
177

Python or R? Getting Started 
with Programming for Humanists

William Mattingly

Abstract This article describes how programming languages such as Python and R open up new 
research opportunities for the humanities by analysing large text corpora, visualising patterns in data 
and automating repetitive tasks. Python and R are probably the most prominent programming lan-
guages for engaging in the Digital Humanities. Python offers advantages for text analysis and machine 
learning due to its simple syntax and versatile libraries, while R scores with its statistical functions 
and visual representation options for data manipulation. The choice between Python and R therefore 
depends on the specific research requirements, although both languages are well suited to the human-
ities due to their strong communities and extensive resources. Learning strategies for getting started 
with programming and how to deal with potential pitfalls are also discussed.
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1.	 Introduction

Programming is a fundamental skill in the hard sciences and maths. In these disci-
plines, programming languages like Python and R function as a tool to conduct re-
search. They enable scientists to process large datasets, run complex simulations, 
and automate repetitive tasks. For instance, a biologist might use Python to analyze 
billions of genetic sequences from many organisms, or a statistician might use R to 
model and visualize patterns across data. In this chapter, we will explore how this 
concept translates to humanities data.

2.	 Data	and	the	Humanities

Unlike the sciences, the humanities are traditionally associated with qualitative 
analy sis, valuing a close reading of source material. For most of the twentieth century 
the majority of the humanist’s data was available in analog forms, that is through 
the medium of print. The methods we developed for analyzing our data, therefore, 
were targeted at the practical limitations of our data and human anatomy. Even the 
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most ardent researcher cannot possibly read the entire corpus of Latin literature in 
a single lifetime. Presuming one had the capacity to read such a quantity of material, 
one would have to physically obtain it. In manuscripts, these resources are scattered 
across different continents inside institutions that have limitations to access. Even 
presuming one could overcome these physical limitations, one would then have to 
synthesize it in some meaningful way. How can we retain all this information and 
translate that knowledge to an audience practically? We simply can’t.

During the second half of the twentieth century, the medium for transmit-
ting data changed. Text could be rendered as numerical data. Initially this was via 
punched cards, such as those used by Index Thomisticus, the first project that digitally 
rendered the collected works of Thomas Aquinas (approximately 10 million words, 
Busa 1980; cf. the chapter from J. Peters in this volume, p. 316). Because the digital 
data was rendered on physical punched cards, it still required physical access to the 
punched cards. These could, however, be transmitted differently than print and load-
ed on different machines across the globe.

As technology continued to develop, data could be stored not as physical punched 
cards, but as disks. As these disks became smaller and capable of holding large quan-
tities of data, these disks could be transported more easily and reproduced more 
cheaply. By the 1990s, the Index Thomisticus evolved with this technology and made 
its data available via CDs (Economist 2020). This meant that scholars could purchase 
identical data and analyze it regardless of location. This data could be reproduced, 
distributed, and computationally accessed by a larger audience.

Over the last two decades, we have not only produced larger quantities of digi-
tal data, accessibility likewise increased thanks to the advent of the internet and the 
cloud. The cloud allowed for data to sit on a server in one place and be accessed by 
someone on the other side of the globe. We can, for example, study the entire Patro-
logia Latina from a beach in Florida via the open-access Corpus Corporum project at 
the University of Zurich.1 So ubiquitous is this technology today, that it is sometimes 
difficult to appreciate how incredible this feat truly is.

Today, the limitations of quantity and access are gradually vanishing. As the 
scale of humanities research extends into the realm of big data, the ability to handle 
and interpret this information becomes crucial. What do we do with this data? How 
do we access it systematically? How do we use it to frame questions and translate 
that knowledge into something useful? As we will see throughout this chapter, pro-
gramming affords us potential solutions to these questions. Programming is also an 
emerging skill that departments are including in their curricula, such as that of the 
recent Ph. D. in Digital History at Clemson University.

