not used here, these updates can be further defined through the use of relaxation parame-
ters which specify, within a particular iteration, how the solution (or derivative) from one scheme
should be used to set the Dirichlet and/or Neumann boundary conditions for the other at the next
iteration. By allowing a “mix” of Dirichlet/Neumann data from the two coupled problems to be
used as the boundary conditions for either at the next iteration, the convergence of the coupling
scheme may be altered significantly.
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For the examples presented here, though, such mixes are not used, and the data for setting the
boundary condition of one problem will come exclusively from the solution of the other problem
it is to be coupled to.

Now, while the sparse FEM systems work best on distributed memories, the dense BEM systems
work best in shared memory environments, where multiple processes can access all the variable
data that they will need over the entire discretized domain to perform their integrals. This
involves a “Mode 2” style of programming Heroux et al. [2011], where the parallelization is
achieved through the use of multi-threading on a single node with multiple cores.

Extreme-scale computing hardware is typically either specialized towards shared memory de-
signs, with up to 64 cores (beyond which memory clashes become prohibitative), or distributed
memory 1000+ cores, with the popular software libraries OpenMP and MPI being often used for
the management of each type of memory respectively.

Thus one can say that any dense BEM implementation is well suited for a multithreading en-
vironment, for execution on a shared memory machine (as is the case for Bem++), while FEM
applications are best written using MPI for distributed memory machines (as is the case with
the Dune software packages). Thus a program that were to combine both FEM and BEM solves,
would ideally have a hybrid or “bi-modal” memory architecture.

The memory architecture requirements of modern fast, data sparse BEM methods like the H–
matrices available in Bem++ (or other related “fast multipole” type methods) can, however, be
significantly different, but will be considered for present purposes as closer to those of their dense
forebears, than those of FEM.

As with numerical schemes themselves, the majority of literature on computational data structures
has been connected with either the shared or the distributed memory architectures appropriate
to the numerical scheme itself, rather than on hybrids. A good discussion on the data-structures
and techniques needed to introduce ahared threading libraries into MPI models may be found
in Heroux et al. [2011], which also has a few useful references therein.

Recently, approaches for combining the distributed and shared memory paradigms have been
investigated – mostly aiming at extending an existing distributed memory model to benefit from
the memory hierarchy and hardware structure of modern computer architectures. For example
the distribution of the spatial grid for a finite element computation is carried out in two steps,
first a coarser distribution over the nodes of the machine using MPI for data communication and
in a second step subdividing these coarse patches into smaller chunks distributed over the cores
of each node using a shared memory model, see Gaston et al. [2015], Ibanez et al. [2016], Olson
et al. [2007] and references therein.

This parallelization strategy is also available in some Dunemodules, for example for matrix free
methods in Klöfkorn [2012]. This approach can be thought of as a hierarchic hybrid parallelization
(or “hierarchic bimodal” to follow the “mode” terminology of Heroux et al. [2011]). It is restricted
to single packages and does not require any global access to the whole set of degrees of freedom.
This is an important difference to the challenges discussed in the following, where the Bem++
library requires the whole grid to be available in a shared memory address space, while the Dune
library and the linear solver packages used for solving the FEM problem rely on MPI for data
exchange and are not even necessarily thread safe. We are not aware of any openly available
publications in the area of computational PDEs employing a non-hierarchic hybrid parallelization
approach to the use of distributed/shared memory concepts within the same program, and would
hope that the present work might be among the first to openly address this issue.

This paper will present the internal structure and design decisions taken for a software toolbox
that intertwines the asynchronous evaluation (across a parallel/multithreaded environment) of
fem and bem constituent numerical kernels/solvers with disparate but complementary computing
resource requirements for the development of efficient integration algorithms for the simulation
of coupled partial differential equations arising in multiphysics applications ranging from elec-
tromagnetic wave scattering to electrically charged droplet deformations where the underlying
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processes have disparate computing resource requirements that can be exploited effectively in
this way.

In particular, we show the construction and management of special shared memory spaces, on
a single node, that allow the running of a multi-threaded bem solver within an MPI application
using all the cores of the node in which the shared memory sits. The management essentially
involves granting ownership of different regions of the shared memory to different processes, or
“ranks”, to avoid access clashes if two different ranks try to write to the same memory address at
the same time. Multiple reading from the same address does not pose the same problems.

Finally, this paper is intended as an introduction and guide to the associated software for use in
new hybrid FEM/BEM application developments. While limited investigation and discussion of
computational efficiencies is provided, this is from a very experimental “try it and see” approach
comprehensible to the largest possible audience, and no formal symbolic analysis of the coupling
methods used is presented. However, the reader is directed to Sayas [2009, 2013] and the references
therein for a formal analysis of coupling methods similar (or identical) to those used here.

2 Coupling Methods

Consider an equation for an unknown u, valid inside an interior domain, Ω ⊂ R3, satisfying

A u = f − Bv (1)

arising from the discretization of a partial differential equation by the finite element method.
Similarly, let the function v be a discrete solution defined on the boundary, Γ ≡ ∂Ω ⊂ R3,
satisfying

D v = g − Cu (2)

arising again from a discretized partial differential equation using either finite or boundary
elements (or both if this surface solution may itself be decomposed into two distinct surface
solutions). Any BEM solution would of course be equivalent to solving the corresponding
volume problem in the exterior Ω∞ ≡ R3

\Ω.

The full coupled problem can be written as a (block) matrix vector problem, where A,D arise from
a discretized weak formulation of partial differential equations defining a function in the domain
Ω and on Γ, respectively. The terms B,C provide coupling between the problem in the domain
and on the boundary. The term B provides, for example, Neumann information using the surface
solution as flux and C might take Dirichlet or Neumann traces from the domain solution to force
the surface problem. Note that the terms A,B,D,C could refer to non-linear operators although
we will mostly be focusing on linear operators in the following.

The combined bulk-surface problem thus results in the matrix system(
A B
C D

) (
u
v

)
=

(
f
g

)
(3)

For the coupling problems discussed here, it is possible to combine the system matrices from
both to form a large matrix as shown above. In the case of FEM and BEM coupling this larger
matrix will have both sparse and dense regions corresponding to the two different methods used
in its construction. Consequently it is crucial for an efficient solution of the coupled system to
not treat it as a single matrix, but to make use of its block structure. Furthermore, the methods
discussed here allow us to treat the solvers for the different parts of the system as “black boxes”,
allowing us to use optimal solvers for both the surface and the bulk part of the problem. Thus we
can use the efficient methods available in Dune for solving FEM problems (including multigrid
and direct solvers) and the optimal methods for the BEM problems available in Bem++ (including
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multipole and H-matrix methods). An efficient solution method is based, for example, on a
block-preconditioned GMRes iterative solver Feischl et al. [2015]. We discuss a similar approach
below. First we describe the idea based on a simple iterative updating of each scheme’s solution
allowing convergence to a fixed point solution.

Assume in the following that the matrices on the diagonal result from a bounded, positive bilinear
form so that A and D are invertible, and system (3) may be preconditioned by the block diagonal
matrix

P =

(
A−1 0

0 D−1

)
(4)

to give the equivalent system(
A−1 0

0 D−1

) (
A B
C D

) (
u
v

)
=

(
A−1 0

0 D−1

) (
f
g

)
(5)

which may be simplified to (
I A−1B

D−1C I

) (
u
v

)
=

(
A−1 f
D−1g

)
(6)

Now, one of the simplest iterative schemes one can devise for solving A x = b is that of Richardson
with a relaxation parameter of unity

xk+1 = xk
− A xk + b (7)

Applying this to (6) with x = (u, v)T gives

(
uk+1

vk+1

)
=

(
uk

vk

)
−

(
I A−1B

D−1C I

) (
uk

vk

)
+

(
A−1 f
D−1g

)
(8)

=

(
uk
− uk

− A−1Bvk

vk
−D−1Cuk

− vk

)
+

(
A−1 f
D−1g

)
(9)

=

 A−1
(

f − Bvk
)

D−1
(
g − Cuk

)  (10)

and our first, block Jacobi style iterative coupling solver, to be initiated from an initial guess u0, v0

and computed for integer k > 0:

vk+1 = D−1(g − Cuk) , uk+1 = A−1( f − Bvk) (11)

A very simple variant of this gives a second, block Gauss-Seidel style method to solve the coupled
problem:

vk+1 = D−1(g − Cuk) , uk+1 = A−1( f − Bvk+1) (12)

It should be noted that very simple Richardson iterative solvers like these were considered in the
early days of domain decompositon methods and may have considerable limitations regarding
their efficiencies and even convergence, which could be critical or slow for some scenarios Toselli
and Widlund [2005].
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The preconditioner P in equation (4) used in the two simple iterative schemes can be modified
by using suitable preconditioners instead of the exact inverse matrices. So for example A−1 can
be replaced by an algebraic multigrid preconditioner as available in Dune-Istl. If a Krylov type
method is used to invert A then it is possible to fine-tune stopping criteria in each step of the
Richardson iteration to improve efficiency of each step, but at the cost of perhaps a slight increase
in the number of iterations. This type of efficiency tuning has not been investigated here but
could be added to the package.

