Zitationsvorschlag

thor Straten, Mattis et al.: Data-Driven Community Standards for Interdisciplinary Heterogeneous Information Networks, in Heuveline, Vincent et al. (Hrsg.): E-Science-Tage 2025: Research Data Management: Challenges in a Changing World, Heidelberg: heiBOOKS, 2025, S. 54–76. https://doi.org/10.11588/heibooks.1652.c23914

Identifier (Buch)

ISBN 978-3-911056-51-9 (PDF)
ISBN 978-3-911056-52-6 (Softcover)

Veröffentlicht

05.11.2025

Autor/innen

Mattis thor Straten , Steffen Strohm , Florian Thiery , Matthias Renz

Data-Driven Community Standards for Interdisciplinary Heterogeneous Information Networks

Abstract: Creating a unified, interoperable representation by integrating diverse datasets is a key challenge in interdisciplinary research. Heterogeneous information networks (HINs) offer a graph-based approach to linking datasets while preserving their semantic structure. This study examines data-driven community standards, with a particular focus on ontologies, to ensure semantic interoperability in cultural heritage HINs. Using the CIDOC Conceptual Reference Model (CIDOC-CRM) alongside other commonly used or domain-specific ontologies, this study develops the hybrid ArNO ontology for archaeo-natural research data based on the experience gained in NFDI4Objects Task Area 3. The data integration follows Linked Open Data principles to ensure schemalevel consistency through ontology-based modelling, while enforcing data-level consistency through terminologies. This work contributes to the development of FAIR-compliant research infrastructures by establishing standards at schema and data level, thereby enhancing the reuse of data across the humanities and natural sciences. This approach is demonstrated by integrating ancient DNA datasets from the Poseidon framework to enable cross-dataset analysis by linking natural, archaeological, and contextual data. The study also addresses challenges in CIDOC-CRM-based modelling, such as its event-centric nature. 

Keywords: Data Integration, Ontologies, Linked Open Data, Heterogeneous Information Networks, Knowledge Graphs