With the help of programming languages like Python and R, humanists can an-
alyze large corpora of texts, visualize complex relationships in data, and uncover 

 1 See https://mlat.uzh.ch (Accessed: 22 June 2024).
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patterns that would be impossible to find manually. Whether it’s studying the entire 
collected works of Augustine (d. 430) or mapping the social network of Alcuin (d. 804), 
programming opens up a whole new world of possibilities for humanistic inquiry. For 
the humanities, much like the maths and sciences, programming languages are not 
necessarily used for creating software; scripting languages like Python and R function 
like tools by which we can analyze large data, interpret it, and visualize findings. 
Unlike software, scripting allows for researchers to leverage the quick utility of pro-
gramming without long-term sustainability necessary to maintain software.

3.	 Why	Learn	to	Code?

One of the most important questions we can ask is why learn to code? Behind this 
question lie two other questions: What is the utility of coding and how does it benefit 
me directly? To answer these questions, let us consider a problem. Imagine we needed 
to identify all named persons in the writings of Augustine. We could, of course, spend 
months or years going through and manually tagging each person. This would be time 
consuming and repetitive. If we knew programming, however, this problem becomes 
far simpler to solve and the solution can be developed in hours (or days depending on 
its complexity). We could either construct a set of rules for all the people we expect to 
find in the letters or (if we did not know this), we could develop a machine learning 
solution that would learn the features of the words that correspond to people and 
classify them for us automatically. This task is known as named entity recognition (cf. 
the chapter from E. Gius in this volume).

This process by which we create a solution that can be implemented repetitively 
over similar data, is known as automation. Automation is one of the key reasons to 
learn to program. As humans, we are very bad at doing the same task repetitively and 
consistently. Computers, on the other hand, are perfect at both of these tasks. Learn-
ing to program is, in part, learning to automate tasks and is one of the key benefits. 
It allows the researcher to spend more time researching and less time performing 
repetitive tasks.

In addition to automation, programming also affords us the ability to develop 
solutions that work at scale; this means being able to perform practically the same 
solution across millions of data. If we can identify all persons in a text of 10,000 words 
in five seconds (a reasonable time), then we could easily repeat this process across 
millions of texts in just a few hours, depending on computational resources.

Through programming, we can also develop and apply machine learning solu-
tions with a few lines of code. Continuing with the example above, imagine we needed 
to solve the same problem with the works of Jerome. Here, we could take the machine 
learning solution we developed for the works of Augustine and apply it to the works 
of Jerome and have comparable results.
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Programming allows humanists to achieve far more than the creation of novel 
solutions. It fundamentally changes the way we frame problems. A knowledge of pro-
gramming brings with it knowledge of solutions or potential solutions to unknown 
problems (or unasked questions). Those who have a knowledge of programming and 
know what is possible to do with it know that they can ask new questions and pursue 
novel research directions. It makes it feasible to conduct studies at a scale and depth 
previously unimaginable. With programming, researchers can identify patterns and 
trends across large datasets, leading to new insights and understandings.

Selecting the right programming language largely depends on the problem at 
hand. If the researcher needs to build a website with custom functionality, then learn-
ing HTML, JavaScript, and React (a way of building JavaScript components easily) may 
make the most sense. If the researcher needs to work with and manipulate data in 
any way, there are two dominant languages that should be considered: Python and R.

4.	 The	Benefits	of	Python	and	R

Python and R have emerged as the primary programming languages for many fields, 
namely data science, machine learning, natural language processing, statistics, the 
sciences, the maths, and the humanities. Python was created by Guido van Rossum 
in the 1980s with the idea that code should be easy-to-read and easy-to-right with a 
syntax, or style of writing, that was concise and simple (Van Rossum & Drake 1995). 
Against Python, sits R which was created by Ross Ihaka and Robert Gentleman in the 
1990s (R Core Team 2021). Unlike Python, R was designed purely for statistical analy-
sis. Its syntax is a bit unconventional, but it affords users the ability to apply statistical 
methods to quantitative data easily and visualize the results.

