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Research data management tools structure the data life cycle and expedite the scientific
process. Applied research data management still needs to be incorporated into daily
research operations at the institutional level that allows access to the entire data life cycle.
The generated warm data along the research operations enable automatic knowledge base
generation and interpretation using robust integrated data analysis methods. The open-
source research data infrastructure Kadi4Mat provides a generic framework for FAIR
data management, efficient scientific workflows, and integrated data analysis. In this use
case from virtual material design, we demonstrate how to implement machine learning
as a workflow to characterize the virtual Solid Electrolyte Interphase (SEI) formation in
Lithium-ion batteries. A better understanding of SEI formation helps to adjust batteries
for optimum performance and safety. The workflow combines data and model definition,
preprocessing, training, generation, and data analysis. We utilize kinetic Monte Carlo
simulations and deep learning (Variational Auto Encoders with a parallel regressor) to
structure the complex, high-dimensional, and non-convex design space and demonstrate
how integrated data analysis can characterize materials and predict material properties.

1 Introduction

In recent years, there has been a strong push toward digitalizing the materials science field,
with data-driven methods being developed to accelerate the development of new materials.
For the generation and development of such high-performing material informatics, many
syntheses, experiments, and simulations must be performed; this accelerated development
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of material results in multifaceted datasets. These datasets have to be combined and ana-
lyzed to discover new knowledge. The material data produced by experiments other than
simulation lacks standard formats and corresponding metadata, which makes it difficult
to share, visualize, and analyze these data (Ludwig 2019; Hey and Trefethen 2003; Draxl
and Scheffler 2020). Incorporating FAIR data principles into material dataset generation
methods helps make the data more accessible and easier for the research community to
manage, share, and reuse.

A flexible research data management tool is essential for achieving the requirements of
the FAIR (Findable, Accessible, Interoperable, and Reusable) principles by providing a
wide variety of tasks that can be performed, such as retrieving data from an experimental
device, processing data, sharing processed data more efficiently, automating the data
handling process, data mining, and visualization. Utilizing research data management
tools that provide access to unprocessed information sources from which published data is
derived can result in manageable research process chains. Various research data software,
such as Zenodo, Dataverse (Crosas 2011), Dspace (Smith et al. 2003), and Nomad, focus
specifically on published data. The other important component of research data platforms
is electronic lab notebooks to facilitate the digitization of the data from experiments and
simulations while offering access to a wide range of data analysis and visualization tools
required for the research.

Various Electronic Lab Notebooks (ELNs), including Jupyter Notebooks (Kluyver et
al. 2016), Galaxy (Jalili et al. 2020), Fireworks (Jain et al. 2015), ElabFTW (CARPi,
Minges, and Piel 2017), and Aiida (Pizzi et al. 2016) exist for documenting research pro-
cesses. However, their domain-specific nature often prevents researchers from utilizing
them fully. Moreover, most of the mentioned ELNs lack interdisciplinary capabilities and
necessitate programmatic expertise for establishing workflows that can automate research
operations. Hence, it is necessary to implement a research data management system that
caters to the requirements of managing interdisciplinary research processes. This sys-
tem should provide access to “warm data” which refers to unpublished data yet to be
analyzed. Incorporating an ELN into the repository-based Research Data Management
(RDM) tools with provisions for accessing user interface-based and script-based research
process workflow implementations helps to minimize the effort required for daily research
activities like data retrieval from the experimental devices, data sharing, data analysis,
and visualization.

To meet the aforementioned requirements, Kadi4Mat (Karlsruhe Data Infrastructure for
Materials Science; Team 2022; Brandt et al. 2021), an open-source data platform that
functions as a communal repository, and the ELN is being developed at the Karlsruhe
Institute of Technology. The Kadi4Mat platform’s repository component facilitates ef-
fectively organizing data from various sources. It expedites data sharing among fellow
researchers or research project collaborators. In contrast, their ELN component enables
the logging of meaningful information about the research process, the visualization, and
the data analysis stored in the repository component. It uses a user and programmatic
interface to construct reproducible research workflows. In addition, the Kadi4Mat ecosys-
tem provides access to KadiAI and CIDS (Computational Intelligence and Data Science
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tools; Koeppe and CIDS Team 2023) to allow the use of interactive dashboards for ma-
chine learning process definition and execution, corresponding workflow nodes to define
the process of data-driven study, and programmatic interfaces for data preparation into
a machine-readable format, data engineering, data-driven model architecture construc-
tion, tuning, and training. Integrating Artificial intelligence (AI) toolset and advanced
material simulations with research data infrastructure accelerates the discovery of new
material configurations and develops traceable research process chains for further study
(Koeppe et al. 2022; Mundt et al. 2020; Koeppe et al. 2018).

