
bwVisu: A Scalable Remote Service for
Interactive Data Processing and Training

for Scientists

Erik Schnetter1, Carlo Antonio Beretta2, Martin Baumann1, Sabine Richling1, Florian
Heuschkel1, Thomas Kuner2

1University Computing Centre, Heidelberg University;
2Department for Anatomy and Cell Biology, Heidelberg University

bwVisu is an easy-to-use, web-based platform for interactive, remote, GUI-based access to
scientific work environments that require large compute and storage resources. We explain
the technical architecture of bwVisu, the spectrum of available applications, and the
typical way of working with the system. With use cases from biological/medical research
and teaching we illustrate the advantages and user-friendliness of bwVisu. Finally, we
give an outlook on further usage scenarios and possible future development of bwVisu.

1 Introduction

In the era of data sciences, researchers face various challenges that demand large storage
capacities, powerful computing hardware, and interactive data exploration capabilities.
However, traditional approaches often struggle to meet all these requirements, leading to
issues such as lengthy data transfer times, inadequate local hardware capabilities, and
limited interactivity in supercomputing environments, which typically rely on command-
line skills.

To tackle these challenges, the bwVisu platform (Schridde, Baumann, and Heuveline
2017; Alpay et al. 2020) was developed as a comprehensive solution and gradually im-
proved during the last years. bwVisu is a user-friendly, web-based platform that enables
remote access to scientific work environments that require access to large compute und
storage resources. It offers a collection of pre-built scientific applications designed to
run on powerful hardware such as high-performance computing (HPC) systems which are
typically connected to large storage systems. The bwVisu platform has a user interface
that allows the selection of applications, the request of compute resources, and the direct
web-based execution of graphical interactive applications. Users can interact with the
deployed applications in real time through their web browser without the need for special
software or hardware.

Publiziert in: Vincent Heuveline, Nina Bisheh und Philipp Kling (Hg.): E-Science-Tage 2023. Empower
Your Research – Preserve Your Data. Heidelberg: heiBOOKS, 2023. DOI: https://doi.org/10.115
88/heibooks.1288.c18073 (CC BY-SA 4.0)

161

https://doi.org/10.11588/heibooks.1288.c18073
https://doi.org/10.11588/heibooks.1288.c18073


The bwVisu platform hosted as a service at the University Computing Centre of Heidel-
berg University benefits from access to bwForCluster Helix1 and Scientific Data Storage
SDS@hd2. bwForCluster Helix offers high-performance computing resources and SDS@hd
provides a robust storage infrastructure for handling large scientific datasets.

These services are available as “Landesdienste” to researchers at universities from Baden-
Württemberg and are part of Baden-Württemberg’s concept for High Performance Com-
puting, Data Intensive Computing and Large Scale Scientific Data Management, see
Schneider et al. (2019). bwVisu cannot be used as persistent storage services. Instead,
bwVisu conceptionally integrates storage services like SDS@hd for this purspose. SDS@hd
is one of Baden-Württembergs research storage service with connections and processes for
research data management, e.g. transfer data to publication platforms or archives and to
foster collaboration among researchers, see Richling et al. (2022). Thus, bwVisu enhances
FAIR-based3 principles in the open sciences by further removing barriers to research data
that are due to required specialized IT-skill sets and thus promoting existing platforms
for open data exchange.

This paper provides a detailed description of the bwVisu platform including its features
and technical architecture (Section 2) as well as the specific implementation of bwVisu as
a service at Heidelberg University, the bwVisu workflow, and the availiable applications
(Section 3).

In this work we focus on two primary use cases: scientific work and teaching (Section 4).
In the scientific work scenario, we highlight how bwVisu addresses challenges related to
image analysis, modeling, and simulation. In this case, the bwVisu platform facilitates
interactive exploration and efficient utilization of computing resources. In the teaching
context, we demonstrate how bwVisu enhances educational environments by providing
students with access to powerful scientific tools and fostering collaborative learning expe-
riences.

Furthermore, we engage in a discussion of the presented features, evaluating their benefits
and limitations (Section 5). We also outline future developments and planned enhance-
ments, illustrating our ongoing efforts to improve the platform and to meet evolving user
requirements (Section 6).