Both of these languages have increased in popularity largely due to their ex-
cellent and active communities. These communities write packages, or libraries, for 
each programming language. A package is a collection of classes and functions (think 
of these as large blocks of code) that can be leveraged by others in the communi-
ty. This means that new users to the programming language can do complex tasks 
with very little code, making them ideal programming languages for beginners. For 
example, students new to Python can load a machine learning model and perform 
named entity recognition on the entire corpus of Thomas Moore (for NER cf. the chap-
ter from E. Gius in this volume). This is thanks to the natural language processing 
library spaCy2 and the contributions to that project by Patrick J. Burns who creat-
ed LatinCy (Honnibal & Montani 2017; Burns 2023). If one were interested in doing 
transformer-based topic modeling, which is the newer approach to this decades-old 
methodology, a researcher can do so with just 2 lines of code using BERTopic (cf. the 

 2 See https://spacy.io (Accessed: 22 June 2024).
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chapter from M. Althage in this volume, esp. p. 259, n. 19). While further methodologi-
cal steps are necessary to refine a researcher’s approach, such as topic identification, 
validation, adjusting hyperparameters, the code required to do so remains minimal. 
This is because BERTopic employs many advanced methods in sequence for the user. 
It even allows for the quick visualization of a topic model. Contributions like these 
make Python and R appealing to those with limited and advanced coding experience 
alike. This appeal, in turn, fosters a healthy community which continues to grow. As 
the community grows, more members contribute their own packages. As time pro-
gresses, the cycle continues to repeat.

5.	 Comparing	Python	and	R	for	Humanities	Research

The relevance of Python and R to humanities research is multifold. Python’s simplicity 
and readability make it a great starting point for humanists new to programming. 
Its extensive libraries such as Pandas3 for data manipulation, spaCy and the Natural 
Language Toolkit for natural language processing, and Matplotlib4 or Seaborn5 for vi-
sualization, provide valuable tools for various research tasks in the humanities. On 
the other hand, R’s strong data handling and built-in statistical capabilities, as well 
as its powerful visualization libraries, make it particularly suited for humanities re-
searchers who work extensively with statistical data or need to create complex visu-
alizations. When it comes to choosing between Python and R for humanities research, 
the decision often boils down to personal preference, specific project requirements, 
and the kind of data you’ll be working with. Both Python and R have their strengths 
and are capable tools for handling humanities data.

Python has a few key advantages. First, its syntax corresponds to other pro-
gramming languages and is generally easier for those new to programming. Second, 
Python allows users to quickly build websites via libraries like Django6 and Flask 
(Grinberg 2018). Through Streamlit7, a novice Python programmer can build a custom 
data-based application and put it in the cloud with only a few lines of code. Third, 
Python is often the first choice within the machine learning community. This means 
that most recent machine learning developments are available first in Python. Fourth, 
most natural language processing advances are often developed in Python, making 
it ideal for tasks like text classification, topic modeling, and named entity recognition.

 3 See https://pandas.pydata.org (Accessed: 22 June 2024).
 4 See https://matplotlib.org (Accessed: 22 June 2024).
 5 See https://seaborn.pydata.org (Accessed: 22 June 2024).
 6 See https://djangoproject.com (Accessed: 22 June 2024).
 7 See https://streamlit.io (Accessed: 22 June 2024).

https://pandas.pydata.org
https://matplotlib.org
https://seaborn.pydata.org
https://djangoproject.com
https://streamlit.io


William Mattingly182

R, on the other hand, was built for statistics. It has several advantages over 
Python. First, R’s syntax and functionality are tailored for statistical modeling, allow-
ing for complex analyses with concise code. Second, R provides an extensive collec-
tion of packages like ggplot2 (Wickham 2016) and Shiny8 that enable high-quality data 
visualization and interactive web applications. While Python boasts of good visual-
ization libraries like Plotly9 and Seaborn (Waskom et al. 2017), the visualizations in R 
are easier to produce, tend to look nicer, and are easier to customize. This means that 
users can not only analyze data but also create visually appealing representations 
with ease. Third, R’s integration with various data sources and its data manipula-
tion capabilities through packages like dplyr make it a powerful tool for data wran-
gling. Fourth, although R’s machine learning capabilities may not be as extensive as 
Python’s, packages like caret10 and randomForest11 still provide robust tools for ma-
chine learning.

Both languages have active and supportive communities, so you’ll find plenty 
of resources and help for both. Choosing between Python and R will depend on your 
specific needs and goals in humanities research. There are three main questions to 
consider. First, consider your own research needs. If your research involves a lot of 
text analysis or natural language processing, Python might be the better choice due 
to libraries like spaCy. If your work involves heavy statistical analysis or you need to 
create detailed visualizations, R might serve you better. Second, consider your own 
learning style and your experience with programming. If you’re new to program-
ming, Python may be easier to learn. It will be important to look at a couple snippets 
of code in Python and R to get a sense of how different these two languages are. Third, 
consider the communities behind both programming languages. Those communities 
will be there to help you when you run into challenges. Both Python and R have strong 
communities, but depending on your area of study, one might have more relevant 
resources and discussion boards than the other.

