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Research data management systems enable efficient data-driven design and optimization
across research disciplines. In materials science, advancing experimental design and opti-
mizing materials with complex properties pushes the boundaries of research. For aqueous
foams, the microstructure significantly influences the macroscopic properties, which can
be characterized through experimental techniques or simulated using physics-based mod-
els. To address the complexity of tuning interrelated parameters in a vast design space,
we propose an active learning-based data-driven framework.

This framework leverages Bayesian Optimization to guide the exploration of the search
space, prioritizing informative experiments or simulations and minimizing the number of
required evaluations. Implemented within the Kadi ecosystem, our workflow promotes
data reuse and facilitates seamless collaboration.

1 Introduction

In materials design, optimizing material properties for specific applications is a challenging
task, as these properties often exhibit complex behaviors. Effects at multiple scales influ-
ence macroscopic material behavior and function, e.g., microscopic pores affect stiffness
and thermal insulation. The characterizing parameters of microstructures are often nu-
merous and interconnected through relationships that are only partially understood. This
high dimensionality and complex dependencies yield a vast design space, which poses the
researchers the challenge of tuning several parameters simultaneously to gain the desired
performance.
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This multifaceted challenge is prominently evident in the study use case of liquid foam
evolution, where additionally, the non-linear, time-series nature of the data has to be taken
into account. To that end, machine learning can handle unknown, nonlinear, complex,
and high-dimensional relationships, but often requires large amounts of data to recapture
information.

The acquisition of this data frequently involves performing high numbers of resource-
intensive experiments or simulations. Therefore, it is desirable to generate information-
rich datasets while minimizing the number of required evaluations. Our strategy to gener-
ate small but comprehensive datasets is to exploit Bayesian Optimization and its memory
of previously acquired data to guide the selection of the next most informative data point
to be evaluated.

Advancing research within the context of e-science and open data, the need for research
data management support becomes self-evident. Therefore, we operate within the Kadi
ecosystem, our open-source research data infrastructure for materials science!, which em-
powers our research following the FAIR principles. The Kadi4Mat repository (Brandt
et al. 2021), the workflow engine KadiStudio (Griem et al. 2022), and the interface for Al,
KadiAl (Koeppe and CIDS Team 2023) enable structured data storage and reproducible
workflows for data analysis and visualization tasks, facilitating sharing and reproducibil-
ity.We enclose the Bayesian oracle into a Python framework and make it accessible from
the Kadi ecosystem through a node-based graphical interface. This enables the devel-
opment of “intelligent” study workflows that actively learn to investigate the parameter
space.

2 Methods

In materials design, data-driven approaches often outperform traditional trial-and-error
and even systematic a-priori planned studies (Himanen et al. 2019). However, the effi-
ciency of data-driven approaches hinges on the ability to guide data collection effectively.
Our solution to this problem consists of a design-of-experiments methodology leveraging
Bayesian Optimization to efficiently explore and exploit the search space. We iteratively
update our model and enrich our dataset by selecting the next most informative data
point, guided by previous evaluations. This approach falls in the category of active learn-
ing (Settles 2009), a subfield of supervised machine learning where a component of the
algorithm (an oracle) is responsible for choosing the training data. Motivated by the
knowledge that not all samples are equally meaningful, we aim to obtain an expressive
dataset that meets the requisites of quality, quantity, and variability while reducing re-
source usage.

In this work, we implement a query strategy based on a Bayesian oracle. Bayesian Op-
timization (BO) is known in statistics as a method for global optimization of black-box
functions, usually employed in the case of expensive-to-evaluate functions.

1 https://kadi.iam.kit.edu
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In resource-intensive materials simulations and experiments, microstructure-property re-
lations represent an attractive use-case for BO. This aspect significantly contributes to the
growing attention given to BO as an efficient tool for multidimensional optimization in
materials design (Kotthoff, Wahab, and Johnson 2021; Kuhn et al. 2021; Zhao et al. 2023;
Kulagin et al. 2023).