2 bwVisu Architecture

This section explains the technical architecture of bwVisu. It provides an overview of the
general structure and describes the individual components in detail. The focus is on the
current implementation of bwVisu and the considerations for specific design decisions.

1 https://www.urz.uni-heidelberg.de/en/service-catalogue/high-performance-computing/
bwforcluster-helix

2 https://www.urz.uni-heidelberg.de/en/service-catalogue/storage/sdshd-scientific-da
ta-storage

3 https://www.go-fair.org/fair-principles

162

https://www.urz.uni-heidelberg.de/en/service-catalogue/high-performance-computing/bwforcluster-helix
https://www.urz.uni-heidelberg.de/en/service-catalogue/high-performance-computing/bwforcluster-helix
https://www.urz.uni-heidelberg.de/en/service-catalogue/storage/sdshd-scientific-data-storage
https://www.urz.uni-heidelberg.de/en/service-catalogue/storage/sdshd-scientific-data-storage
https://www.go-fair.org/fair-principles


The technical architecture of bwVisu consists of three layers: frontend, middleware,
and backend. The layers communicate via different Application Programming Interfaces
(APIs) (Fielding 2000a), namely via RESTfull (Fielding 2000b) HTTP calls or backend
specific API calls, see Figure 1. Each layer is discussed in more detail below.

Figure 1: Technical architecture of bwVisu.

2.1 Frontend

The frontend of bwVisu is designed as a classic web application and implemented using the
Python web framework Django4. It provides users with a web interface, including a login
area. Users can start and stop applications offered by bwVisu through this interface. The
frontend allows users to request dedicated backend resources for a selected application,
such as the number of CPU cores and GPUs. The resource requests are communicated
by the middleware to the backend. The frontend also displays links to the streaming
endpoints provided by the middleware that allows users to interact with the graphical
user interface of the started application in real time through their browser.

Django was chosen because of its suitability for implementing a classic web application in
a small group of developers. Django has many built-in features such as user authentication
or database management systems that make it possible to significantly reduce development
time. Currently, authentication via the LDAP protocol is supported only, but due to the
flexible authentication backend5 of Django, different authentication methods can be easily
implemented.

2.2 Middleware

The middleware is implemented as a REST API server using the Python web framework
Flask6. Flask was chosen for its lightweight nature, which makes it an ideal choice for API

4 https://www.djangoproject.com
5 https://docs.djangoproject.com/en/4.2/topics/auth/customizing
6 https://flask.palletsprojects.com/en/2.3.x

163

https://www.djangoproject.com
https://docs.djangoproject.com/en/4.2/topics/auth/customizing
https://flask.palletsprojects.com/en/2.3.x


servers that typically require only a few features of a full web development framework. The
middleware manages the status of launched applications and provides access to them via
JSON-based REST endpoints. Furthermore, it interacts with backend systems via their
API interfaces to implement various features of bwVisu. The tasks of the middleware are
as follows:

Launching an application: When an application is launched via the associated mid-
dleware API endpoint, a generic submit script is populated with application-specific data
and submitted as a compute job to the scheduler of the backend HPC system. The sub-
mit script loads necessary software modules, starts the remote visualization tool Xpra7,
if the application cannot render its graphical output to the browser itself, and initiates
the application within an isolated Singularity8/Apptainer9 container which also provides
access to storage systems and other resources needed by the application in said container.
After that, the middleware assigns free ports from a pool of reserved ports to bwVisu and
creates dynamic port forwarding rules on the reverse web proxy in the backend for the
streaming endpoints opened by the application on the HPC system.

Aborting an application: When an application is aborted via the associated mid-
dleware API endpoint, the corresponding job on the HPC system is aborted, and the
dynamically generated port forwarding rules on the reverse web proxy are removed.

Monitoring running jobs: The middleware regularly retrieves information about run-
ning bwVisu jobs on the backend HPC system and stores it in an internal SQLite database.