This article explores Kadi4Mat ecosystem functionalities and their potential for imple-
menting reproducible integrated data analysis. Specifically, we use a deep generative
model to examine the data-driven use case based on characterizing solid electrolyte inter-
phase in batteries.

2 Tools and Methods

2.1 The Kadi4Mat ecosystem

Kadi4Mat represents a comprehensive platform incorporating a community repository
to organize and share data from various sources efficiently, enriched by an ecosystem of
applications and interfaces that facilitate efficient and automatized RDM. The ELN of
the Kadi4Mat ecosystem consists of both web-based and desktop-based workflow editors
to streamline scientific workflows. Kadi4Mat aims to digitally document the scientific
workflow in daily research, which facilitates researchers in reproducing and utilizing iden-
tical data and research workflows more efficiently. The generic architecture of Kadi4Mat
enables the replication of nearly all stages involved in the research data lifecycle, except
planning and publishing. However, it is possible to effectively execute these two proce-
dures by integrating established frameworks into the Kadi4Mat. For instance, RDMO
(Klar et al. 2017) may be utilized for managing research data plans, while Zenodo can
serve as a platform for publishing data. In the following sections, some components of the
Kadi4Mat ecosystem are discussed to provide an overview of their role in implementing
reproducible integrated data analysis.

2.2 Kadi’s core components: KadiWeb and Kadistudio

KadiWeb is a web-based interface that provides a user-friendly platform to access the
repository and ELN components of Kadi4Mat. The resources stored in the Kadi4Mat
can be accessed via the web and programmatic interfaces called KadiAPY (Schoof and
Brandt 2020) based on the command line interface and Python library. Upon accessing
Kadi4Mat, the web interface provides access to create and structure data with the help
of different components available in the interface. The essential features of the Kadi4Mat
are as follows:
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Records: instances to structure resources, including data and associated metadata. The
metadata includes general information such as title, description, identifier, record
type, tags, and other additional metadatum denoted by key/value pairs specific to
the stored data, which can be customized based on user needs.

Collections: Collect and arrange records of relevance together.

Templates: defines the record’s metadata beforehand. It can contain the information
required to create a record or the extra metadata specific to an individual record.

Users: displays registered users of logged-in Kadi4Mat instance.

Group: organizes users into workspaces based on their roles or research projects and
facilitates transparent and efficient access management.

Kadistudio is a desktop-based workflow editor enabling the seamless implementation of
scientific workflows. The software platform provides access to a wide range of pre-installed
tools conveniently tailored to create and implement heterogeneous scientific workflows
comprising diverse data types and sources (Griem et al. 2022; Zschumme 2021b, 2021a).
To add new tools in the workflow environment, user can define their corresponding XML
tool settings (Zschumme et al. 2020). The functionalities of KadiAPY (Schoof and Brandt
2020), workflow nodes that mimic user interface commands, and additional tools such as
CIDS and KadiAI for data-based analysis are also available in the form of workflow nodes
accessible through the Kadistudio integrated workflow editor.

2.3 KadiAI and CIDS

As an interface between RDM and machine learning applications, KadiAI aims to stan-
dardize and integrate AI projects, work packages, and workflows into the Kadi ecosystem.
The interface streamlines data-driven research through structuring and automatization
and offers interactive dashboards to implement data-driven studies and provide feedback
to the user. CIDS is a Python-based framework to develop, implement, and standardize
learning algorithms in AI workflows. The framework is integrated within the Kadi4Mat
ecosystem to aid in preprocessing and converting the data, as well as develop data-driven
models that learn from the defined datasets stored within the Kadi4Mat repository. To-
gether, KadiAI and CIDS enable data-integrated AI within the Kadi4Mat ecosystem to
enable a quantitative and qualitative analysis of the collected data.

The generic machine learning workflow concept in Kadi4Mat consists of four essential
process elements: source and data preparation, model development, and share model for
prediction. There are two different ways to implement this machine-learning workflow
concept within Kadi4Mat. One method uses KadiAI user interactive dashboards, which
require no programming background to establish and perform machine learning process
steps. In contrast, the other method utilizes tailored Python scripts within the CIDS
framework for optimized automation of node execution. Figure 1 shows the tools required
to implement the machine learning process steps using the Kadi4Mat ecosystem.
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Figure 1: Concept of generic machine learning workflow in Kadi4Mat ecosystem.