The final approach discussed here is more involved, but more robust, and often leads to a reduction
in the number of iterations required. It makes use of a GMRes method and a reformulation of
problem (3) eliminating either v or u: First the second row of (3) gives

v = D−1g −D−1Cu (13)

which may be substituted into the first row of (3) to give

Au + BD−1g − BD−1Cu = f (14)

Multiplying through by A−1 we have

u − A−1BD−1Cu = A−1 f − A−1BD−1g (15)

Thus solving the coupled system

M u = b (16)

where

M = I − A−1BD−1C (17)

b = A−1
(

f − BD−1g
)

(18)

is then completely equivalent to solving system (3). The problem can now be solved using a
Krylov iterative solver, for example GMRes. These methods only require computing the matrix
vector product M u.

Of course, it would also have been possible to perform the eliminations the other way around
to obtain a combined system M v = b; solving for the surface variable v instead, with possibly
different memory requirements. A third option would be to apply the Krylov method directly
to the full block system 6. The framework presented here is flexible enough to allow for an easy
implementation of these alternative coupling methods.

Note that the first two coupling methods are included primarily as a simple demonstration on
how to implement coupling schemes within the current framework. These methods are well
known not to be very robust and efficient but are included to show the appropriate code structure
and, due to their simplicity, are intended as a starting point for user developments of coupling
schemes/solvers more suited to their particular problems.

Indeed, the use of an appropriate coupling scheme can be crucial to the success of the FEM–
BEM coupling as a whole, thus, for the scattering wave case seen in section 6.2, for example, it
is suggested the reader try the Jacobi and Gauss-Seidel methods (which do not converge at all
without additional relaxation), before restoring the original GMRes coupling scheme more suited
to the problem. In the simpler FEM-FEM coupling example found in section 6.1, on the other
hand, these two methods will converge within a reasonable number of iterations.
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3 Software Dependencies

The software, version 2.3, to be presented here for the use, and possibly coupling, of FEM and
BEM within the same parallel program is based on the Dune 2.3 and Bem++ software packages,
which we now examine in a little more detail.

Dune stands for the “Distributed and Unified Numerics Environment”, and is a modular toolbox
for solving partial differential equations (PDEs) with grid-based methods Dune [2012]. It supports
the easy implementation of methods like finite elements (FE), and finite volumes (FV).

DUNE is free software licensed under the GPL (version 2) with a runtime exception, thus it is
possible to use Dune even in proprietary software.

The underlying idea of Dune is to create slim interfaces allowing an efficient use of legacy and/or
new libraries. Modern C++ programming techniques enable very different implementations of
the same concept (e.g: grids, solvers, ...) using a common interface at a very low overhead. Thus
Dune ensures efficiency in scientific computations and supports high-performance computing
applications Dune [2012].

Dune applications are designed and written to use pre-existing packages, or “modules”, which
can be bolted together to provide whatever functionality the developer will need in their own
program (also written as a module). This allows easy sharing of computer code with a “black-box”
mentality that anyone using a module should not need to know how it actually works.

Essential to most Dune programs are the five core modules, Dune-Common, Dune-Geometry,
Dune-Grid and Dune-Istl, which provide the basic housekeeping required of any program
handling meshes.

Based on these core modules, the Dune-Fem module provides all the basis function definitions,
matrix assembly and problem definition routines required for the creation of a complete finite
element program. If an appropriate discretization module, or “grid-manager”, is also used (see
next) then parallel assembly and solution of the resulting problems is easily possible for the novice
user, with minimal knowledge. The parallelization is based on calls to routines drawn from the
Message Passing Interface (MPI) libraries, with a good computational scaling dune-fem howto
[2015].

To enable the efficient parallelization of the FEM part of the coupled FEM-BEM solver, the grid
manager chosen is Dune-ALUGrid Alkaemper et al. [2016], which allows the construction and
partitioning across multiple processors of any three-dimensional volume and surface meshes the
user might specify for the separate FEM and BEM sub-problems. Importantly, it also allows a user
defined specification of the partitioning, so that optimal division of the given meshes is possible,
with the same partitioning being used for both volume and surface meshes where required to
facilitate data exchange.

The last of the Dune modules required may be thought of as almost literally sticking the whole
thing together. With FEM and BEM solutions required on both volume and surface meshes in
the various examples that will be presented, it is important to have a means of communicating
solution data from one computational domain to another in order that it may be used to update
the respective solutions there. The Dune-Grid-Glue module Bastian et al. [2010], provides just
the simple yet effective means required for transferring various numerical values between the
grids (even partitioned and non-matching grids).

Outside of the Dune environment, and to provide the necessary boundary element routines the
Bem++ library is used; an open-source Galerkin boundary element library that handles Laplace,
Helmholtz and Maxwell problems on bounded and unbounded domains in three space dimen-
sions Smigaj et al. [2015]. Owing to build compatibility issues, at present the installation script,
see appendix §B, downloads a certain git hash of Bem++ which resolves to the 3.0.3 tag. When the
Bem++ compatible with Dune 2.4 becomes available, this restriction is intended to be lifted, with
a 2.4 release of the Dune-Fem-Bem-Toolbox.
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The package BEM++ is itself built extensively using routines drawn from the EigenC++ template
library for linear algebra with matrices, vectors, numerical solvers and related algorithms Guen-
nebaud et al. [2010]. Eigen is a template library defined in the headers and doesn’t have any
dependencies other than the C++ standard library. Parallelization in Bem++ is achieved using
multi-threading based on Intel’s Threading Building Block TBB [2014]. For the grid data structure
Bem++ relies on the Dune core modules, so data exchange between the two packages is achievable
without any reorganization of data and thus is highly efficient.

4 Implementing the Coupled Problem

The implementation discussed in this paper is based on the approach adopted in the “howto”
module of Dune-Fem dune-fem howto [2015]: both the bulk and the surface problems use a Model
class describing the functions required for the underlying partial differential equations. This is
passed to a Scheme class which sets up the required types for the discrete spaces, creates the glue
objects that will be needed for any coupling and selects the solvers to be used in addition to also
holding the actual solution.

The creation of the glue objects is done automatically by the scheme constructors, with every
second scheme defined (within the main.cc program file) creating a glue object between its mesh
and that of the previously declared scheme. Thus, at least for the present software release, minor
attention needs to be paid to the order in which the schemes are declared.

In its original form within Dune-Fem-Howto, the Scheme class implements two methods prepare
and solve, which setup the right hand side vector and assembles and solves the system, respec-
tively.

For the Dune-Fem-Bem-Toolboxmodule the original scheme class used in the Dune-Fem-Howto
examples is extended by the additional method couple which processes the data communication
between two schemes – one "bulk" scheme for the inside region, and one "surface" scheme for the
surface of that region.

Thus, in our module we provide two such scheme classes, one for FEM discretized elliptic
problems defined either on a surface mesh or on a volume mesh, and a second for exterior BEM
problems defined on a surface grid only. In the case of the BEM problem the Model only provides
the static information about which integral operators to use for the BEM problem. Additional
parameters, for example wave numbers, can be set through run time parameters as described
below.

For FEM problems systems of non-linear equations of the form∫
ω

D(x,u(x,∇ωu(x)) · ∇ωϕ(x) + m(x,u(x),∇ωu(x))ϕ(x) =

∫
ω

f (x)ϕ(x)

can be defined through the Model class. Here ω = Ω or ω = Γ is the volume or the surface
with ∇Ω = ∇ and ∇Γ denoting the surface gradient. Although non-linear elliptic problems can
be described by the model class and handled by the schemes we will mainly focus on linear
problems in the following.

In this version of the module only a linear coupling between the two schemes is considered. This
is to be extended in future releases. The surface solution is assumed to be coupled to the volume
problem using Dirichlet or Neumann conditions taking the form

∇u · n + αΩu = αΓv .

Here αΩ and αΓ are functions defined on the coupling surface.

Note that for a surface FEM problem v are the values of the quantities defined on the surface
while for a BEM problem v will actually be an approximation of the normal derivative of the far
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field solution. Since the αΩu contribution of the coupling will be part of the matrix A, the actual
coupling matrix is

< Bv, ϕ >:=
∫

Γ

αΓvϕ (19)

The main part of the bulk problem is of the form

< Au, ϕ >:=
∫

Ω

D(x,u,∇u) · ∇ϕ + m(x,u,∇u)ϕ +

∫
Γ

αΩuϕ (20)

and described by a single Model class consisting of four methods:

C++ code
1 template< class Entity, class Point >
2 void source ( const Entity &entity, const Point &hatx,
3 const RangeType &value, const JacobianRangeType &gradient ,
4 RangeType &flux ) const
5 template< class Entity, class Point >
6 void linSource ( const RangeType& uBar,
7 const Entity &entity, const Point &hatx,
8 const RangeType &value, const JacobianRangeType &gradient ,
9 RangeType &flux ) const

10 template< class Entity, class Point >
11 void diffusiveFlux ( const Entity &entity, const Point &hatx,
12 const RangeType &value, const JacobianRangeType &gradient ,
13 JacobianRangeType &flux ) const
14 template< class Entity, class Point >
15 void linDiffusiveFlux ( const RangeType& uBar, const JacobianRangeType& gradientBar ,
16 const Entity &entity, const Point &hatx,
17 const RangeType &value, const JacobianRangeType &gradient ,
18 JacobianRangeType &flux ) const

The methods provide the implementation of m(x,u,∇u),D(x,u,∇u) and their linearization around
ū on an entity and local coordinate x̂. Addition methods on the Model describe boundary condi-
tions and a forcing term.