2.3 Backend

bwVisu uses as backend an HPC system that provides the powerful hardware necessary
to run the scientific applications provided by bwVisu as well as a reverse web proxy to
manage the port forwarding rules for the streaming endpoints. In this context, a reverse
web proxy is a web server that retrieves resources for web clients from other servers on an
internal network of the HPC system in order to keep the interface of the internal network
to the internet as small as possible and thus protect internal resources from uncontrolled
or unauthorized access from the internet.

An HPC system typically provides access to compute and storage resources via a job
scheduler or workload manager (e.g. Slurm10). The middleware interacts with the job
scheduler either by an exposed API or – as a fallback – by a generic shell script which
invokes the required commands provided by the job scheduler.

The HPC system must also host the Singularity containers of the bwVisu applications
and provide the Singularity and Xpra software.

7 https://www.xpra.org
8 https://sylabs.io/singularity
9 https://apptainer.org

10 https://slurm.schedmd.com

164

https://www.xpra.org
https://sylabs.io/singularity
https://apptainer.org
https://slurm.schedmd.com


To enable dynamic generation of port forwarding rules, bwVisu needs a reverse web proxy
that is capable of adapting its configuration on the fly, which is essential for the dynamic
nature of the port forwarding rules generated by the middleware. Currently, only Traefik11

is supported as reverse web proxy, however, support for other proxies can be implemented
as well if required. Traefik was selected because its ability to dynamically change the
firewall configuration is its key feature, which is critical for managing dynamic port for-
warding rules.

3 bwVisu at Heidelberg University

bwVisu is successfully deployed as a service at Heidelberg University with bwForCluster
Helix as backend HPC system. bwForCluster Helix is operated by the University Com-
puting Centre as a service for Baden-Württemberg Universities mainly for research in
the fields of Structural and Systems Biology, Medical Science, Soft Matter, Computa-
tional Humanities as well as method development in scientific computing. The cluster is
equipped with about 20,000 AMD EPYC Milan CPU cores, around 200 NVIDIA Ampere
Tensor Core GPUs (A100 and A40), and a high-performance parallel file system with a
flash tier for high-speed data access.

As a special feature, bwForCluster Helix provides native access to SDS@hd, a storage
service for large research data. SDS@hd is directly accessible from a mount point on
bwForCluster Helix and is also available for use in bwVisu applications. Thus, the users
of bwVisu can directly benefit from massive storage capacities of SDS@hd in the order 20
PB.

3.1 Workflow

To get a better idea of the features of bwVisu, we will now describe the typical workflow
in bwVisu from a user’s perspective (Figure 2). See also Beretta (2023a) and Beretta
(2023b) for recorded user sessions.

Choosing applications and cluster resources: Users choose an application from a
list of available options and specify the resources required to run it on the backend HPC
system, such as time duration and the number of GPUs. The middleware receives the
name of the application along with the resource request via a REST API call.

Starting applications and streaming graphical output:The chosen application is
launched on the backend HPC system by the middleware, which launches a submit script
corresponding to the chosen application and submits it to the job scheduler. Due to a
resource reservation for bwVisu on bwForCluster Helix, a bwVisu job will start imme-
diately, as long as the resources are available. After launching the application on the
cluster, the middleware opens the assigned streaming ports via the reverse web proxy.
Information regarding the job such as the public web address of the streaming endpoints

11 https://traefik.io/traefik

165

https://traefik.io/traefik


Figure 2: bwVisu workflow at Heidelberg University.

166



Figure 3: Available bwVisu applications at Heidelberg University.

is made available to the frontend through REST API endpoints. The streaming endpoints
for accessing the application’s graphical user interface is provided in the web interface as
an URL. When this URL is opened by the user, the application’s interface is streamed in
real-time to the user’s web browser, allowing direct interaction with the remote applica-
tion.

Stopping applications: The application can be stopped either manually by the user or
automatically when the specified time limit will be reached. If the user manually cancels
the application, the frontend sends an API call to the middleware, which then cancels the
associated job on the backend HPC system. In this case, or if the job scheduler reports
a timeout for the associated job, the middleware closes the relevant ports via the reverse
proxy.