3 Use case and workflow

In subsequent sections, we will address the use case research problem based on the char-
acterization of solid electrolyte interphase using a data-driven strategy and its implemen-
tation using the Kadi4Mat ecosystem. Specifically, we used a collection of CIDS tools
incorporated within Kadistudio to define and execute each processing step of machine
learning workflows. Figure 2 shows the machine workflow layout using the Kadi4Mat
ecosystem. Some CIDS workflow nodes can communicate with the Kadi4Mat repository
to retrieve original data, update transformed data, or upload analysis results. This feature
helps with tracking and ensuring the reproducibility of data provenance.

Figure 2: Machine learning workflow layout visualization in Kadistudio.
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3.1 Background

The current use case involves a comprehensive investigation of the dataset acquired from
kinetic Monte Carlo simulation of solid electrolyte interphase growth in batteries.

The solid electrolyte interphase is formed on the electrode of a battery as a reduction
product of the electrolyte. These interphases play a vital role in performance, cycling,
and even the safety of the battery (Dunn, Kamath, and Tarascon 2011). The complex
interdependent relationship between the composition and morphology of the evolving
solid electrolyte interphase (SEI) makes the traditional modeling approaches struggle to
capture essential information to predict the behavior of SEI accurately. The recently
developed Kinetic Monte Carlo protocol based on the multiscale approach with corre-
sponding reaction kinetics as input can capture the growth of SEI and can determine
the essential physical properties of the evolving SEI (Esmaeilpour et al. 2023). However,
the above-proposed protocol still takes a long time to complete each simulation and lacks
structure-property linkage to interpret and understand the underlying mechanism of SEI
growth.

3.2 Objective and approach for characterization using deep generative
models

This work aims to accelerate the design of solid electrolyte interphase according to tar-
get physical properties and to understand the underlying mechanisms that dominate its
growth. We implemented a data-driven approach to expedite the Kinetic Monte-Carlo
simulation to characterize the SEI configuration concerning existing physical properties
for further optimization. For this approach, we used a variational auto-encoder model
and a regressor to understand the underlying representation of higher dimensional SEI
configurations and predict the key physical properties of SEI formation. The proposed
approach demonstrates the ability to accurately predict SEI properties and structure,
which can be used to optimize battery performance and safety.

3.3 Source data and preprocessing

The study utilizes input data derived from Kinetic Monte Carlo simulations that model
SEI growth. The obtained SEI dataset contains 50000 samples of the final configuration of
SEI growth. Each sample consists of spatial features and non-spatial features. The spatial
features of an SEI configuration represent the electrolyte reduction species distinguished
by colors according to their reaction product type. The non-spatial features of the SEI
configuration refer to physical properties such as thickness, density, volume fraction, and
porosity.

The foremost step in promoting data-oriented research using machine learning models
is gathering information from experimental observations or simulations. The repository
component of Kadi4Mat facilitates efficient sourcing and collection of datasets from the
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collaborators. Once collected, it is essential to preprocess and clean the data to elimi-
nate any inconsistencies or errors that may compromise the accuracy of the analysis. For
instance, we received SEI configuration data generated with Kinetic Monte Carlo sim-
ulations from a collaborator via Kadi4Mat (ibid.). To proceed with analysis using this
information, we need to define attributes of the obtained dataset such as feature name,
data format, data type, data shape, and decoding used during data conversion. Addition-
ally, it is necessary to preprocess the source data to achieve an efficient learning process
using machine learning algorithms. The preprocessed data of each sample are then stored
in the form of TF records (TensorFlow records) for efficient data serialization and storage.
We utilized the CIDS framework-based interactive data definition node to streamline this
process to facilitate user input requirements and functionalities for defining the data at-
tributes. Figure 3 visualizes the interactive data definition process using CIDS interactive
nodes and KadiAI dashboards.

Figure 3: Data preparation process for machine learning study using CIDS interactive nodes
and KadiAI dashboards.

3.4 Deep generative models

Variational autoencoder (VAE; Kingma and Welling 2013) is a deep generative model
consisting of two main parts: encoder and decoder. The function of the encoder is to
compress the higher dimensional input into a distribution over the lower dimensional la-
tent space. The lower dimensional latent space defines the bottleneck of the VAE model.
Thus, the encoder produces new feature space from the old feature space through extrac-
tion or selection of essential features. On the other hand, the decoder part takes a point
in the lower dimensional latent space and decompresses it back to the original higher
dimensional input space. An additional part called regressor at the bottleneck of VAE
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aids in incorporating the information of physical properties into the learned latent space.
Training the regressor component involves predicting the desired physical properties ac-
quired latent space representation and backpropagation to automatically arrange VAE’s
bottleneck based on physical attributes (Gómez-Bombarelli et al. 2018). The acquired
knowledge of the representations assists in predicting desired physical properties. Here,
we used the CIDS interactive model definition node to aid in defining the architecture of
a model. Figure 4 visualizes the model definition and hyperparameter selection using the
CIDS interactive model definition node. This node aims to enable efficient input feature
and output feature definition, facilitate the selection of appropriate model architectures,
and specify ranges for corresponding hyperparameters. The hyperparameters defined here
determine the aspects of model architecture, such as ranges for the numbers of convolu-
tion layers within the encoder and decoder, ranges and choices of latent dimensionality,
and choice of activation function for the layers.