In the end, there’s no definitive right or wrong choice between Python and R 
for humanities research. It’s about choosing the tool that best suits your needs and 
complements your research. A humanist interested in using programming in their 
research will likely learn to write in both languages but typically prefer one over 
the other. This is because most things done in one of these languages can be done in 
the other, even though it may not be as easy. If you have a project entirely written in 
Python, for example, but need to produce a nice visualization, it may not make sense 
to introduce R into the workflow for one step. Instead, you will write more code and 
use the Python library Seaborn. Likewise, if you are presenting your findings on text 

 8 See https://shiny.posit.co (Accessed: 22 June 2024).
 9 See https://plotly.com/python (Accessed: 22 June 2024).
 10 See https://cran.r-project.org/web/packages/caret/vignettes/caret.html (Accessed: 22 June 2024).
 11 See https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (Accessed: 22 June 

2024).
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analysis and statistics, it may not make sense to use Python and spaCy for lemmatiza-
tion, or the reduction of all words to their root form.

6.	 Getting	Started	with	Programming

One of the most challenging aspects of learning to program is installing the program-
ming language on your computer. Each operating system, such as Mac, Windows, or a 
Linux distribution (like Ubuntu), requires you to install the language differently. Each 
operating system also has unique steps. On Windows, for example, you need to make 
sure that Python sits in your system’s PATH (often manually). Each operating system 
also introduces small, but critical differences. On some Macs, for example, you will 
have Python 2 pre-installed on your system. This means that when you install the re-
cent version of Python (Python 3.12 as of writing this), you will have two versions of 
the same programming language on your computer. This means that you need to use 
the command “python3” in the command line to execute a Python file on some Macs. 
On Windows and Linux, however, “python” will be the command you use. Many of 
these issues are negated, however, if one uses virtual environments or Conda12.

Installing the programming language is only one hurdle. Users usually want to 
also install a custom way to interact with the programming language. For Python, 
this typically means installing an integrated development environment (IDE) like 
JupyterLab or VS Code. For R, this means installing R Studio. These are tools that allow 
you to write and execute code in a single space. They allow you to learn more easily 
and also it will be the way in which you typically engage with a programming lan-
guage. Installing and setting up an IDE will vary depending on your system require-
ments. Again, this is a step that can lead to confusion and issues as well.

In my experience, the frustrations that new students encounter during this pro-
cess can dissuade them from wanting to learn to program. These are some of the most 
important moments in a student’s career. It is when they are curious about program-
ming and eager to learn. These frustrations can quickly dim the light of curiosity. To 
avoid this, I recommend that all new students skip the installation of the program-
ming language and the IDE entirely. Instead, there are numerous companies that of-
fer cloud-based solutions to these issues. They allow you to access a server remotely 
and run Python from your browser.

Constellate from ITHAKA13 is one such solution, but it requires institutional ac-
cess. It provides students with a virtual environment with enough resources to even 
do machine learning should they wish. It comes pre-installed with libraries common-
ly needed on humanities projects. Each user instance also comes pre-installed with 

 12 See https://docs.conda.io/en/latest (Accessed: 22 June 2024).
 13 See https://constellate.org (Accessed: 22 June 2024).
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JupyterLab, an IDE that facilitates data management and learning (via Jupyter note-
books). This makes it ideal for classroom settings. I have taught for three years with 
Constellate and highly recommend it.

Not all students will have institutional access to Constellate, however. If this is 
your case, there are comparable services available. The most popular is Google Colab14 
which has several tiers, including a free version. It can link to your Google Drive. This 
means you can load data onto your Google Drive, interact with it, manipulate it, and 
save it. The free tier tends to drop occasionally, but works well for getting started 
nonetheless.