3.2 Applications

bwVisu aims to facilitate the utilization of interactive software in the field of Data Science
for scientists. To achieve this, it offers a diverse range of scientific applications commonly
used across various disciplines. Figure 3 shows the currently available applications. Ex-
pansion of the application repertoire is planned. Deploying additional applications on
bwVisu is straightforward due to the minimal requirements imposed by the platform. Es-
sentially, any Linux container-compatible application can be deployed on bwVisu. How-
ever, it should be noted that applications designed for multi-user systems may require
reconfiguration, as bwVisu exclusively initiates applications for individual users. Based
on our experience, such reconfiguration is typically feasible and is usually a matter of
just disabling the login mask of the application. Nonetheless, it is possible that certain
programs may possess operating requirements that are incompatible with bwVisu.

It is worth reiterating the significant advantage provided by bwVisu in terms of instant
availability of scientific applications for scientists who may not possess extensive IT exper-
tise. Additionally, the utilization of powerful hardware without the need for installation,
deployment, or complex command-line operations further enhances user productivity.

167



4 Use Cases

4.1 bwVisu for Science

Microscopy is one of the most common methods to investigate biological processes in life
sciences and delivers images that can be challenging to quantify. Yet, image quantifica-
tion is essential to reveal biological mechanisms, in particular when multimodal imaging
approaches are used. In the last decade many open source tools have been developed to
facilitate image analysis using conventional approaches (e.g. Imagej/Fiji; see Schindelin et
al. 2012) and more recently, machine learning (e.g. ilastik pixel classification; see Berg et
al. 2019) or deep learning methods (e.g. noise2void, CARE, and stardit; see Krull, Buch-
holz, and Jug 2019; Weigert et al. 2018; Schmidt et al. 2018, respectively). Image analysis
requires computational resources and, when data analysis demands state-of-the-art tools,
programming skills. The rapid and continuous development of artificial intelligence-based
deep learning tools for image analysis leads to new powerful ways to precisely quantify
images and to enable analyses of complex imaging data that was previously not accessible.
In this study, we extensively tested bwVisu functionality using:

• StarDist Jupyter Notebook (Beretta 2023b)

• Ilastik Pixel Classification Workflow (Beretta 2023a)

We used on bwVisu a Jupyter Notebook developed to segment cell nuclei in three di-
mensional image stacks by training the StarDist deep learning model on GPU resources.
bwVisu allows to run the training and the inference directly on cluster resources access-
ing large dataset of images from SDS@hd storage. The user can install the necessary
dependencies to run any Jupyter Notebooks in a Conda environment. bwVisu is a user
interactive tool that can be used to train a machine learning classifier on CPU resources
with high memory consumption. In our study, we train the ilastik pixel classification
workflow (Berg et al. 2019). bwVisu users can run the ilastik workflow on cluster re-
sources and add labels on images in an interactive process. When the training is finished
the user can directly batch process large data located on the SDS@hd storage. Both
examples show how bwVisu can be used to run applications that require demanding CPU
and GPU resources in a user-friendly environment.

4.2 bwVisu for Teaching

Teaching image analysis can be a challenge in particular when GPU resources are needed.
bwVisu can be used as centralized infrastructure for running workshops and courses to
train scientists on traditional computer vision applications and AI tools overcoming lo-
cal hardware limitations, for example. There is a large number of methods, tools and
applications that could benefit from bwVisu as a teaching platform, since the necessary
hardware resources can be reserved and made available on the powerful HPC system for
the duration of a course. Additionally, there are processes for the creation of a working
area for a course or series of events as well as for the user and group management includ-

168



ing a right-/role-concept. Course materials can be easily accessible directly from SDS@hd
storage creating a common ground to share data during courses and workshops.

In the near future, bwVisu will be used to organize several workshops to train Heidelberg
University scientists on state-of-the-art image analysis tools and it will also become a
centralized infrastructure to share image analysis tools and knowledge. Furthermore, a
course series is in preparation for students using Jupyter on GPUs for different applications
via bwVisu. There is a strong interest in using bwVisu for further teaching events at
Heidelberg University.

5 Discussion on other technologies

While bwVisu offers a valuable and comprehensive solution for teaching and computa-
tional based research, it is important to be aware that alternative platforms exist that
serve similar purposes within the scientific community. These alternatives can provide
additional features and functionalities that may complement or enhance the teaching
experience in consideration of one or another feature.