These Model classes are used for the implementation of both bulk (ω = Ω) and for surface (ω = Γ)
finite element methods. The lower diagonal block D representing the main part of the boundary
pde is of the same form as A given above and the coupling occurs through the forcing term:∫

Γ

D(x, v(x,∇Γv(x)) · ∇Γϕ(x) + m(x, v(x),∇Γv(x))ϕ(x) =

∫
Γ

(
β0u + β1∇u · n

)
With suitable function β0, β1 defined on the coupling surface. Therefore,

< Cu, ϕ >:=
∫

Γ

(
β0u + β1∇u · n

)
ϕ (21)

However, user defined parameters αΩ, αΓ, β0, β1 are intended for future releases, and all the
examples presented below will effectively have them set to one where they are present.

For describing problems to be discetized by the boundary element method a similar model class
needs to be implemented. We provide a model for a far field Laplace and Helmholtz problem.
For example, to solve a complex valued Helmholtz equation of the form

4u + ωu = uinc in R3
\Ω

u = g on ∂Ω

the model class has the following form:
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C++ code
1 // FS: The complex function space, GP: the grid part used
2 template <class FS, class GP>
3 struct HelmholtzModel
4 {
5 HelmholtzModel(double omega) ;
6 struct IncidentData {
7 void evaluate( const DomainType& x, RangeType& res ) const;
8 };
9 struct DirichletData {

10 void evaluate( const DomainType& x, RangeType& res ) const;
11 };
12 };

The two sub-structures are used to implement the Dirichlet data g and the incident wave uinc in
global coordinates.

A model class together with a grid is used to initilize a Scheme class which sets up the required
types for the discrete spaces and solvers and in addition also holds the solution. The Scheme
classes provide two methods prepare and solve, which sets up the right hand side vector and
assembles and solves the system, respectively. In this module two such scheme classes are
implemented: FemScheme for solving non-linear fem problems using the classes provided in the
Dune-Femmodule, and the BemScheme providing the bindings to Bem++.

C++ code
1 template < class Model, SolverType solver=istl >
2 struct FemScheme {
3 FemScheme(const typename Model::GridPartType &gridpart, const Model& model);
4 void prepare();
5 void solve();
6 };

In addition the scheme class provides methods for accessing the discrete function spaces and the
discrete function storing the computed solution. The SolverType template argument can be used
to specify the solver backend to be used. While in Dune-Fem the bindings for a number of solver
packages are available (Dune-Istl, PETSc, UMFPACK, Eigen) we use Dune-Istl for all our finite
element computations. The BemScheme class has a very similar structure but without the option
of choosing a solver backend since we use the H-matrix implementations available in the Bem++
package.

Both our coupled problems given by (1) and (2) consist each of three terms: A u, f and B v and
D v, g, and C u, respectively. The first two terms of each problem are covered by the prepare and
solve methods on the scheme classes. To describe the full problem the coupling terms B v,C u
need to be implemented. To this end, the scheme classes are extended by one additional method:

C++ code
1 template <class OtherDiscreteFunctionType>
2 void couple(const OtherDiscreteFunctionType &otherSolution);

where the template parameter is the solution of the other problem. As already mentioned above,
coupling is achieved using the Dune-Grid-Glue module. In this version of the module only a
linear coupling between the two schemes is considered. This is to be extended in future releases.

The actual coupling mechanism is itself implemented in a Scheme class, taking the bulk and the
surface scheme classes and then itself providing a prepare and solve method.

As described above this module provides three such implementations:
GaussSeidelCouplingScheme implementing equation (12), JacobiCouplingScheme for (11) and
finally GMResCouplingScheme for equation (16), which may all be found in the folder
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dune-fem-bem-toolbox/dune/fem_bem_toolbox/coupling_schemes

Of course such coupling necessitates a number of different grid and function space types associ-
ated with the communication of data, and the setting-up of the glue objects, especially with the
moving grids of the third case study described below. For convenience, all these types are grouped
together with the original type declarations of the schemes themselves within a traits.hh file
inside the source code folder source for each example application.

5 Parallel Coupling Approach

Underpinning all of the coupling approaches is the use of the dune-grid-glue module to create
“glue” objects between the bulk and surface meshes allowing communication of solution values
held on each.

For parallel runs, the MPI based solvers in Dune exploit a (possibly user defined) partitioning of
full volume or surface grids into different pieces, each of which is attributed to a different process,
such that the matrix assembly and solution is performed independently on each process.

Now Dune-Grid-Gluewill create distinct “glue objects” between each of these individual pieces.
With one piece of the volume grid, and one piece of the surface grid on a particular rank, one
glue object will be created (on the same rank) that essentially creates and holds a surface grid
corresponding to the intersection of the bulk and surface grids it is gluing together – and which
thus normally coincides with the surface mesh itself.

The glue object then provides an “iterator” that iterates over the “glue elements” of this glue
intersection grid which each have pointers to the bulk and surface elements of the bulk and
surface grids it joins.

All that is thus required to exchange information from the bulk problem to the surface one (or
vice-versa), is thus to iterate through these glue elements, for each one evaluating (at the Lagrange
or quadrature points) the bulk solution that needs to be communicated within the glue element
(coincident with a face of its own bulk element), and using the glue element to then assign this
information to the surface solution at the corresponding Lagrange point within the corresponding
surface element or assemble the desired integral terms. In this version of the module the coupling
matrices B,C are not assembled but the coupling is computed on the fly. For the current problems
where inverting A,D is the dominant cost the required iterations over the partitioned surface grid
is an acceptable overhead.

The Bem++ library, in both serial and parallel execution modes, always works with full, unpar-
titioned (surface) grids. The parallelization being achieved through use of the multi-threaded
assembly and solver routines both with or without the use of H-matrices to further speed-up
assembly Smigaj et al. [2015]. Clearly the first challenge is thus to allow the communication of
the solution variables held on the “full” surface grid (for the Bem++ operations), to and from the
grid parts held on each process performing the Dune calculations. As storage backend for the
degrees of freedom (“dofs”) the vector classes from the Eigen package already used extensively
by Bem++ are used.

These Eigen vector structures give the option of being setup using a chunk of specified raw
memory so that special shared memory blocks accessed via a special “shared” dof vector class
EigenVector may be used for reading and writing through the vector interface of Eigen and thus
enabling a seamless exchange of data between the Dune-Fem and the Bem++ solvers and between
different processes, but to Bem++ they look just like a regular vector of unknowns over the whole
of the surface grid.

This wrapper class is called Dune::Fem::EigenVector and implements the vector interface used
in Dune-Fem to store the degrees of freedom for discrete functions to be stored both over a full
grid and a partitioned grid. This class combines the vector classes of Eigen together with a block
of raw memory to store the vector elements.
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The module Dune-Fem is flexible with respect to the storage structure of the degrees of freedom.
So through simple adapter classes, Dune-Fem makes it possible to use a wide range of solver
backends for storing dof vectors for discrete functions and it is straight-forward to use the vectors
of Eigen. Thus since Eigen can make use of the shared memory blocks, accessing those through
the Dune-Fem interface is seamlessly possible.

Of course, to Bem++ these dof vectors look like a regular vector of unknowns over the whole of
the surface grid it has been given previously, but because they are built on shared memory, each
of the Dune MPI ranks may access parts of the vector to fill in/evaluate each on the partitioned
mesh.

Furthermore, because the Eigen vector classes provide an option for the user to provide raw
memory to use as storage space, by allowing the first rank of a parallel execution to arrive at the
particular point to create a special piece of shared memory, whose address it then communicates
to all the other ranks, all ranks may then pass this address to the constructor of a new eigenvector
storage array which they each create, but the addresses of whose elements will then be the same
for all ranks.

By letting all ranks read from, and “non-clashing” (see below) ranks write to these shared elements,
communication of values is possible.

This is the principle means for collecting and distributing data required for the Bem++ routines,
which are all run from a single process (which creates multiple threads). Typically the Dirichlet
data required as the right hand side of the bem problem would be accumulated into a shared
vector by the various ranks, the Neumann data returned by the bem solve (initiated on the rank
zero process) would similarly be put into a shared vector, from which each rank could then extract
the values relevant to it.