The main strength of the method lies in the ability to define, work with, and continuously
update a cheap surrogate function which estimates the behavior of the real (expensive)
objective function. The surrogate is a probabilistic model over functions mirroring our ob-
jective. A common choice is to use Gaussian Processes, which approximate the behavior
of the datasets and provide uncertainty estimates. To cover the search space balanc-
ing exploration and exploitation, the most promising candidate is selected maximizing a
customizable acquisition function, see Figure 1.

A customizable active learning framework is under development in the Computational
Intelligence and Data Science framework CIDS (Koeppe et al. 2022) within the Kadi
ecosystem.
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Figure 1: Example iteration of Bayesian Optimization.

3 Workflow

For the use-case of liquid foam evolution, Figure 2 shows how the whole data life cycle
exploits and is embedded in Kadi4Mat, which manages every step of the research process,
including generation, storage, usage, and sharing. For the generation of simulation data, a
KadiStudio workflow automatizes the creation of initial parameters’ settings and performs
the designed simulation(s) employing the in-house framework Pace3D, Parallel Algorithms
for Crystal Evolution in 3D (Hétzer et al. 2018).

A representative temporal evolution analysis of 2D liquid foams was performed on the
BwUniCluster2.0 platform, utilizing 40 cores over a computational time of 35 hours. A
single timestamp for such simulations occupies around 500MB of storage. To adequately
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capture temporal evolution patterns, the study necessitates the examination of 50 to 200
frames for each configuration.

In contrast, the experimental data are generated with a Dynamic Foam Analyzer (DFA100,
Kriiss GmbH, Hamburg, Germany) from research partners (Jung et al. 2023). Significant
observations can span a duration of up to 10 hours, while the equipment generates a
complete status dump every 0.2 seconds, yielding a substantial volume of unprocessed
data.

For storage, the results are uploaded to Kadi4Mat, imparting structure and enabling
access for all the users working on the project.

Kadi allows heterogeneous data formats and corresponding metadata, to answer the needs
of an interdisciplinary research field such as materials science. The Bayesian oracle frame-
work has been developed with the same vision in mind and therefore adapts to different
(meta)data types. To support fast metadata collection, Kadi offers the possibility to define
templates, in combination with validation functionality and, for some type of metadata
(e.g. creation time), automatic recording.

For data usage, KadiAl integrates and standardizes AI projects, work packages, and
workflows (Koeppe et al. 2021) into the Kadi ecosystem, serving as an interface between
RDM and machine learning applications. KadiAl is combined with the Python-based
framework CIDS, designed to facilitate the development and implementation of learning
algorithms in AI workflows. Thus, the Kadi4Mat ecosystem can leverage data-integrated
Al to enable quantitative and qualitative data analysis.

For sharing, Kadi4Mat allows management of access and editing rights for each project,
as well as for each specific record. Different roles can be established for working groups
or specific registered users. This feature is designed to enhance collaborations among
different groups and institutions, while upholding the imperative of controlled data access.

In the vision of a partially-automated laboratory, all data are to be processed in an
automated and reproducible manner. Therefore, we develop workflows in KadiStudio
that take care of the consequential execution of each research step within a graphical
user interface (GUI), using an intuitive point-and-click mechanism. The Bayesian oracle
has been implemented as (a set of) nodes, basic building blocks of our workflow system
(Figure 3). To monitor the optimization progress, a visualization of the Bayesian oracle
current and global state is available in Kadi4Mat.

4 Conclusions

Establishing a common workspace and the possibility of sharing research data on a routine
basis has proven to be crucial, especially for collaboration across multiple research groups.
Workflows have streamlined the research process, making it faster and providing a simple
and intuitive way for researchers, including non-experts, to reproduce their work.
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Figure 3: Example workflow implementation of the Bayesian oracle framework.

The possibility to store, share, and work with data in an intuitive manner plays a more
and more important role in research. A structured working environment is provided for
the day-to-day work of researchers from different groups, places, and disciplines.

Incorporating the Bayesian oracle in this workflow context, in the form of user-friendly
nodes, provides a cost-effective solution accessible and utilizable for a broader range of
users. Furthermore, this iterative approach presents a valuable opportunity to accelerate
the process of materials’ development.
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