Subsequently, we will give an overview of some alternative platforms and a comparison
of features which might be interesting for operating sites that want to take an informed
decision about which platform might meet their specific needs the best.

KASM12 is a web-based streaming platform focused on providing containerized desktop
applications. Notably, KASM introduces a custom open-source VNC server13 to enhance
streaming performance over conventional VNC-based alternatives14. Additionally, KASM
offers built-in support for educational scenarios, featuring integrated chat functionality
and session sharing capabilities tailored for educational contexts. However, it’s important
to note that Kasm Technologies Inc, the entity behind KASM, hasn’t open-sourced all
components, leading to licensing costs for adopting KASM. Moreover, KASM lacks inte-
gration with existing software in the HPC landscape. By design, there is no integration
into an HPC infrastructure for KASM.

Apache Guacamole15 is an open-source remote desktop gateway aiming to provide a
unified access point for diverse server-side streaming technologies through an HTML client
and API. A key feature of Apache Guacamole is its browser-based HTML client, enabling
user access to stream backend server applications exclusively via web browsers. Addi-
tionally, it abstracts various streaming technologies, such as VNC and RDP16, offering
operating sites the flexibility to select their preferred streaming technology. Similar to
KASM, Apache Guacamole lacks inherent integration into the HPC landscape.

12 https://kasmweb.com
13 https://kasmweb.com/kasmvnc
14 https://en.wikipedia.org/wiki/Virtual_Network_Computing
15 https://guacamole.apache.org
16 https://en.wikipedia.org/wiki/Remote_Desktop_Protocol

169

https://kasmweb.com
https://kasmweb.com/kasmvnc
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://guacamole.apache.org
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol


Open OnDemand17 is an open-source web application designed to offer user-friendly
access to HPC resources for scientific end-users. It provides a web-based interface to
access resources and stream applications on HPC clusters, with its standout feature being
seamless integration within the HPC landscape. Notably, there exists a wide community
of HPC sites that operate Open OnDemand, allowing new adopters to tap into existing
knowledge within this community. Furthermore, Open OnDemand’s open-source code
base has undergone multiple security audits, reducing potential security vulnerabilities.

As previously mentioned, bwVisu aims to offer user-friendly web-based access to HPC
resources, allowing for the mapping of interactive scenarios with significant resource de-
mands. When considering the aforementioned platforms in this context, the authors
present the following evaluation results from their perspective:

The performance advantages of KASM’s open-source VPC server over alternative stream-
ing solutions, such as Xpra used by bwVisu, are not currently clear. Further investigation
would be necessary if there is a demand for improvement in bwVisu. KASM’s chat and
session sharing features might enrich teaching scenarios. However, KASM’s licensing
model introduces cost considerations and might lead to potential limitations within its
field of application.

Apache Guacamole’s streaming abstraction results in a high flexibility, which might be
useful for some operators. In bwvisu, streaming performance has not been rated as needing
improvement thus far. Despite the strengths of KASM and Apache Guacamole, their lack
of HPC integration necessitates extra effort and tailored solutions for that use-case.

This is where Open OnDemand emerges. Both bwVisu and Open OnDemand offer distinct
advantages for integration with, or utilization within, HPC environments. While we think
bwVisu’s simple architecture may offer benefits in security and long-term maintainability,
Open OnDemand’s mature code base, larger feature set, and community support are
noteworthy. This platform represents the most promising technology for the authors,
which will be further evaluated in the future (see next section).

Overall, determining the “best platform” is likely something that can only be evaluated
on a case-by-case basis, using specific and precise use cases.

6 Summary and outlook

The utilization of bwVisu for teaching classes in the field related to data science can be
justified based on several key reasons. Firstly, it allows instructors and students to easily
bring their own custom applications, enabling tailored and specific educational experi-
ences. Additionally, the availability of ready-made applications eliminates the need for
complex installations, reducing technical barriers and enabling efficient use of class time.
Moreover, bwVisu leverages powerful hardware resources, such as bwForCluster Helix,
which eliminates the burden of managing computing environments and provides students
with access to high-performance computing capabilities. Furthermore, the platform’s

17 https://openondemand.org

170

https://openondemand.org


integration with large cloud or network storage, such as SDS@hd, facilitates seamless
collaboration and data sharing, promoting a collaborative and interactive learning envi-
ronment. By offering these features, bwVisu offers a compelling rationale for its adoption
in data science education, enhancing teaching effectiveness and fostering a conducive
learning experience.