The construction of the shared memory block is done in the class SharedMemory. Rank zero tries to
construct a block with a randomly generated name usingboost::interprocess::mapped_region.
If this is successful, the name is communicated to all other processes and they all use the same
block of memory to store the degrees of freedom. The class has the following constructor

C++ code
1 EigenVector ( unsigned int size = 0, const bool shared = false );

where the last argument can be used to determine if a block of shared memory is to be used. The
following code snippet shows how to setup both a distributed and a shared discrete function for
a given DiscreteFunctionSpaceType, e.g., a Lagrange space:

C++ code
1 typedef Dune::Fem::EigenVector<double> DofVectorType;
2 typedef Dune::Fem::VectorDiscreteFunction< DiscreteFunctionSpaceType , DofVectorType

> > DiscreteFunctionType;
3 DiscreteFunctionSpaceType distributedSpace( distributedGridPart );
4 DiscreteFunctionSpaceType fullSpace( fullGridPart );
5 DiscreteFunctionType rankLocalDiscreteFunction("rank_local", distributedSpace );
6 DiscreteFunctionType sharedDiscreteFunction("shared", true, fullSpace );

Of course, appropriate synchronization of the filling/extracting data tasks is needed. While
reading from a particular piece of memory does not usually pose any problems with multiple
processes trying to access the same memory address, writing to such an address does. The
synchronization of these tasks is performed by allowing each rank to run over its own specially
created glue object between its particular gridpart, and the full grid (on which the bem operations
are performed), putting-down or picking-up values at the positions given by the glue object in
accordance with a special “dofrank” array which grants (or not) the permission to write to any
particular memory address.
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Each rank builds up its own “dofrank” array, defined over the full grid, where the integer values
at each dof (corresponding to a particular grid point of the full grid) are just the rank number of
the highest rank whose individual gridpart has a coincident grid point there.

Thus in summary to minimize communication and synchronization costs the degrees of freedom
of gΓ are stored in a block of shared memory using Boost’s interprocess package. Note that gΓ

is a continuous Lagrange function so that some of the degrees of freedom are shared between
processes. To avoid race conditions, a degree of freedom in the shared memory block is only
written to by one process (the one with the lowest rank). The solution of the Bem++ solver is also
directly written to a block of shared memory. After the Neumann data (piecewise constant) is
computed, the second glue object is used again to move the data from the full surface grid onto
the distributed surface grid. Note that each step described above is almost completely parallel.
The assembly routines and the solvers from the Bem++ library are only called from one process
which then sets up its own multiple threads to carry out the computations in parallel.

A particular element (corresponding to a particular dof) in a shared memory eigenvector may
then only be modified by a process whose rank is equal to that held in the dofrank array at the
same point. It is thus just the highest ranking process at any particular gridpoint who is allowed
to fill in dof values at the corresponding point.

For the finite-element problems we use a distributed grid parallelization strategy based on MPI.
The required communication for both the assembly and the solvers are directly available through
the Dune-Fem module and no changes are required to the FemScheme class to use it for parallel
runs. Although the Dune-Grid-Glue will work for an arbitrary partitioning of both the surface
and the bulk grid, in this version we make the following assumption: for each process p, the
part Ωp of the bulk grid on processor p and the part Γp of the surface grid satisfy Γp = ∂Ωp.
As a consequence of this restriction on the partitioning, surface and bulk entities that are glued
together always reside on the same process so that no additional communication is required.

This module provides two load balancing handlers for the partition method of Dune-ALUGrid
to enforce this type of matching partitioning. The first SimpleLoadBalanceHandle class uses
a simple coordinate bisection approach to partition both the bulk and the surface grid. While
this approach leads to a reasonably good partition of the surface the bulk partitioning suffers
from bad connectivity at the origin. To improve the bulk partitioning this module also provides
ZoltanLoadBalanceHandle. The partitioning generated by this class is identical to the simple
partitioning described previously but combines this with Zoltan’s graph partitioner Boman et al.
[2012] around the origin to reduce the number of shared vertices there. In summary, coupled
surface and bulk finite-element simulations can be in parallel with little change to the serial code.

As befits the nature of boundary element formulations the Bem++ library, however, provides
only shared (and not distributed) memory parallelization and to assemble the boundary integral
operators requires an unpartitioned mesh for parallel assembly. For the matrix inversion, Bem++
uses the OpenMP multi-threaded solvers of the Eigen package and with the additional option
of using internal H-matrix based solvers. Again the dof vectors for the right hand side and the
solution of the boundary element problem need to be accessible from all threads. Combining the
distributed grid approach used in the Dune packages with the solvers in Bem++ requiring the full
unpartitioned grid is challenging. To achieve this an additional scheme (SharedBemScheme) is
available in this module. On each process this scheme is constructed using both the full surface
grid Γ and a distributed grid Γ =

⋃
p Γp. Discrete functions gΓ, λΓ defined on the full grid are setup

to be used with the solvers in the Bem++ library. To setup the right hand side for the boundary
element problem on the full grid the term ΠΓu in the couple method needs to be computed. Note
that u will be distributed and so a process p will only ”see” the part of u computed on the partition
Ωp.

First we use the glue objects setup between the partitioned bulk grid and the partitioned surface
grid (used also in the fem-fem coupling example below) to transfer the bulk data onto Γp.
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A second glue object defined between the part of the surface Γp onto the full surface Γ is now used
to transfer the Dirichlet data on Γp to the discrete function gΓ defined on Γ.

This two-stage process allows any surface problems requiring only finite elements to have the per-
formance benefits of distributed grid parallelization, while allowing any BEM (surface) problems
to work on undistributed grids.

6 Case Studies

Presented here are three example applications to illustrate the use of the new fem-bem toolbox,
the source code for which may be found in the folders within

dune-fem-bem-toolbox/case_studies

as will be indicated. All experiments were carried out on an Intel Xeon(R) E5-2650v2, 2.6GHz
CPU node with 8 physical cores. For completeness, and to further later discussions into parallel
performance of the coupling methods, which will make reference to "efficiencies" as measured by
the percentage “efficiency”

E = 100 ×
time to solve on one core
core count × solve time

(22)

two additional folders are included within the case studies as example FEM only and BEM only
applications.

The first solves a simple real valued Dirichlet bounded Poisson problem inside a unit cube, whilst
the second solves for the Helmholtz equation, (which will be introduced in the second case study)
outside a unit sphere.

These two reference problems are briefly discussed here, but only in terms of their parallel
performance efficiencies shown in Figure 1, Figure 2 and Figure 5(left), respectively. The source
code for them may be found within folders

dune-fem-bem-toolbox/case_studies/fem_test

and

dune-fem-bem-toolbox/case_studies/bem_test

respectively, with the same general structure, build and running instructions as the three studies
which will be investigated in detail below.

The BEM only test results were performed on the surface mesh sphere-h-0.05.msh of 11459 ele-
ments found in thebem_testdata folder, while the FEM only test results used theunitcube-3d.dgf
in the fem_test data folder with chosen element diameters of 1/52 the (unit) edge length.
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Figure 1: Percentage efficiencies, E, see equation (22) of operator assembly (left) and assem-
bly+solve (right) times in seconds, “s”, for solution of a BEM only Helmholtz problem using just
Bem++ without H-matrices for different processor/thread counts, “p”.
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First we note, however, that the assembly of the operators within Bem++ may be performed with
or without the use of so-called “H-matrices”. If they are not used, then an LU decomposition of
the system matrix may be performed in the assembly step, leaving a simple back-substitution for
the solve to do. This allows assembly and solve times as indicated in Figure 1 to be obtained with
the test problem. Thus the solve step would appear to be instantaneous relative to the assemble
step.

If, however, H-matrices are turned on, then a direct LU decomposition is not possible, and the
solve step will involve a Krylov iterative solver and necessarily more work, and thus we obtain
the solve times (and efficiencies) as appearing in Figure 2. Clearly the assembly times are much
reduced with the H-matrices, but this is offset slightly by the more expensive solves.

This leads us to the conclusion that if repeated solution using the same basic BEM operators
is going to be required, for instance in the repeated evaluations of a solution within a fixed-
point iterative coupling scheme (as will be seen in the second case study), then it is perhaps
best not to use the H-matrices in Bem++, because one LU decomposition, performed just once
within the assembly stage, will allow very short times for many repeated solve steps within the
iterative coupling scheme. In future, alternative more efficient parallelizations of the H-matrix
assembly and solve steps Kriemann [2013], not yet implemented in Bem++, might change this
advice however.

Now, if the BEM operators instead need to be reassembled often, as will be seen in the third case
study, with no more solve steps than assembly steps, then H-matrices might be advantageous
because of their speed up of the assembly process leading to generally significantly smaller overall
combined assemble and solve times, compare Figure 1(right) with Figure 2(right).
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Figure 2: Percentage efficiencies, E, see equation (22) of operator assembly (left) and assem-
bly+solve (right) times in seconds, “s”, for solution of a BEM only Helmholtz problem using just
Bem++ with H-matrices for different processor/thread counts, “p”.

It should also be noted that the Bem++ H-matrix assembly of the BEM operators is very efficient
with increasing parallelization, and near optimal, as can be seen in Figure 2(left). However, as
soon as the solve stage to numerically invert these operators is taken into these timings as well,
the parallel performance drops off significantly, see Figure 2(right).