Figure 4: Model and training hyperparameter selection using CIDS interactive nodes and
KadiAI dashboards.

In a machine learning workflow, the next step is to define the hyperparameters of the
training, such as batch size, number of epochs, learning rate, optimizer choice, and number
of training phases. These settings should be carefully selected and fine-tuned to ensure
optimal model performance during training. A user-interactive training definition node
assists in the definition of these training hyperparameters and their corresponding search
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range. On defining the required hyperparameters for training, the next step is to start
the model training with the help of a non-interactive training node which automates the
training process by utilizing the hyperparameters and model architecture defined in the
previous steps.

3.5 Data provenance tracking in executed machine learning workflows

The KadiAI workflow nodes developed to define and execute machine learning processes
using the CIDS framework record all the essential artifacts obtained throughout the work-
flow execution. Each CIDS workflow node integrated with the KadiAI interface has its
machine-learning metadata library. The metadata library captures and retrieves metadata
containing essential information about the various workflow process steps, their execu-
tions, and the artifacts produced during the machine learning process. Logging metadata
includes everything from setting up KadiAI projects to model training and evaluation.
KadiAI nodes generate the corresponding record type in the Kadi4Mat repository for each
machine learning process result and metadata storage.

The KadiAI projects are locally executed at the user level, which is analogous to classic
research processes. Through a structured upload, KadiAI projects synchronize the results
with the repository, where each processing step is saved as a record with corresponding
metadata and data. As the admin of the uploaded project, the user can grant access
to other members with specific roles such as member, editor, admin, or collaborator.
KadiAI projects also record the tool versions used for each processing step, allowing users
to go forward or backward with tool versions or infrastructures as required. For each
new model within a KadiAI, the ML model-creating function as Python code and tunable
model settings are recorded in separate records, which are linked to the corresponding
project record. Execute in Kadi workflows, users can skip process nodes and reuse existing
derived datasets for new models if no reprocessing is required, ultimately streamlining the
workflow. The created records of the KadiAI project are linked using unidirectional record
links to define the context of the relationship between them. The knowledge graphs of
the executed machine learning workflow aid in traceability and provenance tracking of the
data used, models developed, and results obtained during the machine learning project.

Figure 5 visualizes the data provenance for the characterization of solid electrolyte inter-
phase using the deep generative model in KadiAI as knowledge graphs. Knowledge graphs
turn data collected along your machine-learning process into machine-understandable
knowledge. These graphs help you to define the context of the relationship between
the two methods and adapt situational changes. On the other hand, it allows you to
incorporate real-world knowledge into your study, which data-driven lacks.

3.6 Data and code availability

The code for Kadi4Mat is readily available on the public Gitlab repository (Kadi4Mat
Team and Contributors 2023) for seamless sharing and collaboration within the commu-
nity. Additionally, we publish tool versions on Zenodo with a Digital Object Identifier
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Figure 5: Visualization of tracked data provenance during machine learning process steps as
knowledge graphs.

(DOI; Kadi4Mat Team and Contributors 2023) for enduring accessibility while priori-
tizing backward compatibility of both tools and infrastructure through the versioning
tools on Zenodo. Implementing the FAIR principles made our code easily discoverable
and accessible through our public Gitlab repository. Furthermore, we ensure that the
code is interoperable through the commonly used Python language, and our Zenodo DOI
persistence guarantees the reproducibility of tool versions.

4 Conclusion

In this article, we discussed the importance of research data management in daily sci-
entific research activities and the role of existing research data infrastructure in tackling
the challenges related to the organization, storage, and sharing of research data. Then
the infrastructure and functionalities of the Kadi4Mat ecosystem, a generic research data
management system to handle heterogeneous data in interdisciplinary material science,
and the development of virtual research environments through scientific workflows are de-
scribed. To understand the functionalities of the Kadi4Mat ecosystem, a research problem
focused on the data-driven study to characterize and predict the properties of solid elec-
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trolyte configuration of interest is addressed. The demonstrated machine learning work-
flow using the CIDS framework and KadiAI user interactive dashboards interfaced with
the Kadi4Mat repository showed how data management like Kadi4Mat can be integrated
with machine learning processes to ensure reproducibility, transparency, and traceability
of artifacts generated during the execution of the workflow.
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