While the core features of bwVisu are already implemented, there are specific areas that
could benefit from improvements, the introduction of new features, and the exploration of
potential alternative approaches. To enhance debugging capabilities and to support the
typical workflow of scientists, there are plans to make the outputs of bwVisu job executed
on the backend system available to users in the frontend. This functionality would not
only aid the operators of the bwVisu service in implementing new applications but also
facilitate better debugging capabilities. Additionally, in order to foster the growth of the
bwVisu user community and the development of bwVisu applications, users will have the
opportunity to locally test and customize new applications for bwVisu using newly pro-
vided developer tools. These applications can then be directly uploaded in the frontend
for review by the bwVisu operators. Furthermore, access control will be implemented,
granting users the opportunity to assume responsibility by becoming maintainers for spe-
cific bwVisu applications. In addition to the introduction of new features, it is essential to
conduct further benchmarking, tests, and the collection of metrics for typical use-cases.
This evaluation aims to assess the robustness of the current implementation when faced
with high network latency or a high volume of concurrent user requests and to provide
further steps for improvement.

As motivated in the previous section, it is crucial to explore alternative platforms and
technologies for remote visualization and remote desktop software in the scientific com-
munity. These may offer unique features and capabilities that can complement or enhance
the functionality of bwVisu. By examining and testing the integration of these alternative
approaches with bwVisu, or exploring how bwVisu can contribute to existing projects, a
climate of mutual collaboration can be fostered. When undertaking this process, it is
important to consult use cases from both research and teaching domains. This ensures
that any subsequent developments are appropriate and contribute to the enhancement of
bwVisu’s value for research and teaching.

Acknowledgements

The authors acknowledge support by the state of Baden-Württemberg through bwVisu
and bwHPC as well as the bwForCluster Helix and the storage service SDS@hd supported
by the Ministry of Science, Research and the Arts Baden-Württemberg (MWK) and the
German Research Foundation (DFG) through grants and INST 35/1503-1 FUGG and
INST 35/1597-1 FUGG. Furthermore, the authors gratefully acknowledge the Federal
Ministry of Education and Research (BMBF) and the MWK within the framework of the
Excellence Strategy of the Federal and State Governments of Germany and the DFG in
form of a CRC1158 that granted bwVisu hardware.

171



References

Alpay, Aksel, Karsten Hanser, Egzon Miftari, Dennis Schridde, Sabine Richling, Martin
Baumann, Filip Sadlo, and Vincent Heuveline. 2020. “bwVisu: A Scalable Remote
Visualization Service and its Application to Flow Visualization”. In E-Science-Tage
2019: Data to Knowledge, edited by Vincent Heuveline, Fabian Gerhart, and Nina
Bisheh, 173–184. heiBOOKS. doi: https://doi.org/10.11588/heibooks.598.
c8426.

Beretta, Carlo Antonio. 2023a. “ilastik Pixel Classification Workflow”. Visited on Septem-
ber 25, 2023. doi: https : / / doi . org / 10 . 11588 / heidicon / 1747437. https :
//heidicon.ub.uni-heidelberg.de/#/detail/1747436.

. 2023b. “StarDist Jupyter Notebook”. Visited on September 25, 2023. doi: https:
//doi.org/10.11588/heidicon/1747437. https://heidicon.ub.uni-heidelber
g.de/#/detail/1747438.

Berg, Stuart, Dominik Kutra, Thorben Kroeger, Christoph N. Straehle, Bernhard X.
Kausler, Carsten Haubold, Martin Schiegg, et al. 2019. “ilastik: interactive machine
learning for (bio)image analysis”. Nature Methods. issn: 1548-7105. doi: https://
doi.org/10.1038/s41592-019-0582-9.