The first case study will show a simple FEM-FEM iterative coupling on a toy problem, using
the Gauss-Seidel approach, to illustrate performance with core count of a purely finite element
problem for comparison.

The second and third examples will demonstrate real world problems with, respectively, the
iterative GMRes scheme for the direct coupling of FEM and BEM in an electromagnetic scattering
example, and an indirect FEM-BEM coupling for a fluid example, which may not be so easily cast
into the form of equations (12), (11) or (16), but illustrates the future possibilities for many other
types of FEM-BEM coupling.

For additional clarity, the key governing equations and boundary conditions in the following have
been labelled with “FEM” or “BEM” to indicate the discretization scheme used for the former, and
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“Dir”, “Neu”, “Rob” and “Rad” for the Dirichlet, Neumann, Robin and Radiation type boundary
conditions of the latter.

Instructions on running the examples are included after each problem description, but of course,
this should not be attempted until after a successfull installation of the software, for which the
reader is referred to appendix B.

6.1 Bulk-Surface Fem-Fem Coupling Example

The source code for the first case study may be found within the following folder:

dune-fem-bem-toolbox/case_studies/coupled_sphere

Notes on how to run this example will be presented after the following problem description.

Here a volume (or “bulk”) solution, u ∈ Ω, is coupled to a surface solution on Ω’s surface,
v ∈ Γ ≡ ∂Ω. Both solutions being represented by piecewise linear and globally continuous finite
element basis functions.

The coupling, through the boundary conditions, and governing equations are Ranner and Elliott
[2013]:

FEM : − ∆ u + u = f in Ω (23a)

Rob : u − v +
∂u
∂n

= 0 on Γ (23b)

FEM : − ∆Γ v + v +
∂u
∂n

= g on Γ (23c)

The forcings f and g must, of course, be compatible, and may be found from any choice of analytic
solutions for u and v. In the following, we chose the exponential solutions:

u(x, y, z) = exp
[
−x (x − 1) − y

(
y − 1

)]
v(x, y, z) =

[
1 + x (1 − 2 x) + y

(
1 − 2 y

)]
×exp

[
−x (x − 1) − y

(
y − 1

)]
(24)

which may easily be seen to satisfy the governing equations and boundary conditions.

The weak formulation of (23c) suggests an iterative coupling of the form
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Figure 3: Percentage efficiencies, E, see equation (22) and solve times in seconds, “s”, for solution
of the coupled sphere example with element diameter (“cellsize”) 0.019, giving 1924626 elements,
see § 6.1, using just Dune modules (left) and for solution of the charged droplet example (right)
on the “maxi” meshes of 18239 elements, see § 6.3 later, using both Dune and Bem++, for different
processor/thread counts, “p”.
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∫
Ω

(
∇u · ∇η + uη

)
+

∫
Γ

uη︸                           ︷︷                           ︸
A u

=

∫
Ω

fη︸︷︷︸
f

−

∫
Γ

−vη︸ ︷︷ ︸
B v∫

Γ

(∇Γv · ∇Γξ + v ξ) +

∫
Γ

vξ︸                             ︷︷                             ︸
D v

=

∫
Γ

gξ︸︷︷︸
g

−

∫
Γ

−uξ︸  ︷︷  ︸
C u

which clearly shows the matrix form of equation (3) where η ∈ VΩ and ζ ∈ VΓ are first order
Lagrange finite element in the bulk and on the surface, respectively. We choose to use the Gauss-
Seidel coupling scheme of (12), but the user could equally well try one of the other coupling
schemes.

Table 1: Convergence rates for bulk-surface example.

Refinement Iteration Error Time Convergence
Level Count (secs) Order

0 20 4.09689 2 -
1 19 0.702664 2 2.54362
2 18 0.229774 6 1.61262
3 18 0.0729218 32 1.65579
4 18 0.0205689 229 1.82588
5 18 0.00548633 1952 1.90656
6 18 0.00144776 19900 1.92201

Because of the availability of an analytic solution to this problem, shown in equations (24), it is
possible to calculate standard L2 error norms for the solution, which can then be tested for the
optimal second order convergence with grid refinement expected of linear solution interpolations.

In Table 1 can be seen the convergence orders of a series of six such grid refinements, together with
indications of the iteration counts and solve times it took to achieve them on a single processor.

Clearly the convergence orders are about where one would hope to see them for a single FEM
problem using linear elements, indicating that nothing has been “lost” in the suggested coupling
scheme adopted for two such problems.

Having now shown that the coupling of two schemes had no adverse impact on the error conver-
gence rates with mesh refinement, we now check that coupling has no serious impact on parallel
(multi-core) performance either, as measured by the efficiency defined in equation (22).

In Figure 3 (left) can be seen the percentage efficiencies, E, and solve times in seconds, for the
solution on a single Intel Xeon node using 1, 2, 4, 6 or 12 cores of the bulk-surface coupled sphere
problem with a chosen finite element diameter, or “cellSize” (see below) of 0.019.

Running the example: Within the example’s source folder type make main at the command
prompt. This will build the executable. To run the code in serial type ./main; for parallel use type
mpiexec -np N main where “N” is the number of processors/threads you would like to use. The
volume mesh used for the example is specified within the parameter file within the data folder
on the line beginning with fem.io.macroGridFile_3d:.

The surface mesh is generated automatically from the volume mesh when running main, however,
due to issues within the grid management software on which the present module depends,
this automatic surface generation is not possible in parallel. For parallel operation the user is
recommended to run first in serial with surface.use:false on the command line (overiding that
in the parameter file), thus ./main surface.use:false, to generate the surface mesh, and then
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ensure surface.use: true within the parameter file. This will then use the previously created
surface grid with user specified location set by fem.io.macroGrydFile_2d: surface.dgf.

For convenience, the software is distributed with relatively small volume and surface meshes pre-
prepared. For higher grid resolutions the user should adapt the “cellSize” within the sphere.gmsh
file in the data folder, and then use the gmsh software Geuzaine and Remacle [2009] installed into
the misc directory to generate a mesh file “sphere.msh”, using the command

../../../misc/gmsh-2.8.4-Linux/bin/gmsh sphere.gmsh -3 -v 0 -format msh -o sphere.msh

typed from within the data folder.

To view the grid based “vtu” output that will have been placed inside the output folder after
program execution, the paraview software Ayachit and Utkarsh [2015] is required to be installed.

Finally, the efficiency tests may be run by typing ./eff.bot at the command prompt. For these
tests the user need only adapt the “cellSize” mentioned above for checking the efficiencies on
different meshes, the mesh file generation and surface grid creation are done automatically by
the script.

Figure 4: Real component of electromagnetic wave scattering solution to equation (25) with k = 12
on the surface of the box corresponding to Ω (see text) with finite element diameters 1/16 edge
length, and projected onto a surrounding plane by the exterior representation formulae together
with multi-core grid partitioning examples.

6.2 Direct Coupling: Scattering Electro-Magnetic Wave Example

The source code for the second case study may be found within the following folder:

dune-fem-bem-toolbox/case_studies/scattering_wave

Notes on how to run this example will be presented after the following problem description.

The classic Fem-Bem coupling example of an incident wave hitting a target, with a Fem scheme
defined for the Helmholtz equation of the “total” solution – equal to the “incident” plus “scattered”
solutions – with possibly spacially varying coefficients, over the finite “interior” domain of the
target – a cube Ω = [−0.5, 0.5]3 in our case, and corresponding to the central box in Figure 4 –
coupled to a Bem scheme on ∂Ω supporting a scattered solution to the same equation, but with
constant coefficients, in the “exterior” where the incident wave originates.
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Figure 5: Percentage efficiencies, E, see equation (22), (and solve times in seconds, “s”) for the
solution of a simple Poisson example system (left) and system (25) in Ω with finite element
diameters 1/8 edge length and k = 6 (right) for different core counts, “n”, and interpolation
polynomial orders, “p”.

Now while the Bem solution is always represented by piecewise linear globally continuous basis
functions (those supported by Bem++ at present), because of the system of coupling adopted, the
interior solution may use linear, quadratic and even cubic basis functions.

The values of this exterior (total) solution on an arbitrary plane around the box (discretized with
linear finite elements of diameter 1/16 the side length) are also shown in Figure 4, and were
computed via the appropriate exterior representation formula for the scattered field (which will
be seen to be the starting point for the BEM formulations next) plus the incident field.

We require that the total solution, and its normal derivative, are continuous across the interior/ex-
terior boundary ∂Ω, and that the total (exterior) solution tends to a plane wave towards infinity
at a rate inversely proportional to the distance, giving the governing equations and boundary
conditions as

FEM : ∆ u + n (x) k2u = 0 in Ω (25a)

BEM : ∆ v + k2v = 0 in R3
\Ω (25b)

Dir : u − v = 0 in Γ (25c)

Neu :
∂u
∂n
−
∂v
∂n

= 0 in Γ (25d)

Rad :
∣∣∣∣∣∂v
∂r
− i k v(x)

∣∣∣∣∣ = O
(
|x|−1

)
as r ≡ |x| → ∞ (25e)

where u and v are the interior and exterior solutions, k the exterior wave-number, and n (x)
provides a spacially varying coefficient for the interior
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n (x) =
1 − 0.5 exp

(
−||x||2∞

)
1 − 0.5 exp (−0.25)

(26)

Clearly this coefficient is 1 on the boundary and decreases towards the centre of the cube, repre-
senting an object which is denser towards its centre.