7.	 Resources	for	Learning

Learning to program as a humanist is often an individual endeavor. Even if you have 
a formal education in Python in a college classroom setting, you will have to rely on 
your ability to self-teach for the remainder of your programming career. This is be-
cause real-world data and problems are messy. Clear and easy solutions are rarely ev-
ident. You must be prepared to learn new aspects of a programming language to solve 
novel problems as they emerge. Imagine you have learned to program in Python to do 
named entity recognition. Now, you need a way to visualize those named entities in a 
network graph. How do you do that? In this case, it would be time to learn NetworkX15 
to collect the data and either Matplotlib or PyVis16 to visualize it.

Because R and Python have large communities and a lot of libraries available for 
solving common problems, there are numerous resources available for furthering 
your education. One great resource is Walsh (2021), an open-source textbook titled 
Introduction to Cultural Analytics and Python. This textbook not only teaches the ba-
sics of Python, it also provides an introduction to a few key methodologies, such as 
text analysis and network analysis. The standard textbook for Humanities data and 
R remains Humanities Data in R by Arnold & Tilton (2015). It has open-source online 
resources, but these are meant to be used alongside the purchased textbook. Another 
R-specific resource is the open-source textbook Computational Historical Thinking. 
With Applications in R by Mullen (2018). Unlike recent open-source textbooks (such as 
Walsh’s), this is not designed with JupyterBook. Nevertheless, it still has useful supple-
mentary material, such as worksheets.

After you have acquired a basic understanding of either Python or R, you will 
find yourself frequently needing to learn a specific library. Often, the documentation 
for these libraries is sparse. It is usually written by experts for more advanced users. 

 14 See https://colab.google (Accessed: 22 June 2024).
 15 See https://networkx.org (Accessed: 22 June 2024).
 16 See https://pyvis.readthedocs.io/en/latest (Accessed: 22 June 2024).
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At these times, it can be necessary to have a relatable tutorial. If you want to stick with 
academic tutorials, the Programming Historian17 is probably the best resource avail-
able. As of now, there are 101 lessons for both Python and R. These often center around 
a specific problem or methodology. The lessons published here are both open-source 
and peer reviewed via GitHub. They tend to be more targeted at specific problems or 
specific libraries.

Some of the best resources available, however, are written by non-academics. 
These resources are published on YouTube and Medium. The easiest way to find re-
sources for your specific problem is to search on these platforms for something in 
which you are interested.

8.	 Common	Pitfalls	with	Programming

As you progress in your programming career, you will encounter many pitfalls. One 
of the most common is a bug in your code. Most programming languages will give you 
an error message to indicate why a piece of your code failed and it will often point 
you to the specific line. As you work with external libraries and write more com-
plex code, however, debugging can be trickier. Fortunately, there is (or was) a healthy 
community at Stack Overflow which allows users to post bugs and ask for help. Usu-
ally someone in the community will respond within a few hours. Since the advent of 
ChatGPT, however, traffic on Stack Overflow has decreased. The implication is that 
more users are asking questions via ChatGPT or some other similar service. For basic 
coding issues, ChatGPT will provide fairly good and specific advice for fixing a bug. 
There is a good reason for this; it was trained on a lot of Stack Overflow data. When 
using ChatGPT or Stack Overflow, it is always important to not simply copy-and-paste 
the solution, but to understand why the bug surfaced in the first place so that you can 
correct the issue and learn from your mistakes.

Another common pitfall is the use of algorithms that are not fully understood 
by the programmer. While a programmer does not need to know how neural net-
works work to leverage them and generate useful output, it would be unwise to rest 
an argument on the statistical output of a model whose algorithm the researcher does 
not understand. When you do not yet understand the methods fully, therefore, pro-
gramming should be used as a tool to assist in research, never as a tool to validate 
arguments.

 17 See https://programminghistorian.org (Accessed: 22 June 2024).

https://programminghistorian.org
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9.	 Conclusion

Programming is not meant to replace traditional humanistic inquiry; instead, it pro-
vides humanists with new avenues to conduct research. It allows us to frame ques-
tions that we could not otherwise answer. It allows us to automate tasks in hours 
that could otherwise take years. And it allows us to glean new insights from large 
quantities of data. As the humanities evolves and technology becomes ubiquitous, 
tomorrow’s humanists will likely acquire more technical skills, just as they did with 
the advent of the Word processor. Tomorrow’s Word process is programming.
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