Fielding, Roy Thomas. 2000a. Architectural styles and the design of network-based soft-
ware architectures. Chapter 6.5.1: Advantages of a Network-based API. University of
California, Irvine.

. 2000b. Architectural styles and the design of network-based software architectures.
Chapter 5: Representational State Transfer (REST). University of California, Irvine.

Krull, Alexander, Tim-Oliver Buchholz, and Florian Jug. 2019. “Noise2void-learning de-
noising from single noisy images”. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2129–2137. doi: https : / / doi . org / 10 .
48550/arXiv.1811.10980.

Richling, Sabine, Sven Siebler, Alexander Balz, and Martin Kühl Robert und Baumann.
2022. “Managing large research data with SDS@hd”. In E-Science-Tage 2021: Share
Your Research Data, edited by Vincent Heuveline and Nina Bisheh, 421–427. hei-
BOOKS. doi: https://doi.org/10.11588/heibooks.979.c13759.

Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Lon-
gair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin
Schmid, et al. 2012. “Fiji: an open-source platform for biological-image analysis”.
Nature methods 9 (7): 676–682. doi: https://doi.org/10.1038/nmeth.2019.

172

https://doi.org/https://doi.org/10.11588/heibooks.598.c8426
https://doi.org/https://doi.org/10.11588/heibooks.598.c8426
https://doi.org/https://doi.org/10.11588/heidicon/1747437
https://heidicon.ub.uni-heidelberg.de/#/detail/1747436
https://heidicon.ub.uni-heidelberg.de/#/detail/1747436
https://doi.org/https://doi.org/10.11588/heidicon/1747437
https://doi.org/https://doi.org/10.11588/heidicon/1747437
https://heidicon.ub.uni-heidelberg.de/#/detail/1747438
https://heidicon.ub.uni-heidelberg.de/#/detail/1747438
https://doi.org/https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/https://doi.org/10.48550/arXiv.1811.10980
https://doi.org/https://doi.org/10.48550/arXiv.1811.10980
https://doi.org/https://doi.org/10.11588/heibooks.979.c13759
https://doi.org/https://doi.org/10.1038/nmeth.2019


Schmidt, Uwe, Martin Weigert, Coleman Broaddus, and Gene Myers. 2018. “Cell Detec-
tion with Star-Convex Polygons”. In Medical Image Computing and Computer As-
sisted Intervention - MICCAI 2018 - 21st International Conference, Granada, Spain,
September 16-20, 2018, Proceedings, Part II, 265–273. doi: https://doi.org/10.
1007/978-3-030-00934-2_30.

Schneider, Gerhard, Vincent Heuveline, Karl-Wilhelm Horstmann, Bernhard Neumair,
Petra Hätscher, Josef Kolbitsch, Simone Rehm, Michael Resch, Thomas Walter, Ste-
fan Wesner, et al. 2019. “Umsetzungskonzept der Universitäten des Landes Baden-
Württemberg für das High Performance Computing (HPC), Data Intensive Comput-
ing (DIC) und Large Scale Scientific Data Management (LS2 DM)”. In Proceedings
of the 5th bwHPC Symposium. Universität Tübingen. doi: https://doi.org/10.
15496/publikation-29040.

Schridde, Dennis, Martin Baumann, and Vincent Heuveline. 2017. “Skalierbare und flex-
ible Arbeitsumgebungen für Data-Driven Sciences”. In E-Science-Tage 2017: For-
schungsdaten managen, edited by Jonas Kratzke and Vincent Heuveline, 153–166.
heiBOOKS. doi: https://doi.org/10.11588/heibooks.285.c3887.

Weigert, Martin, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr Dibrov, Jain
Akanksha, Benjamin Wilhelm, et al. 2018. “Content-aware image restoration: pushing
the limits of fluorescence microscopy”. Nature Methods: 1090–1097. doi: https://
doi.org/10.1038/s41592-018-0216-7.

173

https://doi.org/https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/https://doi.org/10.15496/publikation-29040
https://doi.org/https://doi.org/10.15496/publikation-29040
https://doi.org/https://doi.org/10.11588/heibooks.285.c3887
https://doi.org/https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/https://doi.org/10.1038/s41592-018-0216-7