Let the incident wave be given by

uinc = eikx·d (27)

where d gives the direction of wave travel.

In the exterior, v can be written as v = vinc + vsca where vinc
≡ uinc is the incident wave and vsca is

the scattered wave it generates from the target.

Following the classic boundary element derivations, see Colton and Kress [1983], for the dis-
cretization of equation (25b) in the exterior region Ω∞ = R3

\Ω, we start with Green’s Exterior
Representation Formula – which is only valid for scattered fields and is used for the plotting on
the plane mentioned above – for this exterior region

usca(x) = −V̂ψ + K̂φ ∀x ∈ Ω∞ (28)

in terms of single, V̂, and double, K̂, layer potential operators defined in the appropriate Hilbert
spaces

V̂ : H−1/2 (Γ)→ H1 (Ω∞) K̂ : H1/2 (Γ)→ H1 (Ω∞)

and acting on total Dirichlet, φ, and Neumann, ψ, data located on the surface of the exterior
region Γ.

Now “bringing down” the unknown, usca = usca(x), on to the surface, Γ, and then adding the
incident field in order to identify it with the total Dirichlet data there, introduces a jump to the
double layer operator, and equation (28) becomes

Vψ︸︷︷︸
D v

= uinc︸︷︷︸
g

−

(1
2

I − K
)
φ︸      ︷︷      ︸

C u

∀x ∈ Γ (29)

where the operators have taken on the true BEM forms

V : H−1/2 (Γ)→ H1/2 (Γ) K : H1/2 (Γ)→ H1/2 (Γ)

Note thatφ is the Dirichlet data defined on the boundary grid which due to the coupling conditions
is the trace of the solution u from the bulk solution. Since Bem++ only accepts piecewise linear
Dirichlet functions computing C u involves the projection of the trace of the bulk solution onto the
space of piecewise linear functions on the surface grid. Having established the BEM formulation,
the FEM derivations start with the weak form of equation (25a)∫

Ω

∇u · ∇η − k2
∫

Ω

n2u η︸                         ︷︷                         ︸
A u

= 0︸︷︷︸
f

+

∫
∂Ω
ψη︸    ︷︷    ︸

B v

(30)

where ψ = ∂u
∂n is identical to the Neumann data of the BEM formulation.

With the corresponding matrices A, B, C and D of equation (3) for this problem as indicated, where
the Dirichlet data φ is identical to the solution u of the first problem on the boundary Γ, and the
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Neumann data ψ is chosen as the solution v of the second problem, the coupling scheme (16) of
section 2 with a GMRes Krylov iterative solver may then be used to find a solution to the complete
problem.

For parallel processing in the numerical implementation of the scattering problem, the cube mesh
is subdivided into block shaped pieces, as demonstrated to the left of Figure 4, with assembly and
solution of the system matrix corresponding to each piece performed by the FEM scheme with
one piece per rank using MPI communications to keep the calculations in sync.

The mesh of the surface of the cube, however, is not subdivided, but passed to the bem scheme
whole. The use of multiple threads within the BEM solver is performed via the TBB libraries.

Glue objects are created, one per rank, to transport Dirichlet and Neumann data between the
whole surface grid used by the BEM scheme, to the portion of that surface coincident with the
surface of the volume grid piece located on the particular thread.

As might be expected from the nature of the spacially varying coefficient for the interior seen
in equation (26), the image seen in Figure 4 shows the diffraction of the incident wave as it
passes through the cubic block of material with the spacially varying density, calculated after 74
iterations of the coupling scheme. This generates the classic "spokes" of increased and decreased
wave amplitudes radiating away from the diffracting object itself. More discussion of such
phenomena may be found in Heald and Marion [2012].

As with the previous example, an efficiency test is also provided for the present scattering wave
example, the results of which are shown in Figure 5 (right) for the calculation on 1, 2, 4 or 8 cores
of the full system (25) but now with finite element interpolation polynomials of orders 1 (yellow),
2 (pink) and 3 (green) for the interior.

To keep computation times practical for easy reproduction by the end-user when trying the cubic
interpolations, the finite element diameters used in the efficiency tests here are double those used
for Figure 4, with the wavenumber k halved to keep the solutions meaningful on this coarser
discretization – it is generally recommended to have at least 5-6 (linear) elements per wavelength
in numerical computations.

As indicated above, because for this example a fixed-point iterative coupling scheme is used,
the H-matrix option of Bem++ was turned off, because the solve steps need to be repeated many
times during the convergence process, but they only require one assembly performed right at
the beginning. However, it can be seen that the parallel performance is just slightly worse than
with the previous example, where only FEM calculations were involved, or similarly with the
FEM only test (simple real valued Poisson example on a unit cube), whose results, with element
diameters of 1/52 edge length, are placed in Figure 5 (left) for direct comparison.

It is also worth noting the slight but significant improvement in efficiencies with the higher order
interpolation polynomials. This is attributed to increases in the overall problem size, and thus
lower communication costs between the cores, relative to their overall workloads.

Running the example: Within the example’s source folder type make main at the command
prompt. This will build the executable. Adapt the parameter file in the data folder to the
settings required – the user may even turn the H-matrices on if curious as to their effect by
setting bempp.hmatrix:true – the parameters prefixed with "helmholtz" will control the incident
field to be used (via "helmholtz.omega" for the wave number and "helmholtz.amplitude" for the
amplitude) and the characteristics of the box density via the "helmholtz.boxwave" parameter. If
the latter is set to zero, then the result shown in Figure 4 for the density of equation (26) will
be obtained, while alternative values n greater than zero will give the box a constant relative
density of n relative to the surrounding medium. To run the code in serial type ./main; for
parallel execution use mpiexec -np N main where “N” is the number of threads you would like
to use. Note that the Bem++ part usually just uses however many processors it can find, which
is fine for most situations, however, to specify the parallelization completely, the Bem++ thread
count environment variable should be set with export BEMPP_NUM_THREADS=N, as is done in the
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eff.bot script for efficiency testing. The volume mesh used for the example is specified within
the parameter file within the data folder on the line beginning with fem.io.macroGridFile_3d:.
The surface mesh is generated automatically from the volume mesh, however, due to issues
within the grid management software on which the present module depends, this automatic
surface generation is not possible in parallel. For parallel operation the user is recommended to
run first in serial to generate the surface mesh, with surface.use: false within the parameter
file, or on the command line as ./main surface.use:false, and then reset surface.use: true
afterwards for all subsequent operations which will then use the previously created surface grid
with user specified location set by fem.io.macroGrydFile_2d: surface.dgf.

To alter the refinement of the mesh, the grid file unitcube-3d.dgf in the data folder may be
adapted, and a new surface mesh will then be required by following the above mentioned steps.
For convenience the code is distributed with the surface mesh matching the 16x16x16 subdivision
in unitcube-3d.dgf, which is that used for Figure 4. The grid refinement chosen should bear in
mind the wavenumber, k, of solution to be calculated – high wavenumbers computed on overly
coarse grids can lead to unexpected results, or even non-convergence of the solver.

The type of grid based “vtu” output may be chosen by the user through the external_grid.level
parameter; −10 will give no output, −1 will return the vtu output just for the solution within the
box, while 0 will give both the solution within the box domain and the exterior projection onto the
surface plane as seen in Figure 4. Note that vtu output will have been placed inside the output
folder, and the paraview software is required to be installed in order to view it.

Finally, the efficiency tests may be run by typing ./eff.bot at the command prompt.

Figure 6: Non-dimensional surface charge concentration on the deformed droplet at various times
of extension (top row) and relaxation (bottom row). The mesh and grid partitioning, into 12, used
for the actual calculations are as indicated in the first and last images respectively. Note the point
of maximum deformation – and the formation of a conical tip Radcliffe [2013] – in the top right
image.

6.3 Indirect Coupling: Charged Droplet Example

The source code for the third, and final, case study may be found within the following folder:

dune-fem-bem-toolbox/case_studies/charged_droplet

Notes on how to run this example will be presented after the following problem description.
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This is a more advanced example application and shows use of the toolbox outside of the direct
FEM-BEM coupling methods of (12), (11) or (16), with the FEM and BEM schemes now computing
very different quantites and the coupling between the two being less direct or immediate than in
the previous examples.

As with the previous case, however, a BEM solution at one iteration provides Neumann data
directly for use as a boundary condition to the next iteration of the FEM scheme. However, the
return influence of the FEM on the BEM, while still using Dirichlet data as previously, is slightly
more sophisticated.

Instead of the Dirichlet data on the boundary from a FEM solve simply being given directly to the
BEM scheme, in this example it is used instead to move the actual boundary Γ on which the BEM
integral kernels themselves are calculated. The BEM calculation itself on this new boundary then
just uses a constant value in place of the Dirichlet data it might otherwise have received directly
from the FEM.

Because the boundary Γ is constantly moving, this iterative strategy does not converge to a fixed
point as previously, but provides a simple yet effective means to solve a real world moving
boundary problem of great interest.

Furthermore, this motion of the boundary on which the BEM integrals are calculated necessitates
a reassembly of the BEM operators every timestep too. For this reason the H-matrix option of
Bem++ mentioned above is used to significantly reduce the operator assembly times.

The exact details of the problem may be found in Radcliffe [2013], but essentially a bulk, incom-
pressible, Navier-Stokes volume FEM scheme is used to determine the vector fluid velocities, u,
of an initially spherical (with radius r) droplet interior, Ω ⊂ R3, driven by the normal, n, directed
surface tractions on its boundary Γ arising from both a scalar electric surface charge distribution
(proportional to the normal derivative of a Laplacian solution v, calculated by a surface BEM
scheme) and from classical surface tension.

The strength of this surface tension at any time and position is found by means of a second FEM
scheme, but this time just for the surface Γ, solving the classical “mean curvature flow” problem
which gives the vector solution, w, corresponding to the new positions each point of Γ would
take if displaced in the local normal direction by a distance proportional to (twice) the local mean
curvature.

Given that the required surface tension strength is directly proportional to local mean curvature,
and acts in the normal direction, the mean curvature flow solution w can thus be used immediately
in the calculations.

Indeed, it is remarked here that the orientation of the displacements in the FEM calculated vector
w after each time increment is actually what is used to establish the normal direction n in a
robust manner in the computations themselves. With a simple first order semi implicit time
discretization of the Navier-Stokes equations – and in contrast to Radcliffe [2013], using linear
piecewise continuous basis functions with a simple pressure stabilization – the problem may be
cast into the form of the previous examples by a multiplication through by the timestep τ.

With initial conditions of u ≡ 0 and w = x(Γ), the initial (discretized) position of Γ, the governing
equations for the scalar v, and the vector u & w, valued unknowns (with a minus “-” superscript
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indicating values at a previous timestep) are then

FEM : − κ∆ u + ρu = L
(
u−

)
in Ω (31a)

FEM : ∇ · u = 0 in Ω (31b)
FEM : − τ∆Γ w + w = w− on Γ (31c)

Rob :
∂u
∂n
− a w + b

∣∣∣∣ ∂v
∂n

∣∣∣∣2 = − a w− on Γ (31d)

BEM : ∆ v = 0 in R3
\Ω (31e)

BEM : v = Const. = 1 on Γ (31f)

where we have scalar, κ & a, and vector, b, valued coefficients involving the density, ρ, surface
tension, γ, dynamic viscosity, µ, total surface charge Q, and the electrical permitivity of free space,
ε0, respectively

κ = τµθ a =
γ

τ
b =

Q2

r3ε0q2 n

Here q =
∫

Γ
∂nv ds just allows us to remove the influence of the otherwise arbitrary constant = 1

in (31f) and θ ∈ [0, 1] determines how implicitly the Laplace term is to be treated – the associated
source code has θ = 0.5 at present – and the linear operator L is given by

L (u) = ρu +
(
τµ − κ

)
∆ u − τ ρ (u · ∇) u − τ∇ p (32)

with a pressure, p, arising as the Lagrange multiplier for the incompressibility condition, equa-
tion (31b), in the usual manner.

Non-dimensionalization on a unit radius drop, r ≡ 1, via the viscocity and charge by setting
µ ≡ 1, indicates that there are just two independent parameter groupings, Oh = µ/

√
ρ rγ and

χ = Q2/
(
64π2ε0γ r3

)
allowing ρ ≡ γ ≡ Oh−1, see Radcliffe [2013], and thus

κ = τθ a =
1

τOh
b =

64π2χ

Oh q2 n

It is interesting to note that here we only have one formal boundary condition, equation (31d),
that involving the normal derivative of the (interior) solution u that allows the BEM to influence
the FEM.

As indicated above, the return influence of the FEM on the BEM is still via the undifferentiated
solution, however it is just that this solution (now the interior fluid velocity) instead advects the
very boundary on which the BEM integrals are located.

Following the BEM discretization, see equation (29), of the Helmholtz equation (25b) for the
previous example, the BEM form of the much simpler Laplace equation (31e), which has a
solution in the form of a potential, is similar, but lacks the double layer operator or incident field
and uses constant Dirichlet data φ = Const.

Vψ︸︷︷︸
D v

= 0︸︷︷︸
g

− (−I)φ︸︷︷︸
C u

∀x ∈ Γ (33)

Thus we simply invert the single layer potential operator, V, onto constant Dirichlet data, φ ≡ v,
to obtain the Neumann data, ψ, that is needed to determine the surface charge – all the variation
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in this Neumann data comes from the shape of the boundary Γ on which the V was calculated,
rather than from the Dirichlet data it acts upon.

For the non-dimensionalization above to work, the constant Const. should ideally be such that
the integral over Γ of v is equal to one. However, owing to the linear nature of equation (33), in
practice it is preferable to simply use unit constant Dirichlet data, φ ≡ Const. = 1, as in (31f), and
just divide the resulting v ≡ ψ distribution by whatever the integral over Γ of v turns out to be, or
the q mentioned above.

Given the great similarities between equations (31a) and (31c) with equation (25a), it follows that
their FEM forms are almost identical∫

Ω

κ∇u · ∇η −
∫

Ω

ρu η︸                        ︷︷                        ︸
A u

=

∫
Ω

L
(
u−

)
η︸       ︷︷       ︸

f

−

∫
Γ

a
(
w − w−

)
η +

∫
Γ

b v2η︸                              ︷︷                              ︸
B v

(34)

which is accompanied by the FEM form of the incompresibility condition (31b)∫
Ω

∇ · u p = 0 (35)

in the volume, and on the surface there is∫
Γ

k∇w · ∇η −
∫

Γ

w η = w− (36)

for the FEM discretization of equation (31c).

The possible matrices A, B, C and D of equation (3) have been indicated for completeness but, as
described above, the iterations in this example do not lead to a fixed point solution, but rather a
sequence of solutions that may be seen in Figure 6, computed using a relatively small mesh of
1400 elements (see “Running the example” below).

Note that to follow the changes in geometry, the computational mesh used for the calculations
was required to move between iterations. Now while the calculations for v and w are dependent
only on the instantaneous shape of Γ at any particular iteration, the solution u involves a “history”
bound-up in the operator L on the solution at the previous iteration u−. To accomodate the fact
that this u− is defined on a (slightly) different mesh, an ALE technique was adopted with a
Laplacian mesh smoothing algorithm to set the interior mesh points once the Γ position had been
updated, see Radcliffe [2016] for the details. Within the code this necessitated a further simple
FEM scheme for the Laplacian operator to calculate these interior mesh node positions.

In Figure 6 can be seen a series of snapshots showing the evolution of the Γ boundary over time. In
the top row of images electric charge, v, accumulates at the top and bottom of the droplet, causing
it to deform from the sphere towards the rightmost image, where the parameter χ is reduced from
1 to 0.7 to correspond to an expulsion of charge in a liquid jet – images from experiments may
be seen in Giglio et al. [2008] – which incurrs a little fluid loss Radcliffe [2016]. This reduction in
overall charge loading allows surface tension, ∝ w, to regain dominance and restore the droplet
shape back to a sphere again in the lower set of images. More discussion on this very interesting
behaviour may be found in Radcliffe [2013, 2016].
As with the previous examples, efficiency testing has also been performed here, with the results
shown in Figure 3 (right), where they compare very favourably with those of the first case study
which didn’t involve Bem++ at all, Figure 3 (left). Note that, to give the parallelization “more
to work on” a more refined “maxi” mesh of 18239 elements was used, but, to keep the overall
running time of the efficiency tests reasonable, a very short end time (0.01) was adopted.
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Thus we may conclude that the parallelization of both the assembly (using H-matrix methods)
of the BEM operators, and their solution via Krylov methods drawn from the Eigen library has
gone quite well, with no significant impact on parallel performance.

Running the example: Within the example’s source folder type make main at the command
prompt. This will build the executable. To run the code in serial type ./main; for parallel use
mpiexec -np N main where “N” is the number of threads you would like to use. Note that the
Bem++part usually just uses however many processors it can find, which is fine for most situations,
however, to specify the parallelization completely, the Bem++ thread count environment variable
should be set with export BEMPP_NUM_THREADS=N, as is done in the eff.bot script for efficiency
testing. Along with various parameters controlling the dynamics of the droplet and explained
in comments above each one, the volume mesh used for the example is specified within the
parameter file within the data folder on the line beginning with fem.io.macroGridFile_3d:.
The user may create their own volume meshes with varying element diameter (“cellSize”), say,
by adapting the sphere.gmsh mesh command file and then using the mesh generation software
gmsh Geuzaine and Remacle [2009] installed into the misc directory to execute these commands
and generate a mesh file “sphere.msh”, using the command

../../../misc/gmsh-2.8.4-Linux/bin/gmsh sphere.gmsh -3 -v 0 -format msh -o sphere.msh

typed from within the data folder.

The surface mesh is generated automatically from the volume mesh when running the main pro-
gram, however, due to issues within the grid management software on which the present module
depends, this automatic surface generation is not possible in parallel. For parallel operation
the user is recommended to run first in serial with surface.use: false within the parameter
file, or on the command line as ./main surface.use:false, to generate the surface mesh, and
then return surface.use: true for the parallel runs. This will then use the previously created
surface grid with user specified location set by fem.io.macroGrydFile_2d: surface.dgf.

To view the grid based “vtu” output that will have been placed inside the output folder, the
paraview software is required to be installed. To adapt to different speed/memory/result re-
quirements, different amounts of output are possible, specified by vtu.output: n, where “n”
indicates the level required. n=0 gives no output; n=1 just the surface charge and n>10 all output.

For convenience the code is distributed with two sets of volume and surface meshes: a "mini"
set involving 1400 elements for reproducing the results shown in Figure 6 in a moderate amount
of time with a droplet.timestep: 0.01, and a more refined "maxi" set using 18239 elements
that may be used for the efficiency tests which may be run by typing ./eff.bot at the command
prompt; with a recommended droplet.timestep: 0.0023. The latter command will run the
simple bash script within the file eff.bot. For the efficiency testing it is suggested the user adapt
the droplet.endtime: within the parameter file to something of their preference less than 3
or so – a value of just 0.01 was used for Figure 3 (right). At present values of 15 or above will
allow reproduction of the full deformation pathway with the "mini" meshes as shown in Figure 6
– provided the appropriate vtu output is chosen – but might be a bit time consuming for the lower
processor counts in efficiency testing, where it is additionally noted that such vtu output should
be turned off for optimal performance.

7 Conclusions

A program structure has been presented that allows the combined use, within the same compu-
tation, of two computational discretization schemes, FEM and BEM, with very different compu-
tational architecture requirements for optimal performance.

Based on local interactions between the values of the discretized variables at the mesh points, the
finite element method is well suited to distributed memory machines, while the global interactions
between such discretized values of the boundary element method are best accomodated on shared
memory architectures.
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By the asyncronous evaluation of one scheme, and then the other, with communication steps
between, it is possible to have optimal environments for each scheme on a machine with just
shared memory.

A computational toolbox for the development of such programs has been presented, with three-
dimensional examples of the electromagnetic scattering off a box, and the deformation of a charged
droplet used to give an indication of the performance improvements with processor thread count.

In this first version of the module some restrictions still apply most notably on the partitioning
of the bulk and surface grid. This restriction will be removed in a further release of the module.
The use of the Dune-Grid-Glue module also allows us to use non matching surface and bulk
grids. We have not made use of this feature in the test cases presented here but we have first
results for the wave scattering problem with finer bulk grids which look promising. Finally fully
non-linear coupling is not yet possible and will be addressed in the next release of this module.
This will also allow us to perform on larger scale distributed memory machines for the bulk
problem. Since Bem++ requires an undistributed grid, the surface would still be located on a
single node and distributed between threads based on the approach described above. The bulk
domain could be distributed differently and make use of multiple cores. This will require some
additional investigation with respect to optimal load balancing of the coupled problem.

Finally this module still uses the 2.3 release of the Dune modules. This is due to the fact that
Bem++ is still based on this release. As soon as Bem++ has been moved to use the newer 2.4 Dune
release, then a 2.4 release of this module should follow shortly afterwards.

A Structure of this module

• dune/fem_bem_toolbox:

– fem_objects: schemes and model classes for fem problems,

– bem_objects: schemes and model classes for bem problems.

– coupling_schemes: coupling schemes.

– data_communication: main class for gluing of surface/bulk meshes and communica-
tion of data between the grids.

– load_balancers: special load balancers for matching surface/bulk grid partitioning.

– shared_memory_vectors: wrapper class for dof vectors using (shared) raw memory
blocks.

– fluid_models: schemes and model classes for current and future fluid problems.

In addition the dune folder contains some fixes to other core modules which will not be
required once this module have been made compatible with the 2.4 release.

• misc: internal Dune configuration management files

• src: internal Dune configuration management files

• doc: documentation for the module

• misc: collection of useful bash scripts for installation of the module and downloading of
dependent software/libraries – see installation notes below).

– mega.build: bash script using autotools for building entire module and download-
ing+configuring all dependent software

– mega.make: bash script using CMake for building entire module and download-
ing+configuring all dependent software (for 2.4 release)

• case_studies: source code for all five case studies.
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– fem_test: pure fem problem.

– bem_test: pure bem problem.

– coupled_sphere: coupled bulk fem-surface fem test case.

– scattering_wave: coupled bulk fem-surface bem wave scattering problem.

– charged_droplet: coupled bulk fem / surface fem + surface bem charged droplet
example.

Each case study folder contains three subfolders:

– source: the main.cc file required to run the simulation.

– data: grid files and a file parameter containing run time parameters for this example.

– output: folder where the simulation output is stored.

B Installation notes

This module is licenced under GPL Version 2. Warning: All the software described in this work
has been downloaded, built, run and tested on Linux machines; use on other systems has not
been tried, however, if built without Bem++– see below – the Dune-Fem-Bem-Toolbox should have
the same platform requirements as all other Dunemodules.

To obtain the Dune-Fem-Bem-Toolbox module, the user should clone the releases/2.3 branch
from the Dune user website by typing the following at the command prompt in their chosen
installation directory:

git clone -b releases/2.3 \
https://gitlab.dune-project.org/andreas.dedner/dune-fem-bem-toolbox.git

Once this is done, to aid the user in the installation of all the remaining software and the compi-
lation and general set-up of all the source code and examples presented, a bash shell script called
mega.build is included in the "misc" miscellaneous folder. This script also allows setting-up of
the module in a reduced state without the Bem++ library, and thus just using Dunemodules. The
scattered wave, charged droplet and, of course, bem comparison examples requiring calculation
of bem integrals will then be unavailable, however, the FEM comparison and coupled sphere
examples will still work, and the droplet example may still be run, although in an uncharged state,
to give simple oscillations for example.

Before running the script, the user should adapt the CC and CXX statements at the head of the
file to the latest C and C++ compilers available on their system respectively. Additionally, for
build efficiency, should a PYTHON or CYTHON distribution already be available, then typing export
PYTHONPATH=/path/to/my/cython will avoid the Bem++ installation process from downloading
its own version.

Once the C/C++ compilers have been set, to load all the dependencies and build everything for
the toolbox module simply type:

./mega.build bem

at the comand prompt from within the misc directory.

This build script will install and configure some of the (“non-core”) dependant Dunemodules at
the same folder hierachy level as the Dune-Fem-Bem-Toolboxmodule itself, so if the user already
has Dunemodules around, it is suggested to checkout the Dune-Fem-Bem-Toolbox into an empty
installation folder when using this build script.

The Bem++ software, and any dependencies it builds itself, will be installed within the mod folder
at the top level within the Dune-Fem-Bem-Toolbox. The user may also notice that gmsh soft-
ware Geuzaine and Remacle [2009] useful for mesh generation (see the running the examples
notes above), is also installed by this script, but within the misc folder at the same top level.
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Note that Bem++ installs most of its dependencies if required (including the Dune “core” modules
requiring the release version 2.3). The dependency on Cython can be problematic and might
require the user to install that package (version greater or equal to 0.21). separately which on most
systems is possible using pip install �-user cython. Furthermore, Bem++ is incompatible
with certain versions of Eigen. Bem++’s build system will download a compatible version if Eigen
is not found on the system. A pre installed Eigen can thus lead to problems also with the include
paths used while building this module.

There may also be problems installing the TBB package on some systems, and if this occurs, it is
recommended to preinstall this software too, probably from a tarball downloaded from the TBB
website https://www.threadingbuildingblocks.org.

Bem++ will install Boost version 1.57 if no version is found on the system during the build process.

To load all the dependencies and build everything without Bem++ simply type

./mega.build nobem

at the comand prompt within the misc directory. Note: nobem is also the default setting should
no explicit choice be made.

To reload and build just the Dune dependencies (for dune updates, say) without rebuilding the
Bem++ library type

./mega.build bembutnobembuild

at the comand prompt within the misc directory.

C Known Issues

Inevitably, as with any new software release, there will be a few issues affecting the structure
and performance of the software that remain to be sorted out. These are principally related to
issues within the supporting software upon which the present module is built, and over which the
authors have little, or no, influence. Thus certain accomodations have been made in the present
2.3 release to adapt to these issues.

Issue : No projection of ALUGrid surfaces in refinements in parallel

Effect : Convergence testing of coupled sphere example may only be done in serial.

Issue : Memory leaks (either local or within Bem++) with destruction of BEM objects for charged
drop example when using Bem++. Note this does not effect the program execution, but
merely the internal clean-up on completion.

Effect : Significant internal system output on program completion.
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